

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code:

17333

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
•			
1.	(A)	Attempt any SIX of the following:	12
	(i)	Define digital system and give its two applications.	2M
	Ans.	Definition of digital system:	
		The system which processes or works on the digital signal is known as	Definitio
		digital system	n 1M
		Applications:	
		1. Flip flops	Any two
		2. Counters	applicati
		3. Register	ons $^{1/2}M$
		4. Digital calculators	each
		5. Computers	
	(ii)	State any four Boolean Laws.	2M
	Ans.	Boolean laws:	
		A + 1 = 1	Any four
		$\mathbf{A} + 0 = \mathbf{A}$	laws
		A . 1 = A	½ M
		$A \cdot 0 = 0$	each
		A + A = A	
		$A \cdot A = A$	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digi	tal Techniques Subject Code:	17333
(iii) Ans.	Draw logical symbol and truth table of X-OR gate. <i>Exclusive-OR gate</i> Input _A Output Input _B	2M Symbol 1M
	A B Output 0 0 0 0 1 1 1 0 1 1 1 0	Truth table 1M
(iv) Ans.	Convert (352.75)10 = (?)2	2M
	$2 \begin{vmatrix} 352 \\ 0 \\ 176 \\ 0 \\ 2 \\ 88 \\ 0 \\ 2 \\ 44 \\ 0 \\ 2 \\ 2 \\ 22 \\ 0 \\ 2 \\ 11 \\ 2 \\ 5 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 5 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 352.75 \end{pmatrix}_{10} = (101100000 - 110)_{2}$	2M
(v) Ans.	List Universal gates. Why they are called as universal gate?	2M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject: Digi	tal Techniques Subject Code: 1	7333
	Universal gates: i) NAND gate ii) NOR gate The NAND and NOR gates are called Universal gates because it is possible to implement any Boolean expression with the help of only NAND or only NOT gates.	List ^{1/2} M each Universal gate 1M
(vi) Ans.	Name the IC for digital comparator and ALU. Digital comparator: IC 7485 ALU: IC 74181	2M Each 1M
(vii) Ans.	Draw T flip-flop using NAND gate.	2M Diagram 2M
(viii) Ans.	 State advantages of digital system. Advantages of digital circuits: Digital Electronic circuits are relatively easy to design. It has higher accuracy, programmability. Transmitted signals are not degraded over long distances. Digital Signals can be stored easily. Digital Electronics is comparatively more immune to "error" and "noise". But in case of high speed designs a small noise can induce error in signal. More Digital Circuits can be fabricated on integrated chips; this helps us obtain complex systems in smaller size. 	2M Any two advantag es 1M each

