| SUMMER - 19 EXAMINATION | |
| :---: | :---: | :---: |
| Subject Name: Theory of Machines $\quad \underline{\text { Model Answer }}$ | Subject Code: 17412 |

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|l} \hline \text { Sub } \\ \mathrm{Q} . \\ \mathrm{N} . \end{array}$	Answer	Marking Scheme
$\begin{aligned} & \text { Q. } 1 \\ & \text { A } \end{aligned}$	a	Four inversions of single slider chain Pendulum pump Rotary engine Whitworth quick return mechanism Crank \& slotted lever mechanism	1⁄2 M each
	b	List 4 types of followers Knife edge follower Roller follower Flat faced or mushroom follower Spherical faced follower	1⁄2 M each
	c	Materials for Belt Leather belts. Cotton or fabric belts Rubber belt. Balata belts.	1⁄2 M each

\qquad

Identify basic kinematic chain
Oldham's coupling: Double Slider Chain
Whitworth's Quick Return Mechanism: Single Slider Chain
Pantograph: Four Bar Chain
Elliptical Trammel: Double Slider Chain

The centrifugal clutches are usually incorporated into the motor pulleys. It consists of a number of shoes on the inside of a rim of the pulley, as shown in Fig. The outer surfaces of the shoes are covered with a friction material. These shoes, which can move radially in guides, are held against the boss (or spider) on the driving shaft by means of springs. The springs exert a radially inward force which is assumed constant. The mass of the shoe, when revolving, causes it to exert a radially outward force (i.e. centrifugal force).

The magnitude of this centrifugal force depends upon the speed at which the shoe is revolving. A little consideration will show that when the centrifugal force is less than the spring force, the shoe remains in the same position as when the driving shaft was stationary, but when the centrifugal force is equal to the spring force, the shoe is just floating. When the centrifugal force exceeds the spring force, the shoe moves outward and comes into contact with the driven member and presses against it. The force with which the shoe presses against the driven member is the difference of the centrifugal force and the spring force.

Centrifugal clutch.

1 M Each

\qquad

	f	Problem on Belt:	
3	a	Given : $d_{1}=450 \mathrm{~mm}=0.45 \mathrm{~m}$ or $r_{1}=0.225 \mathrm{~m} ; d_{,}=200 \mathrm{~mm}=0.2 \mathrm{~m}$ or $r_{2}=0.1 \mathrm{~m} ; x=1.95 \mathrm{~m} ; N_{1}=200$ r.p.m. $; T_{1}=1 \mathrm{kN}=1000 \mathrm{~N} ; \mu=0.25$ We know that speed of the belt, $v=\frac{\pi d_{1} \cdot N_{1}}{60}=\frac{\pi \times 0.45 \times 200}{60}=4.714 \mathrm{~m} / \mathrm{s}$ Length of the belt We know that length of the crossed belt, $\begin{aligned} L & =\pi\left(r_{1}+r_{2}\right)+2 x+\frac{\left(r_{1}+r_{2}\right)^{2}}{x} \\ & =\pi(0.225+0.1)+2 \times 1.95+\frac{(0.225+0.1)^{2}}{1.95}=4.975 \mathrm{~m} \text { Ans. } \end{aligned}$ 4ngle of contact between the belt and each pulley Let $\quad \theta=$ Angle of contact between the belt and each pulley. We know that for a crossed belt drive, $\begin{aligned} \sin \alpha & =\frac{r_{1}+r_{2}}{x}=\frac{0.225+0.1}{1.95}=0.1667 \text { or } \alpha=9.6^{\circ} \\ \therefore \theta & =180^{\circ}+2 \alpha=180^{\circ}+2 \times 9.6^{\circ}=199.2^{\circ} \\ & =199.2 \times \frac{\pi}{180}=3.477 \mathrm{rad} \text { Ans. } \end{aligned}$ Klein's Construction Given $A B=150 \mathrm{~mm} ; \quad B P=500 \mathrm{~mm} ; N=500 \mathrm{rpm}$. The Klein's velucity diagram $A B C$ and The Klein's Acceleration diajram BQLA By measurement; $A C=2.7 \mathrm{~cm}=B_{y} \text { scale } 2.7 \times 50=135 \mathrm{~mm} \approx 0.135 \mathrm{~m}$ $L A=2.1 \mathrm{~cm}=$ By scale $2.1 \times 50=105 \mathrm{~mm}=0.105 \mathrm{~m}$ Velocity \& Acceleration of Piston, we know that the velocity of piston P, $\begin{aligned} v_{p} & =w \times A c & \because w & =2 \pi \mathrm{~N} / 60 \\ & =52.33 \times 0.135 & & =2 \pi \times 500 / 60 \\ & =7.065 \mathrm{~m} / \mathrm{s} . & & =52.33 \mathrm{rad} / \mathrm{sec} . \end{aligned}$ \& acceleration of piston p, $\begin{aligned} a_{p} & =w^{2} \times L A \\ & =(52.33)^{2} \times 0.105 \\ & =287.54 \mathrm{~m}^{2} / \mathrm{sec} \end{aligned}$	1M 1M 2M 2M Diagram Ans. 2M

