

SUMMER- 2019 Examinations Model Answer

Page 1 of 27

Subject Code: 17414

Important suggestions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	Attempt any TEN of the following : 20 Marks
a)	Define : (i) Accuracy (ii) Precision
Ans	i) Accuracy: (1 Mark)
:	The degree of exactness (closeness) of a measurement compared to the expected (desired)
	value.
	OR
	Closeness with which the instrument reading approaches the true value of the quantity being
	measured is known as accuracy
	(ii) Precision: (1 Mark)
	It is the measure of consistency or reproducibility of measurements. i.e successive readings
	do not defer.
	OR
	It prescribes the ability of the instrument to reproduce its readings over and over again for a
	constant input signal
b)	List out any 4 dynamic characteristics.
Ans	Dynamic characteristics:(Each Characteristics: 1/2 Mark, total 2 marks)
:	1. Speed of response
	2. Measuring lag

	SUMMER- 2019 ExaminationsSubject Code: 17414Model AnswerPage 2	of 27
	3. Fidelity	
	4. Dynamic error	
c) Ans		
:	: The process of deriving the value of a quantity by comparing that quantity	with a
	standard quantity is called as calibration.	
	OR	
	Calibration is nothing but comparing the measuring instrument with stand	dard
	instrument to find out error in the instrument under test	
	OR	
	Calibration of instrument is done to obtain correct unknown value of each	scale
	reading on measuring instrument. There are 3 main reasons for having instrum	nent
	calibration:	
	• To ensure reading from an instrument are consistent with other measur	rements.
	• To determine the accuracy of the instrument reading.	
	• To establish the reliability of the instrument i.e. it can be trusted.	
d)	d) Define : (i) Repeatability (ii) Reproducibility	
	i) Repeatability: (1 Mark)	
	Repeatability conditions are when replicate measurements are made in one	<u>j</u>
	laboratory, by a single analyst, using the same equipment over a short time per	riod. It is
	defined as variation of scale reading and it is random in nature.	
	(ii) Reproducibility: (1 Mark)	
Ans .	Reproducibility describes the closeness of output readings for the same input	ut when
•	. there are changes in the method of measurement, observer, measuring instrume	ent,
	location, conditions of use, and time of measurement.	
	OR	
	It is the closeness among a number of repeated measurements of the output for	same
	value of input	

	SUMMER– 2019 Exa	
	Subject Code: 17414 Model Answe	r Page 3 of 27
e)	/ 1	
Ans :	Examples Active Transducers : (Any Two 1. Thermocouple 2. Piezoelectric Transducer 3. Solar Cell/ Photovoltaic cell 4. Tacho generator	expected: 1/2 each, Total 1 Mark)
	Examples Passive Transducers :(Any Two1. Thermistor2. RTD3. LVDT4. Strain Gauge5. Electromagnetic flowmeter.6. Capacitive transducers. Etc.	expected: 1/2 each, Total 1 Mark)
f)	, 0	
Ans	Gauge factor:	(2 Marks)
:	[:] It is defined as the ratio of per unit change in resis	stance to per unit change in length
	GF(K) = - OR The measurement of the sensitivity of a material t	·
g)	g) State seebeck effect.	
	Seebeck effect :	(2 Marks)
	Seebeck effect state that whenever two dise	similar metals are connected together to
Ans	form two junctions, out of which, one junction	is subjected to high temperature and
:	: another junction is subjected to low temperature	, , , , , , , , , , , , , , , , , , , ,
	temperature difference between two junctions.	
h)	n) Define : (i) Stress (ii) Strain	
	(i) Stress:	(1 Mark)
	It is defined as the force experience	d per unit area
Ans	-	-
:	: The amount of push and pull force applied	l over a cross sectional area right angle to
	the action of force is called stress.	