1. (B) Attempt any TWO of the following: (i) Subtract using 2's complement method: (1) (11101) ₂ - (10010) ₂ (2) (1010) ₂ - (0110) ₂ (1) (11101) ₂ - (10010) ₂ (10010) ₂ 1's complement = 0 1 1 0 1 2's complement = $\frac{\pm - 1}{0 1 1 1 0}$ 1 1 1 0 1 $\pm 0 1 1 1 0$ Discard $\rightarrow 1 0 1 0 1 1$ Carry Final carry is generated, hence answer is positive and in true for (2) (1010) ₂ - (0110) ₂ (0110) ₂ 1's complement = 1 0 0 1 2's complement = $\frac{\pm - 1}{1 0 1 0}$ 1 0 1 0 $\pm 1 0 1 0$ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 Carry Final carry is generated, hence answer is positive and in true for 1 0 1 0 1 0 1 0 Carry Final carry is generated, hence answer is positive and in true for	e: 17333
Ans. (1) $(11101)_2 - (10010)_2$ $(10010)_2$ 1's complement = 0 1 1 0 1 2 's complement = $\frac{1}{0}$ 1 1 1 0 1 2 's complement = $\frac{1}{0}$ 1 1 1 0 Discard $\rightarrow 1$ 0 1 0 1 1 Carry Final carry is generated, hence answer is positive and in true for (2) $(1010)_2 - (0110)_2$ $(0110)_2$ 1's complement = 1 0 0 1 2 's complement = $\frac{1}{1}$ 0 1 0 10 1 0 + 1 0 1 0 Discard $\rightarrow 1$ 0 1 0 0 Carry Final carry is generated, hence answer is positive and in true for	8 4M
$(10010)_{2} 1's \text{ complement } = 0 \ 1 \ 1 \ 0 \ 1$ $2's \text{ complement } = \frac{1}{0} \ 1 \ 1 \ 0$ $1 \ 1 \ 1 \ 0 \ 1$ $2's \text{ complement } = \frac{1}{0} \ 1 \ 1 \ 0$ $1 \ 0 \ 1 \ 0 \ 1 \ 0$ $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$ $Carry Final carry is generated, hence answer is positive and in true for (2) \ (1010)_{2} - (0110)_{2} (0110)_{2} 1's \text{ complement } = 1 \ 0 \ 0 \ 1 2's \text{ complement } = \frac{1}{1} \ 0 \ 1 \ 0 1 \ 0 \ 1 \ 0 1 \ 0 \ 1 \ 0 1 \ 0 \ 1 \ 0 Carry Final carry is generated, hence answer is positive and in true for (2) \ (1010)_{2} - (0110)_{2} (0110)_{2} 1's \text{ complement } = \frac{1}{1} \ 0 \ 1 \ 0 (2) \ (1010)_{2} (1010)_{2} - (0110)_{2} (0110)_{2} 1's \text{ complement } = \frac{1}{1} \ 0 \ 1 \ 0 (0110)_{2} 1's \text{ complement } = \frac{1}{1} \ 0 \ 1 \ 0 (2) \ (1010)_{2} (1010)_{2} (1010)_{2} (1010)_{2} (0110)_{2} (1010)_{2} (1010)_{2} (1010)_{2} (0110)_{3} (1010)_{4} (10$	
$1 1 1 0 1$ $+ 01110$ Discard $\rightarrow 1 0 1011$ Carry Final carry is generated, hence answer is positive and in true for $(2) (1010)_2 - (0110)_2$ $(0110)_2 1's \text{ complement} = 1001$ $2's \text{ complement} = \frac{+ 1}{1010}$ 1010 $+ 1010$ Discard $\rightarrow 1 0100$ Carry Final carry is generated, hence answer is positive and in true for $(2) (1010)_2 - (0110)_2$	2M
(2) $(1010)_2 - (0110)_2$ $(0110)_2$ 1's complement = 1001 2's complement = $\frac{\pm 1}{1010}$ 1010 ± 1010 ± 1010 Discard $\rightarrow 10100$ Carry Final carry is generated, hence answer is positive and in true for	rm.
$1010 + 1010$ -1 Discard $\rightarrow 10100$ Carry Final carry is generated, hence answer is positive and in true for	2M
	rm.
 (ii) State and prove Demorgan's theorem. Ans. It state that the, complement of a sum is equal to product of its complements 	4M
A B A+B A B A.B	
0 0 1 1 1 1	Theorem
0 1 0 1 0 0	IM each
$\overline{A + B} = \overline{A} \cdot \overline{B} $ 1 0 0 1 0	
NOR = Bubbled AND 1 1 0 0 0 0	

Subject: Dig	ital Techniques					Sub	ject Code:	1′	7333]
	Theorem2: It states that, th sum of the complements.	e coi	nple	ment	of a	prod	uct is equal	to		
		A	В	AB	Ā	B	$\overline{A} + \overline{B}$		Prove	1M
		0	0	1	1	1	1		each	h
	$\overline{A} \cdot \overline{B} = \overline{A} + \overline{B}$	0	1	1	1	0	1			
		1	0	1	0	1	1			
	NAND = Bubbled OR	1	1	0	0	0	0			
Ans.	(1) (1011010110) ₂ = (?) ₁₀ (2) (576) ₁₀ = (?) ₂ (3) (237) ₈ = (?) ₁₀ (4) (327.89) ₁₀ = (?) _{BCD} (1) (1011010110) ₂ = (?) ₁₀ = $1 \times 2^{q} + 0 \times 2^{s} + 1 \times 2^{r} + 1 \times 2^{2} + 0 \times 2^{s} + 1 \times 2^{r} + 1 \times 2^{2} + 0 \times 2^{s} + 1 \times 2^{r} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{s} + 1 \times 2^{1} + 0 \times 2^{$	1×2 ² + ((7) (57)	+ 0× 0 + 1 2 6 10	$2^{5} + 6 + 6$	1 × 2 2 + 4	4+0×	2^{3} +0 $0)_{2}$		Each	1M
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 ی	6/10	= ((*			L			