Four Bar Mechanism problem

$$
\text { Given : } N_{\mathrm{BA}}=120 \mathrm{r} . \mathrm{p} . \mathrm{m} . \text { or } \omega_{\mathrm{BA}}=2 \pi \times 120 / 60=12.568 \mathrm{rad} / \mathrm{s}
$$

Since the length of crank $A B=40 \mathrm{~mm}=0.04 \mathrm{~m}$, therefore velocity of B with respect to A or velocity of B, (because A is a fixed point),

Velocity diagram.

First of all, draw the space diagram to some suitable scale, as shown in Fig. Now the velocity diagram, as shown in Fig. , is drawn as discussed below :

1. Since the $\operatorname{link} A D$ is fixed, therefore points a and d are taken as one point in the velocity diagram. Draw vector $a b$ perpendicular to $B A$, to some suitable scale, to represent the velocity of B with respect to A or simply velocity of B (i.e. $v_{B A}$ or v_{B}) such that

$$
\text { vector } a b=v_{\mathrm{BA}}=v_{\mathrm{B}}=0.503 \mathrm{~m} / \mathrm{s}
$$

2. Now from point b, draw vector $b c$ perpendicular to $C B$ to represent the velocity of C with respect to B (i.e. $v_{C B}$) and from point d, draw vector $d c$ perpendicular to $C D$ to represent the velocity of C with respect to D or simply velocity of $C\left(\right.$ i.e. $v_{C D}$ or $\left.v_{C}\right)$. The vectors $b c$ and $d c$ intersect at c.

By measurement, we find that

We know that $\quad C D=80 \mathrm{~mm}=0.08 \mathrm{~m}$
\therefore Angular velocity of link $C D$,

$$
\omega_{C D}=\frac{v_{C D}}{C D}=\frac{0.385}{0.08}=4.8 \mathrm{rad} / \mathrm{s}(\text { clockwise about } D) \text { Ans. }
$$

Advantages and Disadvantages of V-belt Drive Over Flat Belt Drive

Following are the advantages and disadvantages of the V-belt drive over flat belt drive.

Advantages

1. The V-belt drive gives compactness due to the small distance between the centers of pulleys.
2. The drive is positive, because the slip between the belt and the pulley groove is negligible.
3. Since the V-belts are made endless and there is no joint trouble, therefore the drive is smooth.
4. It provides longer life, 3 to 5 years.
5. It can be easily installed and removed.
6. The operation of the belt and pulley is quiet.
7. The belts have the ability to cushion the shock when machines are started.
8. The high velocity ratio (maximum 10) may be obtained.
9. The wedging action of the belt in the groove gives high value of limiting ratio of tensions.

Therefore the power transmitted by V-belts is more than flat belts for the same coefficient of friction,
arc of contact and allowable tension in the belts.
10. The V-belt may be operated in either direction with tight side of the belt at the top or bottom. The centre line may be horizontal, vertical or inclined.

Theories used in design of clutches and bearings:

i) Uniform pressure theory in clutches and bearings:

When the mating component in clutch, bearing are new, then the contact between surfaces may be good over the whole surface. It means that the pressure over the rubbing surfaces is uniform distributed.

This condition is not valid for old clutches, bearings because mating surfaces may have uneven friction.

The condition assumes that intensity of pressure is same. $\mathrm{P}=\mathrm{W} / \mathrm{A}=$ Constant; where, $\mathrm{W}=$ load, $\mathrm{A}=$ area

ii) Uniform wear theory in clutches and bearings:

When clutch, bearing become old after being used for a given period, then all parts of the rubbing surfaces will not move with the same velocity. The velocity of rubbing surface increases with the distance from the axis of the rotating element.