Subject Code: 17414	SUMMER– 2019 Exa Model Answe			Page 4 of 27	
(ii) Strain:			(1 M	lark)	
It is defir	ed as the ratio of change in	n length to origin	nal length		
	OR				
The ratio of change in dimension to the original dimension is called strain					
	OR				
The deformation of	lue to the effect of applied	force is called St	rain.		
Draw neat labelled pi	n diagram for IC 741				
Labelled pin diagram	for IC 741:		(2	Marks)	
LM74	1 Pinout Diagram				
(i) CMRR:- The CMRR is common-mode gair differential gain sho	Slew Rate defined as the ratio of the , measured in positive dec uld exceed common-mode	powers of the di ibels (thus using	the 20 log	gain over the rule): As	
CMRR=	ADM/ACM				
ii) Slew rate:	·		(1 Ma	urk)	
The slew rat	e of an op amp or any amp	lifier circuit is th	e rate of cl	nange in the	
output voltage caus	ed by a step change on the	input. OR -The 1	maximum	rate at which an	
amplifier can respo	nd to an abrupt change of i	nput level			
It is measure	d as a voltage change in a g	given time.			
	It is define The ratio of ch The deformation of Draw neat labelled pin Labelled pin diagram LM74 OFFSET NULL $-$ NON-INVERTING INPUT NON-INVERTING NON-INVERTING NON-INVERTING NON-INVERTING NON-INVERTING NON-INVERTING NON-INVERTING The CMRR (ii) S (i) CMRR:- The CMRR is common-mode gain differential gain sho the higher the better CMRR= ii) Slew rate: The slew rate output voltage cause amplifier can respon	Subject Code: 17414 (ii) Strain: It is defined as the ratio of change in OR The ratio of change in dimension to the of OR The deformation due to the effect of applied Draw neat labelled pin diagram for IC 741 Labelled pin diagram for IC 741: IM741 Pinout Diagram OFFSET NULL $\int \int V V V V V V V V V V V V V V V V V $	Subject Code: 17414 <u>Model Answer</u> (i) Strain: It is defined as the ratio of change in length to origin OR The ratio of change in dimension to the original dimension OR The deformation due to the effect of applied force is called St Draw neat labelled pin diagram for IC 741 Labelled pin diagram for IC 741: LM741 Pinout Diagram OFFSET NULL OFFSET NULL OFFSET NULL OFFSET NULL OFFSET NULL OR Define : (i) CMRR (ii) Slew Rate (i) CMRR: The CMRR is defined as the ratio of the powers of the d common-mode gain, measured in positive decibels (thus using differential gain should exceed common-mode gain, this will b the higher the better. CMRR = ADM/ACM i) Slew rate: The slew rate of an op amp or any amplifier circuit is th	Subject Code: 17414 Model Answer (ii) Strain: (1 M It is defined as the ratio of change in length to original length OR The ratio of change in dimension to the original dimension is called OR The deformation due to the effect of applied force is called Strain. Draw neat labelled pin diagram for IC 741 Labelled pin diagram for IC 741: (2 OFFSET NULL OFFSET NULL Off set Null OFFSET NULL Off set Null OR OR equivalent diagram Define : (i) CMRR (ii) Slew Rate (i) CMRR: (1 Ma The CMRR is defined as the ratio of the powers of the differential provide gain, measured in positive decibels (thus using the 20 log differential gain should exceed common-mode gain, this will be a positive the higher the better. CMRR= ADM/ACM (1 Ma The slew rate of an op amp or any amplifier circuit is the rate of cl output voltage caused by a step change on the input. OR -The maximum amplifier can respond to an abrupt change of input level	