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code: 17333

		$(3) \ (237)_8 = (?)_{10}$	
		$= 2 \times 8^{2} + 3 \times 8^{2} + 7 \times 8^{3}$	
		$= 2 \times 64 + 3 \times 8 + 7 \times 1$	
		= 159	
		$(237)_{8} = (159)_{10}$	
		$(4) \ (327.89)_{10} = (?)_{BCD}$	
		3 2 7 . 8 9 1 1 $10011 0010 0111 . 1000 1001$	
		(327-89) 3 = (001,100100111 · 10001001) BCD	
2.	(a) Ans.	Attempt any FOUR of the following: Derive AND gate and OR gate using NAND gate only 2 marks	16 4M
		A A B A B Y = A B	AND Gate 2M
		OR gate using NAND gate only 2 marks.	OR Gate 2M
		$A \longrightarrow \overline{\overline{A}}, \overline{\overline{B}} = \overline{\overline{A}} + \overline{\overline{B}}$ $Y = A + B$	
		B	

Г

Subject: Digi	tal Techniques Subject Code: 1	7333
(b) Ans.	 For the following logic expressions given below. Y = A . B + A . B Do: (i) Obtain truth table (ii) Name the operation performed from the truth table (iii) Realize this operation using basic gates (iv) Realize this operation using only NOR gates. (i) Obtain truth table: 	4M
	Truth table	
	A B A B A.B A.B A.B A.B+AB	
	0 0 1 1 0 0 0	
		Each sub
	 (ii) Name the operation performed from the truth table: From truth table, the operation performed is EX-OR. (iii) Realize this operation using basic gates (iv) Realize this operation using only NOR gates. 	ΙΜ

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code: 1

17333

outputs (diff	ractor is a comb erence and borro	inatonal circuit with two	\rightarrow 4M
	Truth Table		
Inputs		utnute	
A	B Differen	ce Borrow	Truth
1	A – B	B	table 1N
0	0 0	0	
0	1 1	1	
1	0 1	0	
1	1 0	0	
	Inputs (unit A 0 0 1 1 1 p for differe	Truth Table Inputs Outputs A B Differen A B Oifferen 0 0 0 0 1 1 1 0 1 1 1 0 p for difference K-n	Truth Table Truth Table A B Difference Borrow A B Difference Borrow 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 p for difference K-map for borrow

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

17333

Г

Subject: Digi	tal Techniques Subject Code: 1	7333
(d)	Minimize the following function using K-Maps: $F = \Sigma m(0, 1, 2, 3, 11, 12, 14, 15)$	4M
Ans.	Realise the expression using basic gates. K = AB = A	K map 1M Grouping 1M Expressi on 1M
	$A = C = D$ $A = \overline{A} + \overline{B}$ $A = \overline{A} + \overline{B}$ $A = \overline{A} + \overline{B}$ $A = \overline{D}$	Realisati on 1M
(e) Ans.	Draw the block diagram of ALU IC 74181 and explain function of all pins.	4M

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code:

17333

Subject	t: Digit	al Techniques Subject	t Code:	17333	
	(f) Ans.	Perform following binary operations: (i) 1011011 X 101 (ii) 1101101 + 1001 (i) 1011011 X 101 $\begin{array}{r} 1011011 \\ \times \\ 1011011 \\ \hline 101101 \\ \hline 101001 \\ \hline 1010000 \\ \hline 10100000 \\ \hline 1010000 \\$		4M 2M	
		(ii) 1101101 + 1001 1001101 + 1001 -1001 -1001 -1001 -1001 -0000 -0000 -0000 -0000		2M	
3.	(a) Ans.	Attempt any FOUR of the following: Design 1 : 32 demultiplexer using 1 : 4 demultiplexer.		16 4M	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code: 17333

