MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
Model Answer: Summer - 2019

Important Instructions to Examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer: Summer - 2019

| Que.
 No. | Sub.
 Que. | Model Answer | |
| :---: | :---: | :---: | :---: | :---: |
| (A) | e) | List four types of minor losses.
 i) Loss of head at the entrance
 ii) Loss of head due to sudden expansion
 iii) Loss of head due to sudden contraction
 iv) Loss of head due to bend
 v) Loss of head due to exit
 vi) Loss of head due to gradual contraction \& expansion
 vii) Loss of head due to obstruction
 viii) Loss of head due to pipe fitting | Marks |
| Marks | | | |

Que No.	Sub. Que.	Model Answer	Marks	Total Marks
$\begin{aligned} & \text { Q. } 1 \\ & \text { (A) } \end{aligned}$	h)	State the hydraulics co-efficient of an orifice and write relation between them. i)Coefficient of discharge (C_{d}) The ratio of the actual discharge to the theoretical discharge is called as the coefficient of discharge. ii)Coefficient of contraction ($\mathbf{C}_{\mathbf{c}}$) The ratio of the cross-sectional area of the jet at vena contracta to the cross-sectional area of the orifice is called coefficient of contraction. iii)Coefficient of velocity ($\mathbf{C}_{\mathbf{v}}$) The ratio of actual velocity of the jet at vena contracta to the theoretical velocity of the jet is called coefficient of velocity. Relation: $\mathrm{C}_{\mathrm{d}}=\mathrm{C}_{\mathrm{v}} \times \mathrm{C}_{\mathrm{c}}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	(B) b)	A vertical tank square in plan has side width 4.5 m . It contains an oil of specific gravity 0.8 to a depth of 2.5 m . Calculate total pressure on bottom and on one side of tank.		
	Ans.			
		Data: Side $\mathrm{a}=4.5 \mathrm{~m}$. ,Specific gravity of oil $\mathrm{S}_{\text {oil }}=0.8$, Depth of oil $\mathrm{h}=2.5$ a) Pressure intensity on bottom $\begin{aligned} \mathrm{P}_{\text {bottom }} & =\gamma_{\mathrm{L}} \times \mathrm{h}_{\mathrm{L}} \\ \mathrm{P}_{\text {bottom }} & =0.8 \times 9810 \times 2.5 \\ \mathrm{P}_{\text {botom }} & =19620 \mathrm{~N} / \mathrm{m}^{2} \\ \mathrm{P}_{\text {botom }} & =19.620 \mathrm{kN} / \mathrm{m}^{2} \end{aligned}$ b) Total pressure on bottom $\begin{aligned} & \mathrm{P}_{1}=\mathrm{P}_{\text {bottom }} \times \text { Area } \\ & \mathrm{P}_{1}=19.620 \times(4.5 \times 4.5) \\ & \mathrm{P}_{1}=397.305 \mathrm{kN} \end{aligned}$ c) pressure intensity on one side of tank:	1	
		$\begin{aligned} & \mathrm{P}_{\text {side }}=\left(\frac{1}{2} \times \gamma_{\mathrm{L}} \times \mathrm{h}_{\mathrm{L}} \times \mathrm{h}_{\mathrm{L}}\right) \\ & \mathrm{P}_{\text {side }}=\left(\frac{1}{2} \times 0.8 \times 9810 \times 2.5^{2}\right) \\ & \mathrm{P}_{\text {side }}=24525 \mathrm{~N} / \mathrm{m} \\ & \mathrm{P}_{\text {side }}=24.525 \mathrm{kN} / \mathrm{m} \end{aligned}$ d)Total Pressure on side of tank $\begin{aligned} & \mathrm{P}_{2}=\mathrm{P}_{\text {side }} \times \text { width of liquid } \\ & \mathrm{P}_{2}=24.525 \times 4.5 \\ & \mathrm{P}_{2}=1010.36 \mathrm{kN} \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	a)	Attempt any FOUR :		(16)
		A circular plate 4 m dia. is immersed in oil of specific gravity of 0.9 such that its greatest and least depth below the free surface of oil is $5 \mathbf{m}$ and 2 m respectively. Calculate: i) The total pressure on one side or face of the plate. ii) The location of centre of pressure.		
	Ans.			
		Step1. Depth of centroid of lamina from free surface. $\bar{x}=\frac{5+2}{2}=3.5 \mathrm{~m} .$ Step2. Area of lamina.	1/2	
		$\mathrm{A}=\frac{\pi}{4} \times(4)^{2}=12.56 \mathrm{~m}^{2}$ Step3. Moment of inertia. $\mathrm{I}_{\mathrm{G}}=\frac{\pi}{64} \times \mathrm{D}^{4}$	1/2	
		$\mathrm{I}_{\mathrm{G}}=\frac{\pi}{64} \times 4^{4}=12.56 \mathrm{~m}^{4}$	1/2	

| Que.
 No. | Sub.
 Que. | State Bernoulli's theorem and its limitations. | Marks | Total
 Marks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ans. | | | | |