SUMMER- 2019 Examinations Model Answer

Page 5 of 27

k)	State the necessity of signal conditioning.						
Ans	Necessity of signal conditioning:- (2 Marks)						
:	Transducers or sensors' output is not capable to drive next stages. Full scale output of most						
	sensors/transducers is relatively small quantity. For accurate characterization of						
	transducer output. To amplify, attenuate, add, subtract, filter the signal. Protection of						
	devices and circuits of measurement. So conditioning is a manipulating a signal in such a						
	way that it can meet the next stage for further processing.						
1)	Draw pin diagram of IC LF398.						
Ans	Pin diagram of IC LF398: (2 Marks)						
:							
	INPUT 1 VOS Adj						
	NC 2 13 NC						
	\mathbf{v}_{-} \mathbf{v}_{+} \mathbf{v}_{+}						
	NC 4 11 LOGIC						
	NC 5 10 LOGIC REF						
	NC 6 9 NC						
	OUTPUT 7 8 Ch						
	OR equivalent figure						
Q.2	Attempt any FOUR of the following : 16 Marks						
<u>Q.2</u> a)	Derive an expression for unit step response of first order system. Draw its response curve.						
Ans:	Let a unit step input u(t) be applied to a first order system						
	Let a diffestep input a(t) se applied to a first oracl system						
	r(t)=u(t) and $R(s)=1/S$						
	Transfer function of a first order system is						
	$G(S) = \frac{K}{1 + \tau s} - \dots - $						
	$1+\tau s$						
	 If system is dimensionless then K=1 						
	Output; $C(S) = G(S) * R(S)$						
	$=\frac{1}{S*(1+\tau S)}$						
	$C(S) = \frac{1}{S} - \frac{\tau}{1 - \tau S} $						
	$S = S = S = T - \tau S$						
	taking the inverse Laplace we get						

SUMMER- 2019 Examinations Model Answer

Page 7 of 27

c)	Define transducer. Give the classification of transducer with one example each.				
Ans:	(Definition: 1 Mark & Any three type with one example expected: 1 mark each, Total 4				
	Marks) Transducer:				
	Transducer is the device which converts one form of energy into another.				
	Classification of transducer with one example each				
	1) Based on Physical Phenomenon:				
i) Primary transducer. Ex- Bourdon tube					
	ii) Secondary transducer Ex-LVDT				
	2) Based on Power type classification :				
	i) Active transducer Ex- Piezoelectric Crystal, Thermocouple etc.				
	ii) Passive transducer Ex-Thermistors, strain Gauges				
	3) Based on type of output :				
	i) Analog transducer Ex- Strain Gauges, Potentiometers				
	ii) Digital transducers Ex- Rotary Encoder				
	4) Based on Transduction phenomenon :				
	i) Transducer (Electrical) Ex-Thermistor				
	ii) Inverse Transducer(Mechanical) Ex- Bourdon Tube, Bellows				
d)	Define strain gauge. State different types of strain gauge.				
Ans:	Strain gauge: (2 Marks)				
	It is a resistive transducer whose resistance varies with applied force; It converts force,				
	pressure, tension, weight, etc., into a change in electrical resistance which can then be				
	measured.				
	Types of strain gauge: (Any Four types expected:1 Mark each, Total 2 Mark)				
	1. Unbonded metal strain gauges				
	2. Bonded metal wire strain gauges				
	3. Bonded metal foil strain gauges				
	4. semiconductor strain gauges				

SUMMER-2019 Examinations

Subject Code: 17414

Model Answer

Page 8 of 27

SUMMER– 2019 Examinations <u>Model Answer</u>

Page 9 of 27

SUMMER- 2019 Examinations

Subject Code: 17414

Model Answer

Page 10 of 27

scale or recording of a pen moving over a chart.

SUMMER-2019 Examinations Subject Code: 17414 **Model Answer** Page 11 of 27 ANALOG INSTRUMENTATION SYSTEM OUTPUT UNIT INPUT UNIT SIGNAL PROCESSING (INDICATING UNIT/CRO/CHART (TRANS DUCER) UNIT RECORDER/COMPUTER) or equivalent figure 1. The Primary Element/Transducer: The input receives the quantity whose value is to be measured and is converted into its proportional incremental electrical signal such as voltage, current, resistance change, inductance or even capacitance. Thus, the changed variable contains the information of the measured variable. Such a functional element or device is called a transducer. 2. The Secondary Element/Signal Processing Unit : The output of the transducer is provided to the input of the signal processing unit. This unit amplifies the weak transducer output and is filtered and modified to a form that is acceptable by the output unit. Thus this unit may have devices like: amplifiers, filters, analog to digital converters, and so on. **3.** The Final Element/Output Unit: The output from the signal processing unit is fed to the input of the output unit. The output unit measures the signal and indicates the value to the reader. The indication may be either through: an indicating instrument, a CRO, digital computer, and so on Distinguish between sensitivity and resolution. b) (Any Four types expected:1 Mark each, Total 4 Mark) Ans: Sensitivity resolution Sr.no It is defined as smallest 1. The ratio of change in output of an instrument to increment in input (quantity the change in input is being measured) which can be detected with known as sensitivity certainty by an instrument

