SUMMER - 19 EXAMINATION

Subject Name: FLUID MECHANICS AND MACHINERY
 Model Answer

Subject Code:
17411

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1.		Attempt any SIX of the following:	12 Marks
a)	i)	Dynamic viscosity is the force needed by a fluid to overcome its own internal molecular friction so that the fluid will flow. In other words, dynamic viscosity is defined as the tangential force per unit area needed to move the fluid in one horizontal plane with respect to other plane with a unit velocity while the fluid's molecules maintain a unit distance apart. Dynamic viscosity is directly proportional to the shear stress and has the SI units of $\mathrm{N} \mathrm{s} / \mathrm{m} 2$ (Newton second per square meter) kinematic viscosity-A measure used in fluid flow studies, usually expressed as the dynamic viscosity divided by the density of the fluid.	01 01
	ii)	$\begin{aligned} & \mathrm{P}=\rho_{\mathrm{Hg}} \cdot g \cdot \mathrm{H}_{\mathrm{hg}}=\rho_{\mathrm{w}} \times \mathrm{gxh} \\ & \mathrm{w} \\ & =(13.6 \times 1000) \times 9.81 \times 0.760=1000 \times 9.81 \times \mathrm{h}_{\mathrm{w}} \\ & \mathrm{~h}_{\mathrm{w}}=10.336 \mathrm{~m} \text { of water column } \end{aligned}$	$\begin{aligned} & 01 \\ & 01 \end{aligned}$
	iii)	Steady Flow: Velocity, pressure and other properties of fluid flow can be functions of time (apart from being functions of space). If a flow is such that the properties at every point in the flow do not depend upon time, it is called a steady flow. Unsteady or non-steady flow: is one where the properties do depend on time. It is needless to say that any start up process is unsteady.	01 01
	iv)	$\begin{aligned} & \mathrm{F}=\text { force exerted by the jet }=\rho . A \cdot V^{2} \\ & \rho=\text { density of fluid } \\ & A=\text { area of jet } \\ & V=\text { velocity of fluid } \end{aligned}$	02

	v)	Rate of flow-The rate at which a liquid or other substance flows through a particular channel, pipe etc. Quantity of fluid flowing per unit time Continuity equation $Q=A_{1} v_{1}=A_{2} \mathbf{v}_{2}$ This equation can be written in general form as-> Aveconstant Q is the volume flow rate, the above equation can be expressed as-> $\mathbf{Q}=\mathbf{A} \mathbf{v}=\text { constant }$	01 01
	vi)	Slip in reciprocating pump is the measure of difference between theoretical discharge and actual discharge. $\text { Slip = Qth }- \text { Qact }$ When actual discharge delivered by reciprocating pump is less then theoretical discharge then that difference is called as Positive Slip.Actual discharge becomes less than theoretical discharge due to leakages while operation.	02
	vii)		02
	Viii)	NPSH- The margin of pressure over vapor pressure, at the pump suction nozzle, is Net Positive Suction Head (NPSH). NPSH is the difference between suction pressure (stagnation) and vapor pressure. In equation form: NPSH = Ps - Pvap Where: NPSH = NPSH available from the system, at the pump inlet, with the pump running Ps = Stagnation suction pressure, at the pump inlet, with the pump running	02
b	i)	Attempt any TWO Area $=b x d=3 \times 2=6 \mathrm{~m}^{2}$ $\mathrm{X}=1.5+1.5=3.0 \mathrm{~m}$ Force $=w A x=9810 \times 6 \times 3=176580 N$ Centre of pressure $h=\operatorname{Ig} / A x+x$ $\operatorname{Ig}=\mathrm{bd} 3 / 12=2 \times 3^{3} / 12=4.5 \mathrm{~m}^{4}$ $\mathrm{h}=4.5 / 6 \times 3+3=3.25 \mathrm{~m}$	$\begin{aligned} & \mathbf{0 1} \\ & \mathbf{0 1} \\ & \mathbf{0 1} \\ & \mathbf{0 1} \end{aligned}$