It means that wear may be different at different radii and rate of wear depends upon the intensity of pressure (P) and the velocity of rubbing surfaces (V). It is assumed that the rate of wear is proportional to the product of intensity of pressure and velocity of rubbing surfaces.

This condition assumes that rate of wear is uniform;
$\mathrm{P}^{*} \mathrm{r}=$ Constant; where, $\mathrm{P}=$ intensity of pressure, $\mathrm{r}=$ radius of rotation

\begin{tabular}{|c|c|c|c|}
\hline 4 \& a

b \& | Following are the parameters considered for selection of chain drive for power transmission: |
| :--- |
| 1. Type of application. |
| 2. Shock load. |
| 3. Source of power: motor type; rated power (kW); moment of inertia, ; rated torque at driving speed; starting torque; and stopping torque. |
| 4. Drive sprocket rpm and shaft diameter. |
| 5. Driven sprocket rpm and shaft diameter. |
| 6. Center distance between sprockets. |
| 7. Noise constraints. |
| 8. Lubrication (possible or not). |
| Shaper Mechanism | \& Any 4 points 1M Each

\hline \& \& Whitworth quick return motion mechanism. \& 2M Fig

\hline \& \& Whitworth quick return motion mechanism. This mechanism is mostly used in shaping and slotting machines. In this mechanism, the link $C D$ (link 2) forming the turning pair is fixed, as shown in Fig. The link 2 corresponds to a crank in a reciprocating steam engine. The driving crank $C A$ (link 3) rotates at a uniform angular speed. The slider (link 4) attached to the crank pin at A slides along the slotted bar $P A$ (link 1) which oscillates at a pivoted point D. The connecting $\operatorname{rod} P R$ carries the ram at R to which a cutting tool is fixed. The motion of the tool is constrained along the line $R D$ produced, i.e. along a line passing through D and perpendicular to $C D$. \& | 2M |
| :--- |
| Explanation |

\hline
\end{tabular}

\qquad
from the position $D P 1$ to $D P 2$) through an angle α in the clockwise direction, the tool moves from the left hand end of its stroke to the right hand end through a distance $2 P D$. Now when the driving crank moves from the position $C A 2$ to $C A 1$ (or the link $D P$ from $D P 2$ to $D P 1$) through an angle β in the clockwise direction, the tool moves back from right hand end of its stroke to the left hand end.

It is seen that the time taken during the left to right movement of the ram (i.e. during forward or cutting stroke) will be equal to the time taken by the driving crank to move from CA1 to CA2. Similarly, the time taken during the right to left movement of the ram (or during the idle or return stroke) will be equal to the time taken by the driving crank to move from CA2 to CA1.

Since the crank link $C A$ rotates at uniform angular velocity therefore time taken during the cutting stroke (or forward stroke) is more than the time taken during the return stroke. In other words, the mean speed of the ram during cutting stroke is less than the mean speed during the return stroke.

Difference between Flywheel and Governor (Any 4 points - 4 Marks)

FLYWHEEL	GOVERNOR
1.Function- To control the speed variations caused by fluctuations of engine turning moment during a cycle.	Function- To regulate the mean speed of engine within prescribed limit when there are variations of load.
2 .Mathematically it controls d N / dT	2. Mathematically it controls of N
3. Flywheel acts as a reservoir; it stores energy due to its mass moment of inertia and releases energy when required during a cycle.	3. A governor regulates the speed by regulating the quantity of charge/working fluid of prime mover.
4.It regulates speed in one cycle only	4. It regulates speed over a period of time.
5.Flywheel has no control over supply of fluid/charge	5. Governor takes care of quantity of fluid
6. It is not an essential element of every prime mover. It is used when there are undesirable cyclic fluctuations.	6. It is an essential element of prime mover since varying demand of power is met by it.

Any 4 points 1M Each

Rope Brake dynamometer:

It is another form of absorption type dynamometer which is most commonly used for measuring the brake power of the engine. It consists of one, two or more ropes wound around the flywheel or rim of a pulley fixed rigidly to the shaft of an engine. The upper end of the ropes is attached to a spring balance while the lower end of the ropes is kept in position by applying a dead weight as shown in Fig.

In order to prevent the slipping of the rope over the flywheel, wooden blocks are placed at intervals around the circumference of the flywheel.