SUMMER-2019 Examinations Model Answer

	Subject Code: 17414	<u>Model Answe</u>		Page 12 of 27
2. 2. 3. 4.		Sensitivity = Change in output/ Change in input Accuracy will not be affected by Sensitivity Better reading, Sensitivity of the sensor must be high	the smallest increment of change in the measured value that can be determined Accuracy will be affected by resolution higher resolution will be able read smaller readings or dete a smaller change.	
c) Ans:	Draw the diagram of Diagram of RTD:	of RTD and state its working	principle. ark, Working : 2 Mark, Tota	
	Lead supports Sheath Flormon			ıt ramic Bobbin
	OR Or equivalent figure			
	Resistance thermon	-		
	The resista	nce of a conductor changes w	hen its temperature is chang	ged. The
	resistance ther	mometer or RTD is an instrum	nent used to measure electric	cal resistance in
	terms of tempe	erature.		
	Variation of	of resistance of a metal with th	ne temperature can be repres	sented by the
	following relat	ionship:		
	K	$Rt = R0 (1 + \alpha t + \beta t^2 + \gamma t^3 + \dots)$.)	
d)	Describe working o	of an electromagnetic flow mo	eter with neat diagram.	
Ans:	· · · · · · · · · · · · · · · · · · ·	nagnetic flow meter	0	

SUMMER-2019 Examinations Subject Code: 17414 Model Answer Page 13 of 27 (Diagram: 2 mark & Working; 2 mark. Total 4 Marks) }Electromotive force:E }Exciting current Excitation co Magnet N Measured fluid Pine Inner diameter:D Flow OR or equivalent figure Working Principle: The electromagnetic flow meter uses Faraday's Law of electromagnetic induction to measure the process flow. When an electrically conductive fluid flows in the pipe, an electrode voltage E \geq is induced between a pair of electrodes placed at right angles to the direction of magnetic field. Under Faraday's law of induction, moving conductive liquids inside of a magnetic field generates an electromotive force (voltage) in which the pipe inner diameter, magnetic field strength, and average flow velocity are all proportional. In other words, the flow velocity of liquid moving in a magnetic field is converted into electricity. (E is proportional to $V \times B \times D$)

 The electrode voltage E is directly proportional to the average fluid velocity (V).

e)Draw constitutional diagram of LVDT. State its working principle.Ans:Constitutional diagram of LVDT:
(Diagram: 2 Mark & Working: 2 Mark, Total 4 Marks)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER- 2019 Examinations Model Answer

Page 14 of 27

Γ

Subject Code: 17414

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER- 2019 Examinations Model Answer

Page 15 of 27

6.	The Mechanical dev converts physical qu be measured into a mechanical signal		The Electrical device which converts this mechanical signal
6.	be measured into a	antity to	converts this mechanical signal
6.			
6.	mechanical signal		to the electrical signal.
	Primary transducer	is that	The secondary transducer does
	which comes in cont	tact with	not come in direct contact with
	the medium being n	neasured	the medium being measured
7.	Output of primary t	ransducer	Output of secondary
	will not directly used	d in	transducer directly used in
	process system		process system
8.	It is mechanical dev	ice	It is electrical device
9.	Example :-		Example :-
	Bordon tube, bellow	vs, Load	LVDT, Strain Gauge
	cell		
vo material	ls each for core of	LVDT, str	ain gauge, diaphragm and ther (Each Po
	T	Matai	1.
			e's material is ferromagnetic
1.			ich as iron or ferrimagnetic
		compou	nds such as ferrites
2.	Strain gauge		ne, Constantan, Isoelastic, Nicke
			n, Aluminum ,Copper, Steel, ium, Bronzes
3.	Diaphragm	U U	ne , Neoprene , Animal
			ne, Silk, and Synthetic materials
4.	Thermistor		mixture of metallic oxides such
		-	ese , nickel, cobalt, copper, iron
	8. 9. <u>9.</u> <u>Sr.no</u> 1. 2. 3.	8. It is mechanical dev 9. Example :- Bordon tube, bellow cell wo materials each for core of Sr.no Transducer 1. LVDT 2. Strain gauge 3. Diaphragm	8. It is mechanical device 9. Example :- Bordon tube, bellows, Load cell vo materials each for core of LVDT, str Materia 1. LVDT 1. LVDT 2. Strain gauge Nichron Platinur Magnesi 3. Diaphragm Polyther membra 4. Thermistor sintered