Subj	ect: Digi	tal Tech	niques	Subject Code:	17333
	(c) Ans.	Conve	ert $F(A, B, C) = \Sigma m(1, 4, 5, 6)$	6, 7) in standard POS form.	4M
		The m	issing term in Standard SO P	are 0,2,3	4M for
		So who	en converted to Standard POS	the form will be	correct conversio
	(d)	F(A, E Differ	$(0, 2, 3) = \pi M(0, 2, 3)$ entiate between synchronou	s and asynchronous counter	
	Ans.	Diffe	entitiete between synem onou	s and asynchronous counter.	-111
		Sr. No.	Synchronous counter	Asynchronous counter	
		1	In case of synchronous counter, all the flip-flops are clocked simultaneously.	In case of asynchronous counter, all the flip-flops are not clocked simultaneously.	Any four points
		2	In case of synchronous counter , there is no interconnection between output of one flip-flop and clock of next flip-flop,	In the case of asynchronous counter, the output of first flip-flop drives the clock for second flip-flop, the output of second drives the third and so on.	1M each
		3	The settling time of synchronous counter is equal to highest settling time of all flip-flops.	The settling time of asynchronous counter is cumulative sum of individual flip-flops.	
		4	Synchronous counter is known as parallel counter.	Asynchronous counter is known as serial counter	
		5	Synchronous counter design and implementation becomes tedious and complex as the number of states increases.	Its design and implementation is very simple.	
		6	Synchronous counter is faster in speed as compare to asynchronous counter.	Asynchronous counter is slow in speed as compare of synchronous counter.	

Г

٦

Sub	ject: Digit	al Techniques Subject Code: 1	7333
	(e) Ans.	Explain master slave JK flip-flop with neat diagram.	4M
		L L L L L L L L L L L L L L	2M for diagram
		Working of a master slave flip flop –	
		 When the clock pulse goes to 1, the slave is isolated; J and K inputs may affect the state of the system. The slave flip-flop is isolated until the CP goes to 0. When the CP goes back to 0, information is passed from the master flip-flop to the slave and output is obtained. Firstly the master flip flop is positive level triggered and the slave flip flop is negative level triggered, so the master responds before the slave. If J=0 and K=1, the high Q' output of the master goes to the K input of the slave and the clock forces the slave to reset, thus the slave copies the master. If J=1 and K=0, the high Q output of the master goes to the J input of the slave and the Negative transition of the clock sets the slave, copying the master. If J=1 and K=1, it toggles on the positive transition of the clock. If J=0 and K=0, the flip flop is disabled and Q remains unchanged. 	2M for explainat ion
	(f) Ans.	 State any four specifications of DAC. 1. Resolution: Resolution is defined as the ratio of change in analog output voltage resulting from a change of 1 LSB at the digital input V_{FS} is defined as the full scale analog output voltage i.e. the analog output voltage when all the digital input with all digits 1. 	4M

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subje

ct: Digit	al Techniques	Subject Code:	1733	33	
	Resolution = $\frac{V_{FS}}{2^n - 1}$ 2. Accuracy: Accuracy indicates how close the anal theoretical value. It indicates the deviati theoretical value. Accuracy depends on used in the ladder, and the precision of Accuracy is always specified in terms of output that means maximum output volta	log output voltage is to on of actual output from the accuracy of the resist the reference voltage us f percentage of the full sc age	its the tors sed. cale	ny fo vecifi ons 1 eacl	our cat M
	 3. Linearity: The relation between the digital input a should be linear. However practically it is not so due to resistors used for the resistive network? 	and analog output the error in the values of s.			
	 4. Temperature sensitivity: The analog output voltage of D to A due to changes in temperature. But practically the output is a function because the resistance values and OPA with changes in temperature. 	converter should not chan n of temperature. It is so AMP parameters change	nge		
	 5. Settling time: The time required to settle the analog value, after the change in digital input The settling time should be as short as 	output within the final is called as settling time. possible.			
	 6. Long term drift Long term drift are mainly due to resist aging and can affect all the characteristic Characteristics mainly affected are line 	stor and semiconductor tics. earity, speed etc.			
	 7. Supply rejection Supply rejection indicates the ability of linearity and other important character voltage is varied. Supply rejection is usually specified as 	of DAC to maintain scale, ristics when the supply s percentage of full scale	,		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Sub	ject: Digi	tal Techniques		Subject Code: 1	7333				
		change at or n	ear full scale voltage at 2	25°C					
		 8. Speed: It is defined a digital to analythat can be performed. 	is the time needed to perf og. It is also defined as the rformed per second	form a conversion from he number of conversions					
4.	(a) Ans.	Attempt any FOUR of the following: Differentiate between RAM & ROM.							
		Comparison	RAM	ROM					
		Data	The data is not permanent and it can be altered any number of times.	The data is permanent it can be altered but only a limited number of times that too at slow speed.					
		Speed	It is high-speed memory.	It is much slower than the RAM					
		CPU Interaction	The CPU can access the data stored on it.	The CPU cannot access the data stored on it. In order to do so, the data is first copied to the RAM.	Any four points 1M each				
		Size and capacity	Large size with higher capacity.	Small size with less capacity.					
		Usage	Primary memory (DRAM DIMM modules), CPU Cache	Firmware like BIOS or UEFI, RFID tags, microcontrollers, medical devices, and at places where a small and permanent memory solution.					
	(b)	Drow sinquit d	liggram of D 2 D type 1	D to A convertor Deceribe	АМ				
	Ans.	its working.	nagram of K-2K type I	D to A convertor. Describe	4111				