| ii) | 1)Atmospheric pressure: sometimes also called barometric pressure is the pressure
 within the atmosphere of Earth (or that of another planet). The standard atmosphere is a
 unit of pressure defined as 1013.25 mbar (101325 Pa), equivalent to 760 mm Hg atm unit
 is roughly equivalent to the mean sea-level atmospheric pressure on Earth, that is, the
 Earth's atmospheric pressure at sea level is approximately 1 atm.
 2)Gauge pressure: is zero-referenced against ambient air pressure, so it is equal to
 absolute pressure minus atmospheric pressure.
 3)Absolute pressure: is zero-referenced against a perfect vacuum, using an absolute scale,
 so it is equal to gauge pressure plus atmospheric pressure.
 4)Vacuum pressure:-vacuum pressure is the difference between the atmospheric pressure
 and the absolute pressure. | 01 |
| :--- | :--- | :--- | :--- |

2	a	Attempt any four $\begin{aligned} & \mathrm{h}+\mathrm{s}_{1} \mathrm{~h}_{1}=\mathrm{s}_{2} \mathrm{~h}_{2} \\ & \mathrm{~h}=\mathrm{s}_{2} \mathrm{~h}_{2}-\mathrm{s}_{1} \mathrm{~h}_{1} \\ & =13.6 \times 0.1-1 \times 0.05 \\ & =1.36-0.05 \\ & \mathrm{~h}=1.31 \mathrm{~m} \text { of water } \\ & \mathrm{p}=\mathrm{wh} \\ & \mathrm{p}=9810 \times 1.31=12851.1 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	01 02 01
	b	Bernoulli's theorem, in fluid dynamics, relation among the pressure, velocity, and elevation in a moving fluid (liquid or gas), the compressibility and viscosity (internal friction) of which are negligible and the flow of which is steady, or laminar. The theorem states, in effect, that the total mechanical energy of the flowing fluid, comprising the energy associated with fluid pressure, the gravitational potential energy of elevation, and the kinetic energy of fluid motion, remains constant. Bernoulli's theorem is the principle of energy conservation for ideal fluids in steady, or streamline, flow and is the basis for many engineering applications. $\begin{gathered} \mathrm{p} / \mathrm{w}+\mathrm{v}^{2} / 2 \mathrm{~g}+\mathrm{z}=\text { constant } \\ \text { where } \mathrm{p} / \mathrm{w}=\text { pressure energy, } \\ \mathrm{v}^{2} / 2 \mathrm{~g}=\text { kinetic energy } \\ \mathrm{z}=\text { datum energy } \end{gathered}$ Assumptions-Frictionless, steady, constant density(incompressible), along a streamline	01
	c	$\left.\begin{array}{c} \qquad \begin{array}{l} \mathrm{V}=\mathrm{Cv} \sqrt{ } 2 \mathrm{gh} \\ =0.95 \times \sqrt{ } 2 \mathrm{x} 9.81 \times 50 \\ = \end{array} \\ \text { Mass flow rate }=\mathrm{m}=\mathrm{av}=1000 \times \mathrm{m} / \mathrm{II} / 4 \times 0.05^{2} \times 29.5 \\ \\ =57.92 \mathrm{~kg} / \mathrm{s} \end{array}\right\} \begin{aligned} \text { Force exerted by the jet } \mathrm{Fx} & =\mathrm{m}(\mathrm{~V}-\mathrm{u}) \\ & =57.92(29.5-0) \\ & =1708.73 \mathrm{~N} \end{aligned}$	1 1 1 1
	d	Darcy's equation- $\mathrm{H}_{\mathrm{f}}=\mathrm{flv}^{2} / 2 \mathrm{Dg}$ Where: $\mathrm{h}_{\mathrm{f}}=\text { Friction head loss }$	01 01