SUMMER-2019 Examinations Model Answer

Page 16 of 27

c)	Compare	open loon	and closed loop configur	ation o	f On-Amn	
Ans:	Compare open loop and closed loop configuration of Op-Amp. (Any four point expected: 1 Mark each, Total 4 Mark)					
	C No	Point			alared loss san Granation of On	
	S.No.	Point	open loop configuration	n or	closed loop configuration of Op-	
			Op-Amp		Amp	
	1	Circuit diagram	V _{in} + - V _{out} - v _{out}		V _{in} V _{out} R _g	
	2	Gain	Voltage gain is very high. is uncontrollable	Gain	Voltage gain is low as compared to open. Gain is controllable & depends on external passive components.	
	3	Bandwi dth	bandwidth is low		bandwidth is high	
	4	Applicat ion	Comparator, Square wave generator, wave shaping circuit, zero crossing detection		It is used ac, dc signal amplifier, oscillator, Instrument amplifier circuits etc	
	5	Feedbac k signal	No feedback is taken from output		A feedback signal is taken from the output	
d) Ans:	Compare	e RTD and	thermistor. (Any four point ex	spected	d: 1 Mark each, Total 4 Mark)	
	S.No.		RTD		thermistor	
	1		11		Made of metallic oxides such as cobalt, manganese, nickel etc.	
	2	coefficien resistance	itive temperature t of resistance that is their increases as the ure increases.	negat resist	nistors of both positive and tive temperature coefficient of ance are available but histors having NTC are used,	

SUMMER- 2019 Examinations Model Answer

Page 17 of 27

			that is, their resistance will decrease				
			as the temperature increases.				
		T	-				
	3	Temperature range: -100 C to	Temperature range: -50 C to 300 C				
		650 C.					
	4	Temperature versus resistance characteristics are linear.	Temperature versus resistance characteristics are nonlinear.				
	5	Less sensitive to temperature	Thermistors are more sensitive to				
		than thermistor	temperature in the specified range than RTDs				
	6	Castis high	Less costlier than RTD				
	6	Cost is high	Less costiler than KID				
	7	They have better reproducibility	They have less reproducibility and				
		and low hysteresis.	more hysteresis.				
	8	Relatively bigger in size.	Thermistors are quite small in size				
		Remarvery bigger in bize.	and in shapes like washer, bead,				
			probe, disc, etc				
		DAS. Draw diagram for single chanr					
Ans:	DAS:		(2 Marks)				
			used to measure and record analog signals				
	ei	ther in analog form or in digital form	L.				
	D'						
	Diagra	m for single channel DAS:	(2 Marks)				
	Second	Trusducer	P				
	Ph	IVSICal Conditioning	Recorder				
	sy	stem Sensor Converte					
	Fig. Single Channel DAS						
	or equivalent diagram						

SUMMER- 2019 Examinations Model Answer

Page 19 of 27

loop, and a distribution register.

- At the start of conversion cycle, both the control register and distribution register are set with a 1 in the MSB and a 0 in all bits of less significance. Thus the distribution register shows that the cycle has started and the process is in the first phase.
- The control register shows 1000, and this causes an output voltage at D/A converter section of one half of reference supply.
- At the same time, a pulse enters the time delay circuitry. By the time that the D/A converter and the comparator have settled, this delayed pulse is gated with the comparator output.