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code: 17333

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subj	ject: Digit	tal Techniques Subject Code: 1	7333	
	(c)	Describe the function of present and clear terminals in JK flip- flop. Write truth table of it.	4 M	
	Ans.	The PRESET and CLEAR inputs of a JK Flip-Flop		
		There are two very important additional inputs in the JK Flip-Flop.		
		 The PRESET input used to directly put a "1" in the Q output on the JK Flip-Flop. The CLEAR input used to directly put a "0" in the Q output on the JK Flip-Flop. 	2M for functio of press and clear	r n et
		PRESET O		
		ereo <mark>≻clk com</mark> • K Q • CLR		
		The PRESET and CLEAR inputs of the JK Flip-Flop are asynchronous, which means that they will have an immediate effect on the Q and Q' outputs regardless of the state of the clock and / or the J and K inputs.		
		The Flip-Flop may or may not have a small bubble in the PRESET or CLEAR inputs which indicate that they are active low.		
		JK Flip Flop Truth Table		

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code: 17333

		ct	n	Input	aro	20	Out	put	
		Preset	Clear	CLK	aju	к	Q	Q	
	Invalid	0	0	X	Х	X	1*	1*	2M for
	Preset	0	1	Х	Х	Х	1	0	truth
	Clear	1	0	Х	Х	Х	0	1	table
	In order for CLEAR and	the J ar PRESE	nd K in T inputs	puts and t s must be a	the clocl at a "Hig	k to be t gh" logic	function level	nal, the	
(d)	Explain 2-b	it syncł	nronous	s counter	with tr	uth tab	le and	timing	4 M
	diagram.	IIICII							
Ans.		HIGH	FEO		PP-				
			FFO	0	FF	1			
		•	J_0	∞0	$-J_1$		Q_1		
					1				1M for
			$\rightarrow c$		$\rightarrow c$				diagram
			$-K_0$		$-K_1$	o—	\overline{Q}_1		
	CLK								
	Synchronou	s Un Co	unter•						
	In the circu	it diagr	am the	hasic S	vnchron		nter de	eion ie	
	shown which	h is Syn	chrono		$\frac{1}{10000000000000000000000000000000000$	2 bit S_{x}	unchror	ous up	
	counter start	to cour	t from	0 (00 in 1)	iner. A	2 -on synd incre	ment o	r count	_
	upwards to ($10 \ cours$	n hinar	0 (00 III t v) and the	niiaiy) a		nting o	vole by	1M for
	upwards to t	55 (11 1	n onnar	y) and the	II Start I	lew coul	nung c	yele by	explainat
	The external	alaala	dinaa	the managed	ad to all		in flor	a at tha	ion
	The external	CIOCK 1	s airec	tly provid	ed to all	I J-K FI	ip-nops	s at the	
	same time in	a paral	lel way	. If we se	e the cir	cuit, the	first fl	ip-flop,	
	FF0 which	is the l	least si	gnificant	bit in t	his 2-bi	t synch	ironous	
	counter, 1s c	onnecte	a to a	Logic I e	xternal 1	input via	J and	K pın.	
	Due to this	connec	tion, H	IIGH logi	c across	s the Lo	ogic I	signal,	
	change the st	tate of fi	rst flip-	tiop on ev	ery cloc	k pulse.			
							с т	1 77 1	
	Next stage,	the sec	cond fli	ip-tlop Fl	I, inpu	t pin of	t J an	d K is	
	connected ac	ross the	output	of the first	t Flip-flo	op.			
	The truth tab	le is as s	shown						