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(ISO/IEC - 27001-2005 Certified)
Model Answer: Summer - 2019
Subject: Hydraulics

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
	c)	Energy line"(TEL) or Total energy gradient (TEG) Total energy line is the line which gives sum pressure head, datum head and kinetic head of a flowing fluid $T E L=\frac{P}{\gamma}+\frac{V^{2}}{2 g}+z$ Fig. HGL and TEL Water flows through a pipe line which is gradually reduces from 500 mm diameter at ' A ' to $\mathbf{4 0 0} \mathbf{~ m m}$ diameter at ' B ' and then forms,one branch being 150 mm diameter discharge at ' C ' and other branch 200 mm diameter discharge at ' D ' is $5 \mathrm{~m} / \mathrm{s}$. What will be the discharge at ' C ' and ' D ' and the velocity at ' B ' and ' C ' ? *(Note: Assuming Velocity at point $A=2 \mathrm{~m} / \mathrm{s}$)	2	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	c)	Data: $\mathrm{d}_{\mathrm{A}}=0.5 \mathrm{~m}, \mathrm{~d}_{\mathrm{B}}=0.4 \mathrm{~m}, \mathrm{~d}_{\mathrm{c}}=0.15 \mathrm{~m}, \mathrm{~d}_{\mathrm{A}}=0.2 \mathrm{~m}, \mathrm{v}_{\mathrm{D}}=5 \mathrm{~m} / \mathrm{s}$. $\mathrm{Q}_{\mathrm{C}}=? \quad \mathrm{Q}_{\mathrm{D}}=? \quad \mathrm{v}_{\mathrm{B}}=?, \quad \mathrm{v}_{\mathrm{C}}=?$ Assuming velocity at A $\mathrm{v}_{\mathrm{A}}=2 \mathrm{~m} / \mathrm{s}$ Discharge at A : $\begin{aligned} & \mathrm{Q}_{\mathrm{A}}=\mathrm{a}_{\mathrm{A}} \times \mathrm{v}_{\mathrm{A}} \\ & \mathrm{Q}_{\mathrm{A}}=\frac{\pi}{4}(0.5)^{2} \times 2 \\ & \mathrm{Q}_{\mathrm{A}}=0.393 \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$ Discharge at D : $\begin{aligned} & \mathrm{Q}_{\mathrm{D}}=\mathrm{a}_{\mathrm{D}} \times \mathrm{V}_{\mathrm{D}} \\ & \mathrm{Q}_{\mathrm{D}}=\frac{\pi}{4}(0.2)^{2} \times 5 \\ & \mathrm{Q}_{\mathrm{D}}=0.157 \mathrm{~m}^{3} / \mathrm{s} \\ & \mathrm{Q}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{C}}+\mathrm{Q}_{\mathrm{D}} \\ & \mathrm{Q}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{C}}+\mathrm{Q}_{\mathrm{D}} \\ & 0.393=\mathrm{Q}_{\mathrm{C}}+0.157 \\ & \mathrm{Q}_{\mathrm{C}}=0.236 \mathrm{~m}^{3} / \mathrm{s} \end{aligned}$ $\mathrm{v}_{\mathrm{B}}=\frac{\mathrm{Q}_{\mathrm{B}}}{\mathrm{a}_{\mathrm{B}}}$ $\mathrm{v}_{\mathrm{B}}=\frac{0.393}{\frac{\pi}{4} \times(0.4)^{2}}$ $\mathrm{v}_{\mathrm{B}}=3.127 \mathrm{~m} / \mathrm{s}$ $\begin{aligned} & \mathrm{v}_{\mathrm{C}}=\frac{\mathrm{Q}_{\mathrm{C}}}{\mathrm{a}_{\mathrm{C}}} \\ & \mathrm{v}_{\mathrm{C}}=\frac{0.236}{\frac{\pi}{4} \times(0.15)^{2}} \\ & \mathrm{v}_{\mathrm{C}}=13.355 \mathrm{~m} / \mathrm{s} \end{aligned}$ (Note: Velocity of flow is not given in question if suitable value of velocity is assumed and try to attempt should be considered and give appropriate marks.)	1	4