	1) impulse turbine 2) Reaction turbine According to direction of flow through runner 1) Tangential flow turbine 2) Radial flow turbine 3) Axial flow turbine 4) Mixed flow turbine According to the head available at inlet to the turbine 1)Low head turbine (2 m to 15 m) 2) Medium head turbine (16 m to 70 m) 3) High head turbine (71 m and above) According to the specific speed of the turbine 1)Low specific speed 2)Medium specific speed 3)High specific speed ii) Important of draft tube in reaction turbine: Draft tube is necessary in reaction turbine for the following reasons, 1. By providing draft tube, it is possible to install the turbine above the tail race without loss of head. This makes the inspection and maintenance of turbine easy. 2. By providing draft tube, the velocity is largely reduced at the exit of draft tube. Thus the kinetic head is gained. In reaction turbines like Kaplan or Francis, both pressure and kinetic energy are used to make the rotor run. At the exit of the runner of these turbines, there is a negative pressure developed which is less than the atmospheric pressure. So to improve the work done this kinetic energy is converted to pressure energy again by the means of the draft tube. And the water also moves out to tailrace. Types of draft tube: i. Conical draft tube ii. Simple elbow draft tube iii. Moody spreading draft tube iv. Elbow draft tube with circular cross section at inlet and rectangular at outlet	04 Marks
(b)	Explain principle, construction and working of centrifugal pump with neat sketch.	

Casing

- It is an airtight passage surrounding the impeller.
- It is designed in such a way that the kinetic energy of the water discharged at the outlet is converted into pressure energy before the water leaves the casing and enters the delivery pipe.
- The casing works as a cover to protect the system.

Delivery valve

- The delivery valve has two ends.
- One end is connected to the outlet of the pump and the other end delivers the water at a required height.

Working of centrifugal pump:

As the electric motor starts rotating, it also rotates the impeller. The rotation of the impeller creates suction at the suction pipe. Due to suction created the water from the sump starts coming to the casing through the eye of the impeller.

From the eye of the impeller, due to the centrifugal force acting on the water, the water starts moving radially outward and towards the outer of casing.

Since the impeller is rotating at high velocity it also rotates the water around it in the casing. The area of the casing increasing gradually in the direction of rotation, so the velocity of the water keeps on decreasing and the pressure increases, at the outlet of the pump, the pressure is maximum.Now form the outlet of the pump, the water goes to its desired location through delivery pipe.
(Principle 1 Mark,Construction 2 Marks,Working 2 Marks and neat sketch 3 Marks).
(c) A centrifugal pump is to discharge $0.130 \mathrm{~m}^{3} / \mathrm{s}$ at a speed of 1200 rpm against a total head of 20 m . The impeller diameter is 250 mm , its width at outlet is 40 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.
Ans. Given date Centrifugal pump

$\mathrm{Q}=0.130 \mathrm{~m}^{3} / \mathrm{sec} \quad \mathrm{N}=1200 \mathrm{rpm}$	$\mathrm{H}=20 \mathrm{~m} \quad$
D2=Impeller diameter at outlet $=0.25 \mathrm{~m}$	$\mathrm{~B} 2=$ width at outlet $=0.04 \mathrm{~m}$
r velocity triangle	

> 01 Mark
> Diagram
i)Tangential velocity of impeller at outlet u_{2}
$=\Pi$ D2 $\mathrm{N} / 60=(\Pi \times 0.25 \times 1200) / 60=15.71 \mathrm{~m} / \mathrm{sec}$