Subject: Digit	al Techniques	1			Subje	ect Code: 1'	7333	
	The timing di CLK Q0	Clock 1st 2nd 3rd 4th agram is a	Q1 0 1 1 s given be	Q0 0 1 0 1 clow 2	Decimal Count 0 1 2 3 3	4	1M for truth table 1M for timing diagran	n
(e) Ans.	Draw block operations. As name sugg time to all f develop an ic the data bits than a bit-by- a 4-bit number 4 number of f 4 flip flops. I serial out shif	diagram gests the in lip flop. A lea for the are entered bit basis. I er (1011). ' flip flop. V In bellow t register.	of PISO of PISO of PISO oput data w And output parallel e ed into the Let take an Then all in Vith single see the blo	shift re will enter ut will g entry of da e flip flo n example put are fe c clock pu ock diagr	egister and in parallel th et serially. Y ata into the r ps simultance e suppose we ed the input lse all data a ram of 4 bit	describe its at means at a We now can register. Here cously, rather have to save as of different re enter to all of parallel in	4M Descript on 2M	ti

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code: 17333

	CLK A 4-bit parallel-in-serial-out shift register.	2M for diagram
	Now from above 4 bit parallel in serial out shift register we can see, A, B, C, and D are the four parallel data input lines and <i>SHIFT /</i> <i>LOAD</i> (<i>SH / LD</i>) is a control input that allows the four bits of data at A, B, C, and D inputs to enter into the register in parallel or shift the data in serial. When <i>SHIFT / LOAD</i> is HIGH, AND gates G1, G3, and G5 are enabled, allowing the data bits to shift right from one stage to the next. When <i>SHIFT / LOAD</i> is LOW, AND gates G2, G4, and G6 are enabled, allowing the data bits at the parallel inputs. When a clock pulse is applied, the flip-flops with D = 1 will be set and the flip-flops with D = 0 will be reset, thereby storing all the four bits simultaneously. The OR gates allow either the normal shifting operation or the parallel data-entry operation, depending on which of the AND gates are enabled by the level on the <i>SHIFT / LOAD</i> input.	
(f) Ans.	Reduce following expression using K-map and implement it using NOR gates: $Y = \pi M(1, 3, 5, 7, 8, 10, 14)$	4M

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

17333 Subject Code: AB ALB AIB AtB At A CD 01 11 10 1M for C+D 00 k map U CHO 01 15 ۰. 13 1M for 9 2+5 Logical 11 ١ 3 15 -11 expressio 10 C+D 2 6 n Y= (A+D) (A+C+D) A+8+D ABC P (a+a) D P 2M for (A+2+D) the logic diagram using E+8+D) NOR gate + 10+R+) + 1A+ T+D Y= (A+D × -A+D Attempt any FOUR of the following: 5. 16 State different applications of flip-flops. **4M (a) Applications of flip-flops:** Ans. 1. Bounce elimination switch, Any four 2. Latch, applicati 3. Registers, on 1M 4. Counters, each 5. Memory. **(b)** Draw block diagram of BCD to seven segment decoder using IC **4M** 7447 with its truth table. Ans.