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \text { Que. } \\
\& \text { No. }
\end{aligned}
\] \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answer \& Marks \& Total Marks \\
\hline Q. 3 \& \begin{tabular}{l}
d) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Three pipes having same length and same friction factor having different diameter as \(\mathbf{3 0 0} \mathbf{~ m m}, \mathbf{1 5 0} \mathbf{~ m m}, \mathbf{5 0} \mathbf{~ m m}\) respectively. When three pipes are connected parallel, gives a total discharge of \(\mathbf{0 . 9 0}\) \(\mathrm{m}^{3} / \mathrm{s}\). Find out discharge in each pipe. \\
Data: \\
Data: \(f_{1}=f_{2}=f_{3}\) and \(l_{1}=l_{2}=l_{3}\)
\[
\mathrm{d}_{1}=300 \mathrm{~mm}, \mathrm{~d}_{2}=150 \mathrm{~mm}, \mathrm{~d}_{3}=50 \mathrm{~mm} .
\]
\[
\mathrm{Q}=0.9 \mathrm{~m}^{3} / \mathrm{s} .
\] \\
To find: \(\mathrm{Q}_{1}=\) ? \(\mathrm{Q}_{2}=\) ? \(\mathrm{Q}_{3}=\) ? \\
Solution: for pipes connected in parallel head loss is equal
\[
\therefore \frac{\mathrm{f}_{1} 1_{1} \mathrm{v}_{1}{ }^{2}}{2 \mathrm{gd}_{1}}=\frac{\mathrm{f}_{2} \mathrm{l}_{2} \mathrm{v}_{2}{ }^{2}}{2 \mathrm{gd}_{2}}=\frac{\mathrm{f}_{3} 1_{3} \mathrm{v}_{3}{ }^{2}}{2 \mathrm{gd}_{3}}
\] \\
But \(\mathrm{f}_{1}=\mathrm{f}_{2}=\mathrm{f}_{3}\) and \(\mathrm{l}_{1}=\mathrm{l}_{2}=\mathrm{l}_{3}\)..........given \\
\(\therefore\) above equation reduces to
\[
\begin{aligned}
\& \quad \frac{\mathrm{v}_{1}{ }^{2}}{\mathrm{~d}_{1}}=\frac{\mathrm{v}_{2}{ }^{2}}{\mathrm{~d}_{2}}=\frac{\mathrm{v}_{3}^{2}}{\mathrm{~d}_{3}} \\
\& \text { equating } \frac{\mathrm{v}_{1}{ }^{2}}{\mathrm{~d}_{1}}=\frac{\mathrm{v}_{2}^{2}}{\mathrm{~d}_{2}} \\
\& \therefore \mathrm{v}_{1}^{2}=\frac{0.3}{0.15} \mathrm{v}_{2}^{2} \\
\& \therefore \mathrm{v}_{1}=1.414 \mathrm{v}_{2}---------1 . \\
\& \text { equating } \frac{\mathrm{v}_{3}^{2}}{\mathrm{~d}_{3}}=\frac{\mathrm{v}_{2}^{2}}{\mathrm{~d}_{2}} \\
\& \therefore \mathrm{v}_{3}^{2}=\frac{0.05}{0.15} \mathrm{v}_{2}^{2} \\
\& \therefore \mathrm{v}_{3}=0.577 \mathrm{v}_{2}-----------2 \\
\& \mathrm{Q}_{1}=\mathrm{A}_{1} \mathrm{v}_{1}=0.071 \times 1.414 \mathrm{v}_{2}=0.100 \mathrm{v}_{2} \\
\& \mathrm{Q}_{2}=\mathrm{A}_{2} \mathrm{v}_{2}=0.018 \mathrm{v}_{2} \\
\& \mathrm{Q}_{3}=\mathrm{A}_{3} \mathrm{v}_{3}=1.963 \times 10^{-3} \times 0.577 \mathrm{v}_{2}=1.133 \times 10^{-3} \mathrm{v}_{2}
\end{aligned}
\] \\
For pipes in parallel
\[
\begin{aligned}
\& \mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3} \\
\& 0.9=0.100 \mathrm{v}_{2}+0.018 \mathrm{v}_{2}+1.133 \times 10^{-3} \mathrm{v}_{2} \\
\& 0.9=0.119 \mathrm{v}_{2} \\
\& \mathrm{v}_{2}=7.563 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