In the operation of the brake, the engine is made to run at a constant speed. The frictional torque, due to the rope, must be equal to the torque being transmitted by the engine.

Let $\quad W=$ Dead load in newtons,
$S=$ Spring balance reading in newtons,
$D=$ Diameter of the wheel in metres,
$d=$ diameter of rope in metres, and
$N=$ Speed of the engine shaft in r.p.m.
\therefore Net load on the brake

$$
=(W-S) \mathrm{N}
$$

2M Fig

We know that distance moved in one revolution

$$
=\pi(D+d) \mathrm{m}
$$

$\therefore \quad$ Work done per revolution

$$
=(W-S) \pi(D+d) \mathrm{N}-\mathrm{m}
$$

and work done per minute

$$
=(W-S) \pi(D+d) N \mathrm{~N}-\mathrm{m}
$$

> Rope brake dynamometer.
$\therefore \quad$ Brake power of the engine,

$$
\text { B.P }=\frac{\text { Work done per min }}{60}=\frac{(W-S) \pi(D+d) N}{60} \text { watts }
$$

If the diameter of the rope (d) is neglected, then brake power of the engine,

$$
\text { B.P. }=\frac{(W-S) \pi D N}{60} \text { watts }
$$

\qquad

\qquad

5	a	Given : $N_{\mathrm{RO}}=300 \mathrm{r} . \mathrm{p} . \mathrm{m}$. or $\omega_{\mathrm{RO}}=2 \pi \times 300 / 60=31.42 \mathrm{rad} / \mathrm{s} ; O B=150 \mathrm{~mm}=0.15 \mathrm{~m}$ $B A=500 \mathrm{~mm}=0.5 \mathrm{~m}$ We know that linear velocity of B with respect to O or velocity of B, $\left.v_{\mathrm{BO}}=v_{\mathrm{B}}=\omega_{\mathrm{BO}} \times O B=31.42 \times 0.15=4.713 \mathrm{~m} / \mathrm{s} \quad \ldots \text { (Perpendicular to } B O\right)$ (a) Space diagram. (b) Velocity diagram. (c) Acceleration diagram. 1. Linear velocity of the midpoint of the connecting rod First of all draw the space diagram, to some suitable scale; as shown in Fig. 8.4 (a). Now the velocity diagram, as shown in Fig. 8.4 (b), is drawn as discussed below: 1. Draw vector ob perpendicular to $B O$, to some suitable scale, to represent the velocity B with respect to O or simply velocity of B i.e. v_{BO} or v_{B}, such that $\text { vector } o b=v_{\mathrm{BO}}=v_{\mathrm{B}}=4.713 \mathrm{~m} / \mathrm{s}$ 2. From point b, draw vector $b a$ perpendicular to $B A$ to represent the velocity of A respect to B i.e. v_{AB}, and from point o draw vector oa parallel to the motion of A (which is along A to represent the velocity of A i.e. v_{A}. The vectors $b a$ and $o a$ intersect at a. By measurement, we find that velocity of A with respect to B, $v_{\mathrm{AB}}=\text { vector } b a=4.1 \mathrm{~m} / \mathrm{s}$ and Velocity of $A, v_{\mathrm{A}}=$ vector $o a=4.92 \mathrm{~m} / \mathrm{s}$ 3. In order to find the velocity of the midpoint D of the connecting $\operatorname{rod} A B$, divide the vector $b a$ at d in the same ratio as D divides $A B$, in the space diagram. In other words, $b d / b a=B D / B A$ Note: Since D is the midpoint of $A B$, therefore d is also midpoint of vector $b a$. 4. Join od. Now the vector od represents the velocity of the midpoint D of the connecting rod i.e. v_{D}. By measurement, we find that $v_{\mathrm{D}}=\text { vector } o d=4.9 \mathrm{~m} / \mathrm{s} \text { Ans. }$

\qquad

Acceleration of the midpoint of the connecting rod

We know that the radial component of the acceleration of B with respect to O or the acceleration of B,

$$
a_{\mathrm{BO}}^{r}=a_{\mathrm{B}}=\frac{v_{\mathrm{BO}}^{2}}{O B}=\frac{(4.713)^{2}}{0.15}=148.1 \mathrm{~m} / \mathrm{s}^{2}
$$

and the radial component of the acceleraiton of A with respect to B,

$$
a_{A B}^{r}=\frac{v_{A B}^{2}}{B A}=33.6 \mathrm{~m} / \mathrm{s}^{2}
$$

Now the acceleration diagram, as shown in Fig. 8.4 (c) is drawn as discussed below:

1. Draw vector $o^{\prime} b^{\prime}$ parallel to $B O$, to some suitable scale, to represent the radial component of the acceleration of B with respect to O or simply acceleration of B i.e. a_{BO}^{r} or a_{B}, such that

$$
\text { vector } o^{\prime} b^{\prime}=a_{\mathrm{BO}}^{r}=a_{\mathrm{B}}=148.1 \mathrm{~m} / \mathrm{s}^{2}
$$

2. The acceleration of A with respect to B has the following two components:
(a) The radial component of the acceleration of A with respect to B i.e. a_{AB}^{r}, and
(b) The tangential component of the acceleration of A with respect to B i.e. a_{AB}^{t}. These two components are mutually perpendicular.
Therefore from point b^{\prime}, draw vector $b^{\prime} x$ parallel to $A B$ to represent $a_{\mathrm{AB}}^{r}=\mathbf{3 3 . 6} \mathrm{m} / \mathrm{s}^{2}$ and from point x draw vector $x a^{\prime}$ perpendicular to vector $b^{\prime} x$ whose magnitude is yet unknown. 3. Now from o^{\prime}, draw vector $o^{\prime} a^{\prime}$ parallel to the path of motion of A (which is along $A O$) to represent the acceleration of A i.e. a_{A}. The vectors $x a^{\prime}$ and $o^{\prime} a^{\prime}$ intersect at a^{\prime}. Join $a^{\prime} b^{\prime}$.
3. In order to find the acceleration of the midpoint D of the connecting $\operatorname{rod} A B$, divide the vector $a^{\prime} b^{\prime}$ at d^{\prime} in the same ratio as D divides $A B$. In other words

$$
b^{\prime} d^{\prime} / b^{\prime} a^{\prime}=B D / B A
$$

5. Join $o^{\prime} d^{\prime}$. The vector $o^{\prime} d^{\prime}$ represents the acceleration of midpoint D of the connecting rod i.e. a_{D}.

By measurement, we find that

$$
a_{\mathrm{D}}=\text { vector } o^{\prime} d^{\prime}=140 \mathrm{~m} / \mathrm{s}^{2} \text { Ans. }
$$

2. Angular velocity of the connecting rod

We know that angular velocity of the connecting $\operatorname{rod} A B$,

$$
\omega_{\mathrm{AB}}=\frac{v_{\mathrm{AB}}}{B A}=\frac{4.1}{0.5}=8.2 \mathrm{rad} / \mathrm{s}^{2}
$$

Angular acceleration of the connecting rod
From the acceleration diagram, we find that

$$
a_{\mathrm{AB}}^{t}=176 \mathrm{~m} / \mathrm{s}^{2}
$$

We know that angular acceleration of the connecting $\operatorname{rod} A B$,

$$
\alpha_{A B}=\frac{a_{A B}^{t}}{B A}=352 \mathrm{rad} / \mathrm{s}^{2}
$$

\qquad
Scanned by CamScanner

Solution. Given : $N_{1}=200$ r.p.m. ; $N_{2}=300$ r.p.m. ; $P=6 \mathrm{~kW}=6 \times 10^{3} \mathrm{~W} ; b=100 \mathrm{~mm}$;
C $t=10 \mathrm{~mm} ; x=4 \mathrm{~m} ; d_{2}=0.5 \mathrm{~m} ; \mu=0.3$
Let $\sigma=$ Stress in the belt.

1. Stress in the belt for an open belt drive

First of all, let us find out the diameter of larger pulley $\left(d_{1}\right)$. We know that

$$
\frac{N_{2}}{N_{1}}=\frac{d_{1}}{d_{2}} \text { or } d_{1}=\frac{N_{2} \cdot d_{2}}{N_{1}}=\frac{300 \times 0.5}{200}=0.75 \mathrm{~m}
$$

and velocity of the belt, $\quad v=\frac{\pi d_{2} \cdot N_{2}}{60}=\frac{\pi \times 0.5 \times 300}{60}=7.855 \mathrm{~m} / \mathrm{s}$
Now let us find the angle of contact on the smaller pulley. We know that, for an open belt drive,

$$
\sin \alpha=\frac{r_{1}-r_{2}}{x}=\frac{d_{1}-d_{2}}{2 x}=\frac{0.75-0.5}{2 \times 4}=0.03125 \text { or } \alpha=1.8^{\circ}
$$