 When the next MSB is set in control register by the remains in a one state or it is reset to 0 depending t The single 1 in the distribution register is shifted to of the comparison made. The procedure repeats itself following the diagram has been corrected and the distribution register ind c) Differentiate between single channel DAS and multichat Ans: 	upon the comparator output. the next position and keeps track of fig until the final approximation icates the end of the conversion.			
 The single 1 in the distribution register is shifted to of the comparison made. The procedure repeats itself following the diagram has been corrected and the distribution register ind C) Differentiate between single channel DAS and multichal procedure is a single channel bas been context of the distribution is a single channel bas and multichal procedure is a single channel bas a single channel procedure is a single channel bas a single channel procedure is a single channel bas a single channel procedure is a single channel bas a single channel procedure is a single channel bas a single channel procedure is a single channel bas a single channel procedure is a single channel bas a single channel procedure is a single channel p	the next position and keeps track of fig until the final approximation icates the end of the conversion.			
 of the comparison made. The procedure repeats itself following the diagram has been corrected and the distribution register ind C) Differentiate between single channel DAS and multichate 	of fig until the final approximation icates the end of the conversion.			
 The procedure repeats itself following the diagram has been corrected and the distribution register ind Differentiate between single channel DAS and multichate 	icates the end of the conversion.			
has been corrected and the distribution register ind c) Differentiate between single channel DAS and multicha	icates the end of the conversion.			
c) Differentiate between single channel DAS and multicha	nnel DAS.			
Ans: (Each poin	t: 1 Mark, 1 otal 4 Mark)			
S.No. Single channel DAS N	Iultichannel DAS			
1 Only one parameter is acquired More that	an one parameter			
2 Multiplexer is not required Multiple	exer is required			
3 Less number of transducer & More nu	mber of transducer &			
signal conditioning is required signal co	onditioning is required			
4 Simple circuitry Complic	ated circuitry			
d) Draw and explain force measurement using load cell.				
Ans: Diagram of force measurement using load cell : (Diagram : 2 Mark & Explanati	on: 2 Mark, Total 4 Marks)			
Image: Comparison of the second se				
Working:				

	SUM Subject Code: 17414	IMER– 2019 Examinations <u>Model Answer</u>	Page 21 of 27		
	1. Load cells utilize an elastic	member as the primary transducer and	strain gauges as		
	secondary transducers.				
	2. Strain gauges may be attac	hed to any elastic member, on which the	ere exists a,		
	suitable plane area to acco	mmodate them.			
	3. This arrangement may the	n be used to measure loads applied to d	eform or deflect		
	the member, provided that the resultant strain is large enough to produce dete				
	outputs.				
	4. When the strain gauge –ela	astic member combination is used for we	eighing it is called		
	a load-cell.				
e)		encoder using optical rotary encoder.			
Ans:	Diagram of rotary motion encode				
	(Diagr	ram: 2 Mark & Explanation: 2 Mark, To	tal 4 Marks)		
	Disk 0 0 Light source Photo- detecto	→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	t figure		
	Measurement of rotary motion us	ing optical encoder :			
	An optical encoder is a	an angular position sensor. It has a shaft	mechanically		
	coupled to an input driver v	which rotates a disc rigidly fixed to it. A	succession of		
	opaque and transparent seg	ments is marked on the surface of the d	isc. On one side of		
	the disc are LEDs and on the	e other side there are photosensitive rec	eivers like		
	photodiodes or photo transi	istors.			
	When the disc rotates	and opaque segments are between LED	s and receivers, no		
	light reaches the receivers a	nd output is zero.			
	When the transparent	segments are between LEDs and receive	ers, light is		
	received by the receivers an	d output signal is obtained. In this way	a train of pulses		
	equivalent to the rotation is	obtained as shown.			