d)		Enlist various minor losses in flow through pipes. Write equations of any four losses.	
	Sol.	Minor Losses:- (i) Loss of head at Entry. $\mathrm{H}_{\mathrm{L}}=0.5\left(\mathrm{~V}^{2} / 2 \mathrm{~g}\right)$ (ii) Loss of head at Exit. $\mathrm{H}_{\mathrm{L}}=\left(\mathrm{V}^{2} / 2 \mathrm{~g}\right)$ (iii) Loss of head due to sudden enlargement. $\mathrm{H}_{\mathrm{L}}=\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2} / 2 \mathrm{~g}$ (iv) Loss of head due to sudden contraction $\mathrm{H}_{\mathrm{L}}=(1 / \mathrm{Cc}-1)^{2}\left(\mathrm{~V}^{2} / 2 \mathrm{~g}\right)$ (v) Loss of head due to sudden obstruction. $\mathrm{H}_{\mathrm{L}}=\frac{v^{2}}{2 g}\left[\frac{A}{C_{C}(A-\alpha)}\right]^{2}$ (vi) Loss of head due to bend or Elbow, $\mathrm{H}_{\mathrm{L}}=\mathrm{K}\left(\mathrm{V}^{2} / 2 \mathrm{~g}\right)$	(Any 04 Losses) 01 Marks Each Point
e)		Explain working principal, construction of pitot tube. How pitot tube is used for measuring local velocity of flowing fluid?	
	Sol.	Pitot tube- It is used for measuring velocity of flow of fluid flowing through the channel Construction:- It consists of a glass tube, bent at right angle as shown in figure. The diameter of glass tube is large enough to nullify the effect of capillary action. The tube dipped vertically in the flowing fluid with its lower end which is bent at 900 , facing the flow \& other open end projecting above fluid surface. Fig. Pitot Tube	01 Marks 01 Marks 01 Marks

Q. 6			
a)	(i)	Derive expression for force exerted by jet on fixed symmetrical curved blade, when jet strikes the blade normally.	
		Let, jet of water strikes a fixed curved plate at the center as shown in fig. The jet after striking the plate comes out with same velocity if the plate is smooth and there is no loss of energy due to impact of jet. The velocity at outlet of the plate can be resolved into two components, one in the direction of jet and other perpendicular to direction of jet. Component of velocity in the direction of jet after striking plate $=-\mathrm{V} \cos \theta$ Component of velocity perpendicular to the direction of jet after striking plate $=\mathrm{V} \sin \theta$ Fig. Jet Striking On Fixed Symmetrical Curved Blade Normally Force exerted by the jet in the direction of jet, $F_{x}=\text { Mass per sec } \times\left[V_{1 x}-V_{2 x}\right]$ where $\quad V_{\mathrm{L} x}=$ Initial velocity in the direction of jet $=V$ $V_{2 \mathrm{x}}=$ Final velocity in the direction of jet $=-V \cos \theta$ \therefore $\begin{aligned} F_{x} & =\rho a V V V-(-V \cos \theta)]=\rho a V V+V \cos \theta] \\ & =\rho a V^{2}[1+\cos \theta] \end{aligned}$ Similarly, $F_{y}=\text { Mass per sec } \times\left[V_{1 y}-V_{2 y}\right]$ where $\quad V_{1 y}=$ Initial velocity in the direction of $y=0$ $V_{2 y}=$ Final velocity in the direction of $y=V \sin \theta$ \therefore $F_{y}=\rho a V[0-V \sin \theta]=-\rho a V^{2} \sin \theta$	01 Marks For diagram 03 Marks For Expression
	(ii)	Draw a neat labeled diagram of layout of hydroelectric power plant	