\therefore Angle of contact $\theta=180^{\circ}-2 \alpha=180-2 \times 1.8=176.4^{\circ}$

$$
=176.4 \times \pi / 180=3.08 \mathrm{rad}
$$

Let $\quad T_{1}=$ Tension in the tight side of the belt, and $T_{2}=$ Tension in the slack side of the belt.
We know that

$$
\begin{align*}
& 2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu . \theta=0.3 \times 3.08=0.924 \\
\therefore & \log \left(\frac{T_{1}}{T_{2}}\right)=\frac{0.924}{2.3}=0.4017 \text { or } \frac{T_{1}}{T_{2}}=2.52 \tag{i}
\end{align*}
$$

We also know that power transmitted (P),

$$
\begin{array}{ll}
& 6 \times 10^{3}=\left(T_{1}-T_{2}\right) v=\left(T_{1}-T_{2}\right) 7.855 \\
\therefore & T_{1}-T_{2}=6 \times 10^{3} / 7.855=764 \mathrm{~N} \tag{ii}
\end{array}
$$

From equations (i) and (ii),

$$
T_{1}=1267 \mathrm{~N}, \text { and } T_{2}=503 \mathrm{~N}
$$

We know that maximum tension in the belt $\left(T_{1}\right)$,

$$
\begin{array}{ll}
& 1267=\sigma . b . t=\sigma \times 100 \times 10=1000 \sigma \\
\therefore & \sigma=1267 / 1000=1.267 \mathrm{~N} / \mathrm{mm}^{2}=1.267 \mathrm{MPa} \text { Ans. }
\end{array}
$$

\qquad

Stress in the belt for a cross belt drive

We know that for a cross belt drive,

$$
\sin \alpha=\frac{r_{1}+r_{2}}{x}=\frac{d_{1}+d_{2}}{2 x}=\frac{0.75+0.5}{2 \times 4}=0.1562 \text { or } \alpha=9^{\circ}
$$

\therefore Angle of contact,

$$
\begin{aligned}
\theta & =180^{\circ}+2 \alpha=180+2 \times 9=198^{\circ} \\
& =198 \times \pi / 180=3.456 \mathrm{rad}
\end{aligned}
$$

We know that

$$
\begin{align*}
2.3 \log \left(\frac{T_{1}}{T_{2}}\right) & =\mu . \theta=0.3 \times 3.456=1.0368 \\
\log \left(\frac{T_{1}}{T_{2}}\right) & =\frac{1.0368}{2.3}=0.4508 \text { or } \frac{T_{1}}{T_{2}}=2.82 \tag{iii}
\end{align*}
$$

From equations (ii) and (iii),

$$
T_{1}=1184 \mathrm{~N} \text { and } T_{2}=420 \mathrm{~N}
$$

We know that maximum tension in the belt $\left(T_{1}\right)$,

$$
\begin{aligned}
& 1184=\sigma . b . t=\sigma \times 100 \times 10=1000 \sigma \\
\therefore & \sigma=1184 / 1000=1.184 \mathrm{~N} / \mathrm{mm}^{2}=1.184 \mathrm{MPa} \text { Ans. }
\end{aligned}
$$

i) Working of Flywheel with the help of Turning moment diagram:

A flywheel used in machines serves as a reservoir, which stores energy during the period when the supply of energy is more than the requirement, and releases it during the period when the requirement of energy is more than the supply.

Turning moment diagram for a multi-cylinder engine.
The fluctuation of energy may be determined by the turning moment diagram for one complete cycle of operation. Consider the turning moment diagram for a single cylinder double acting steam engine as shown in Fig. We see that the mean resisting torque line $A F$ cuts the turning moment diagram at points B, C, D and E. When the crank moves from a to p, the work done by the engine is equal to the area $a B p$, whereas the energy required is represented by the area $a A B p$. In other words, the engine has done less work (equal to the area $a A B$) than the requirement. This amount of energy is taken from the flywheel and hence the speed of the flywheel decreases. Now the crank moves from p to q, the work done by the engine is equal to the area $p B b C q$, whereas the requirement of energy
\qquad

\qquad

\qquad

\qquad