SUMMER- 2019 Examinations Model Answer

Page 22 of 27

		te between volumente now late a	e and mass flow rate.		
ns:	(Each point: 1 Mark, Total 4 Mark)				
	S.No.	Volumetric flow rate	Mass flow rate		
	1	Volumetric flow is the measure of a substance moving through a device over time.	Mass flow rate is the amount of Mass moving through an instrument over time		
	2	Units of measure for volumetric Flow rate are meter ³ /second, liters/second or feet ³ /hour	The unit of measure is mass per unit of time. It can be expressed as pounds /hour or kilogram/second		
	3	To measure Volumetric flow rate, positive displacement meters, turbine flow meters are used.	To measure mass flow rate, Coriolis flow meters, thermal mass flow meters etc. are used.		
	4	Volumetric flow rate = Velocity of flowing fluid x Area.	Mass flow rate = volumetric flow rate x density		
5 A	Attempt an	y FOUR of the following :	16 Mark		
	-	y FOUR of the following : explain working of photoelectric to			
a) E	-	explain working of photoelectric to			
a) [Draw and e	explain working of photoelectric to	ansducer.		
	Draw and e	explain working of photoelectric tr (Constru	ransducer. actional diagram: 2 Marks Working: 2 M (photo diode)		
a) [Draw and e	explain working of photoelectric tr (Constru lectric Tachometer: (LED)	cansducer. actional diagram: 2 Marks Working: 2 M (photo diode) Light detector To electric counter Disc with equidistant holes		
a) [Draw and e	explain working of photoelectric the (Construction Construction Constructico Construction Construction Construction Construction Constr	cansducer. actional diagram: 2 Marks Working: 2 M (photo diode) Light detector To electric counter Disc with equidistant holes		

SUMMER- 2019 Examinations Model Answer

Page 23 of 27

•	Working	principle:
---	---------	------------

- The light passes through the holes available on the rotating disc with a specific interval, depends on the angular speed of disc having equidistant holes. The frequency of this light pulses is measure of angular speed of the disc.
- It consists of an opaque disc on the rotating shaft. The disc has a number of equidistant holes on its periphery. At one side of the disc a light source is fixed like LED and on other side of the disc, and on the line of the light source, alight sensor like phototube or some photosensitive semiconducting device is placed.
- When a hole appears between two, the light following upon the sensor produces an output pulse.
- The frequency at which the pulses are produced depends on the number of holes in the disc and its speed of rotation. Hence the speed is given by

$$N = \frac{f}{H_s}$$

Where N=speed, f=frequency, Hs=holes on the disc

 b)
 Draw and explain the working of turbine flow meter.

 Ans:
 Diagram of turbine flow meter: (Diagram: 2 Mark & Working: 2 marks, Total 4 Marks)

 Diagram:
 Diagram:

 Output
 Output

 Output
 Output

 Diagram:
 Output

 Output
 Output

 Outp

	Subject Code: 17414	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 24 of 27		
	The flo	wing fluid impinges on the turbine blades (rot	or), imparting a force		
	to the blade surface which causes the rotation of the rotor. The speed of the rotat directly proportional to the fluid velocity. The rotor consists of small permanent				
	magnets. When rotor	r rotates this magnetic field also rotates. The sp	agnetic field also rotates. The speed of rotation		
	monitored in most of the meters by magnetic pickup coil, which generates pulses. Total				
	number of pulses gives the total flow. So the amount of emf induced depends upon the				
	flow rate.				
c)	List any six criteria for s	electing a proper transducer for an applicatio	n		
Ans:	Transducer is a device w	hich transforms energy from one form to anoth	ner. The following		
	points should be consid	ered while selecting a transducer for particula	ar application.		
	(Any Four point expected	ed: 1 mark each, total 4 Marks)			
	1. Operating range: 7	The range of transducer should be appropriate	for measurement to		
	get a good resolut	ion.			
	2. Operating princip	le: The transducers are selected on the basis of	operating principle it		
	may be resistive, i	nductive, capacitive, optical etc.			
	3. Sensitivity: The tra	ansducer should be more sensitive to produce t	the output or		
	sensitivity should	be as per requirement.			
	4. Accuracy: The acc	uracy should be as high as possible or as per th	ne measurement.		
	5. Frequency respons	se and resonant frequency			
	6. Errors: The error p	produced by the transducer should be low as p	ossible.		
	7. Environmental con	mpatibility: The transducer should maintain in	put and output		
	characteristic for the	selected environmental condition.			
	8. Usage and rugged	ness.: it should be rugged in construction			
	9. Electrical aspect.				
	10. Stability and Reli	ability: Transducer should produce stable and	accurate output in		
	any environmenta	al condition.			
	11. Loading effect: T	he transducer's input impedance should be hig	sh and output		
	impedance should	l be low to avoid loading effect.			
d)	Explain how level can b	e measured using capacitive method.			