		Fig. Layout of Hydroelectric Power Plant	04 Marks For diagram
b)		Water flow down an inclined tapering pipe 45 m long at a slope of 1 in 10 . The areas at the upper and lower ends of pipe are $8 \mathrm{~m}^{2}$ and $3 \mathrm{~m}^{2}$ resp. If the velocity at lower end is $4.5 \mathrm{~m} / \mathrm{s}$ and the pressure at upper end is 100 kPa . Calculate the pressure at lower end and rate of flow through pipe.	
	Sol.	Let, (1) - (1) = Lower End (2) -(2) $=$ Upper End $\begin{array}{ll} \mathrm{A}_{1}=3 \mathrm{~m}^{2} & \mathrm{~V}_{1}=4.5 \mathrm{~m} / \mathrm{s} \\ \mathrm{~A}_{2}=8 \mathrm{~m}^{2} & \mathrm{P}_{2}=100 \mathrm{kPa}=100 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2} \\ \mathrm{Z}_{1}=0 & \\ \mathrm{Z}_{2}=(1 / 10) \times 45=4.5 \mathrm{~m} \\ \\ \mathrm{P}_{1}=? & \\ \mathrm{Q}=? & \end{array}$ By Continuity Equation, $\begin{aligned} & \mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2} \\ & 3 \times 4.5=8 \times \mathrm{V}_{2} \\ & \mathrm{~V}_{\mathbf{2}}=\mathbf{1 . 6 8} \mathbf{~ m} / \mathbf{s} \end{aligned}$ $\begin{aligned} & \mathrm{Q}=\mathrm{A}_{1} \mathrm{~V}_{1}=3 \times 4.5 \\ & \mathbf{Q}=\mathbf{1 3 . 5} \mathbf{m}^{3} / \mathbf{s} \end{aligned}$ By Bernoulli's Theorem Total Head at section $=$ Total head at section (1) -1 (2) -2	01 Mark 02 Mark 02 Mark 01 Mark

		$\begin{aligned} & \frac{P_{1}}{\mathrm{~W}}+\frac{V_{1}^{2}}{2 g}+Z_{1}=\frac{P_{2}}{\mathrm{~W}}+\frac{V_{2}^{2}}{2 g}+Z_{2} \\ & \left(\mathrm{P}_{1} / 9810\right)+(4.5 / 2 \times 9.81)+0=\left(100 \times 10^{3} / 9810\right)+\left(1.687^{2} / 2 \times 9.81\right)+4.5 \\ & \mathrm{P} 1=135442.64 \mathrm{~N} / \mathrm{m}^{2} \\ & \mathbf{P 1}=\mathbf{1 3 5 . 4 4} \mathbf{k P a} \end{aligned}$	02 Mark
c)		Explain working principle, construction and working of double acting reciprocating pump with neat labeled diagram. Also write advantages of double acting reciprocating pump over single acting reciprocating pump	
	Sol.	Fig. Double Acting Reciprocating Pump Construction (i) Cylinder - It is the heart of reciprocating pump. It is made from cast iron, Cast steel or other metal which suitable to handle liquid flowing through it. (ii) Piston - It is fits inside the cylinder and piston rod is connected to crank by connecting rod. (iii) Connecting rod and crank - Connecting rod connects piston to crank. Crank is rotated by engine or electric motor. (iv) Valves - One way valves are provided at inlet and outlet. Inlet valve admits water into cylinder while outlet valve permits exit of water from cylinder. (v) Air Vessels - In order to make uniform discharge I dome shaped metal vessels are fitted on delivery pipe.	02 Marks for diagram

Working: -

i) When crank is at A , The piston is at the extreme left position in cylinder. As the crank rotates from A to $\mathrm{C}\left(\operatorname{From} \theta=0^{0}\right.$ to $\theta=180^{\circ}$) the piston is moving towards right in cylinder. The movement of piston towards right creates a partial vacuum in cylinder. Due to this suction valve opens and water is sucked in the cylinder in piston end side while delivery takes place on other side.
ii) When crank is at C , The piston is at the extreme Right position in cylinder. As the crank rotates from C to A (From $\theta=180^{\circ}$ to $\theta=360^{\circ}$) the piston is moving towards left in cylinder. Due to this delivery takes place from piston side while suction takes place on other side of piston. During each stroke when suction takes place on one side of the piston, the other side delivers the liquid. Thus for one complete revolution of the crank there are two delivery strokes and water is delivered to the pipes by the pump during these two delivery strokes.

Advantages of Double Acting Reciprocating Pump Over Single Acting Reciprocating Pump:

(i) It gives continuous discharge .
(ii) High delivery head can be obtained.
(iii)It has high efficiency.