1
$1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	e) Ans.	$\mathrm{v}_{1}=1.414 \times 7.563=10.694 \mathrm{~m} / \mathrm{s}$	1/2	4
			1/2	
		$\mathrm{Q}_{1}=\mathrm{A}_{1} \mathrm{v}_{1}=0.071 \times 10.694=0.756 \mathrm{~m}^{3} / \mathrm{s}$	1/2	
		$\mathrm{Q}_{2}=\mathrm{A}_{2} \mathrm{v}_{2}=0.018 \times 7.563=0.136 \mathrm{~m}^{3} / \mathrm{s}$	1/2	
		$\mathrm{Q}_{3}=\mathrm{A}_{3} \mathrm{v}_{3}=1.963 \times 10^{-3} \times 4.364=8.567 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$		
		Define following: i) Wetted perimeter ii) Wetted area ii)Hydraulic mean depth iii)Most economical channel		
		i) wetted perimeter- It is length of channel boundary which is	1	
		ii) wetted area- it is cross sectional area which is covered by water	1	
		iii) Hydraulic mean depth: The depth of flow in a channel above bed surface is called as hydraulic depth (d). iv) Most economical section:- A channel section is said to be most economical when it gives maximum discharge for a given cross section area, bed slope and coefficient of resistance.	1 1	
	f)	Explain Moody's diagram and state its applications.		
	Ans.	i. Moody's diagram is graph plotted in the form of frictional factor (f) verses Reynold's number (R_{e}) for various values of relative roughness (e/D)		
		ii. $\quad R_{e}$ is taken on X-axis and f on Y-axis .The curve on this graph are plotted from the results of experiments. iii. In case of laminar flow, the friction factor is computed from the formula.	$\begin{gathered} 1 / 2 \\ \text { each } \end{gathered}$	
		$f=\frac{64}{R_{e}}$ iv. In case of turbulent flow, the influences of the roughness of the pipe wall become dominant. The roughness size is expressed in terms of pipe diameter.		

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
f.3	Where ε is called the relative roughness. Applications of moody's diagram: i. It is used to find relative roughness ii. It is used to find friction factor iii. It can be used for finding pressure drop or flow rate down such a pipe.	$1 / 2$ iv. It is in the selection of a diameter for a pipe for some Purpose	4	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	c) Ans.	$\text { Data: } Q=0.3 \mathrm{~m}^{3} / \mathrm{s}, \mathrm{~d}_{1}=30 \mathrm{~cm}, \mathrm{~d}_{2}=35 \mathrm{~cm}$ $\begin{aligned} & \mathrm{Q}=\mathrm{a}_{1} \mathrm{v}_{1} \\ & 0.3=\frac{\pi}{4}(0.3)^{2} \times \mathrm{v}_{1} \\ & \mathrm{v}_{1}=4.24 \mathrm{~m} / \mathrm{s} \\ & \mathrm{Q}=\mathrm{a}_{2} \mathrm{v}_{2} \\ & 0.3=\frac{\pi}{4}(0.35)^{2} \times \mathrm{v}_{2} \\ & \mathrm{v}_{2}=3.12 \mathrm{~m} / \mathrm{s} \end{aligned}$ Case 1. Water flows from smaller dia. to large dia. pipe Head loss due to sudden enlargement $\begin{aligned} & \mathrm{H}_{\mathrm{L}}=\frac{\left(\mathrm{v}_{1}-\mathrm{v}_{1}\right)^{2}}{2 \mathrm{~g}} \\ & \mathrm{H}_{\mathrm{L}}=\frac{(4.24-3.12)^{2}}{2 \times 9.81} \\ & \mathrm{H}_{\mathrm{L}}=0.064 \mathrm{~m} \end{aligned}$ Case 2. flow is reversed with same discharge. loss of head due to sudden contraction $\begin{aligned} & \mathrm{H}_{\mathrm{L}}=\frac{0.5\left(\mathrm{v}_{1}\right)^{2}}{2 g} \\ & \mathrm{H}_{\mathrm{L}}=\frac{0.5(4.24)^{2}}{2 \times 9.81} \\ & \mathrm{H}_{\mathrm{L}}=0.458 \mathrm{~m} \end{aligned}$	1 3 3	8