SUMMER-2019 Examinations Subject Code: 17414 **Model Answer** Page 25 of 27 (Figure: 2 Mark & Explanation : 2 Mark) Ans: Capacitance measuring instrument, Calibrated in terms of liquid level **Electric** wires CAPACITANCE Insulated metal shell capacitance probe hl Insulator measured material h inner electrode Liquid (as Dielectric outer electrode Metal tank or equivalent figure Capacitance level transducer :-The principle of operation of capacitance level indicator is based upon the familiar capacitance equation of parallel plate capacitor given by C = K * (A/D)Where, C= capacitance, in farad K= dielectric constant A=area of plate, in meters square D= distance between two plates, in meter. Therefore, it is seen from the above equation that if A & D are constant, then the capacitance of a capacitor is directly proportional to the dielectric constant, and this principle utilized in the capacitance level indicator. Construction & working:-Fig. shows a capacitance type liquid level indicator. It consist of an insulated capacitance probe (which is a metal electrode) firmly fixed near and parallel to the

metal wall of the tank.

	Subject	SUMMER- 2019 ExaminationsCode: 17414Model Answer	Page 26 of 27		
	•	If the liquid in the tank is non-conductive , the capacitance probe and the tank is non-conductive .	ne tank wall		
		form the plates of a parallel plate capacitor and liquid in between them	acts as the		
		dielectric.			
	• If the liquid is conductive the capacitance probe and liquid form the plates				
		capacitor and the insulation of the probe acts as the dielectric.			
	•	A capacitance measuring device is connected with the probe and the ta	nk wall, which		
	is calibrated in terms of the level of the liquid in the tank.				
	•	When the level of liquid in the tank rises, the capacitance increases.			
	•	When liquid level of the tank decreases, the capacitance also decreases			
	•	Change in the capacitance is measured and is displayed on the indicate	or calibrated in		
		terms of liquid level			
e)	Draw	and explain working of pressure measurement using diaphragm type	transducer.		
Ans:	Diagram of pressure measurement using diaphragm type transducer:				
	(Diagram: 2 Mark & explanation with working: 2 mark, Total 4 Marks)				
		Leaf spring Leaf spring P1 Diaphragm Gauge To Pointer mechanism To Pointer mechanism or equivalent figure			
	E	nation.			
	Ехріа	nation:	aguramant		
	T	A diaphragm type pressure transducer is used for low pressure me	asurement.		
	They are commercially available in two types: Metallic and Non-metallic. Working:				
	VVOIK				

SUMMER-2019 Examinations Subject Code: 17414 **Model Answer** Page 27 of 27 The diagram of diaphragm pressure gauge is shown in the figure. When a force acts against a thin stretched diaphragm, it causes a deflection of the diaphragm with its center deflecting the most. If the pointer or mechanical movement is connected to the LVDT or other secondary transducer then it converts mechanical action into electrical output. **f**) Describe the resistive method for liquid level measurement. Write its two advantages. **Resistive method for liquid level measurement:** Ans: (Diagram: 1 Mark, Explanation: 2 Mark & Advantages: 1 Mark, Total 4 Marks) Liqui alibrated read h Contact rods Aurcur Measurement of level of liquids by resistive method. or equivalent figure **Explanation:-**This method uses mercury as a conductor. A number of conduct rods are placed at various liquid levels. As head 'h 'increases, the rising level of mercury above the datum, shorts successive resistors 'R' and increases the value of 'h' directly. Advantages of resistive method for liquid level measurement 1. Direct reading is possible 2. Simple 3. cost-effective measuring principle 4. Multi-point detection with one process connection