Subject:	ıbject: Digital Techniques									Su	Subject Code:			33		
		IRU	TH TABI	B1/	1 8 р LT RBO RBI	7 1 2 3 4 5 4 2 4 5	16 13 12 7947 10 9 15 3 14) sv	7 30/ 6 4 1 4 2 1 0 9		5 (open)				Bloc liagra 2M	k ım
		BCD Inputs O				Oatp	tput Logic Levels from IC 7447 1				to 7-segments d		Decimal number display			
		D	С	В	A	a	b	c	đ	e	f	g				
		0	0	0	0	0	0	0	0	0	0	1	0		T	.1
		0	0	0	1	1	0	0	1	1	1	1	1		Trut	h
		0	0	1	1	0	0	0	0	1	1	0	3	ľ	able 2	: <i>IV</i> I
		0	1	0	0	1	0	0	1	1	0	0	4			
		0	1	0	1	0	1	0	0	1	0	0	5			
		0	1	1	0	1	1	0	0	0	0	0	6			
		0	1	1	1	0	0	0	1	1	1	1	7			
			0	0	1	0	0	0	1	1	0	0	8 9			
						_	1 0		-	-		v	,			
((Comn	oro w	aight	tod r	ocict	or DA	<u>C &</u>	D_21		C				4 M	
Ar		Sr		aram	eter	C2121		Weig	hted	N D A	R.	.2R I	adder	1	-+141	
		No.				0	Re	sisto	r DA	С		DA	C			
		1	Sim	olicity	v		Simp	le		-	Slig	htly				
			1	•	•		1				con	plica	ted			
		2	Rang	ge of	resi	stor	Wide	e ra	inge	is	Res	istors	of only		1M fe	or 🛛
			value	es			requi	red			two	value	es		each	ı
		3	Num resis	iber tors p	oer b	of it	One				Two	0			poin	t
		4	Ease			of	Not e	easy t	o exp	and	Eas	y to e	xpand			
			expa	nsior	ı		for a	more	nun	nber		-	-			
							of bit	S]		

Subject: Digi	tal Techniques	Subject Code:	17333	
(d) Ans.	Perform the following using 9's complement: (i) $(62)_{10} - (87)_{10}$ (ii) $(53)_{10} - (24)_{10}$ (i) $(62)_{10} - (87)_{10}$		4M	
	2) Find d's complement de $qa-37 = (12)_{10}$ (b) Add (12)_{10} to (62)_{10} $(62)_{10} = 0110 0010$ $(12)_{10} = 0001 0010$ $\Box 0 111 0100$ no carry \therefore answer is negative $Qa-37 = (12)_{10}$	(572.) = $(74)_{10}$ # consult	Each 2	M
	(ii) $(53)_{10} - (24)_{10}$			
	(2) Find q's complement $qq - 24 = (TS)_p$ (5) Add $(TS)_p$ to $(SS)_T$ $(S)_{10} = 01010011$ $t(TS)_{10} = 011100011$ $\frac{1100'00}{1000}$ $\frac{1100'00}{1000}$ $\frac{1100'00}{1000}$ $\frac{1100'00}{1000}$ $\frac{1100'00}{1000}$ $\frac{1100'00}{1000}$ $\frac{1100'00}{1000}$ $\frac{1000'00}{1000}$	$af (24)_{1}$		

Subj	ject: Digit	al Techniqu	es				Subjec	t Code:	1′	7333	
	(f) Ans.	Prove the f (i) $AB + \overline{A}$ (ii) $A + \overline{A}$ (ii) $AB + \overline{A}$ $AB + \overline{AB} - \overline{AB} $	Following $\mathbf{B} + \overline{\mathbf{A}} \overline{\mathbf{B}} =$ $\mathbf{B} + \overline{\mathbf{A}} \overline{\mathbf{B}} =$ $\mathbf{B} + \overline{\mathbf{A}} \overline{\mathbf{B}} = \overline{\mathbf{A}}$ $+ \overline{\mathbf{A}} \overline{\mathbf{B}} = \overline{\mathbf{A}}$ $\overline{\mathbf{A}} + \overline{\mathbf{A}} \overline{\mathbf{B}} =$ $\overline{\mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$ $\overline{\mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$ $\overline{\mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$ $\overline{\mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$	using alg $\overline{\mathbf{A}} = \overline{\mathbf{A}} + 1$ $\overline{\mathbf{A}} + \mathbf{B}$ $\overline{\mathbf{A}} = \overline{\mathbf{A}} + 1$ $\overline{\mathbf{A}} + B$ $\overline{\mathbf{A}} + B$	gebraic th B B	heorems:				4M Corre prove 2 each	ect 2M 1
6.		Attempt ar	y TWO	of the fol	lowing:					16	
	(a)	(i) Design f	full adde	r circuit	using K-	map. Im	plement	using log	ic	6M	
	Ans.	gates. Full Adden generated b multibit add circuit is us inputs and circuit is kn	The Hall by lower dition is presed to add C_{n-1} is the own as F	f adder t bits white berformed dA_n , B_n a he last st ull Adder	there is n le adding l. Hence and C_{n-1} w ate outpu	to provising present the third input of the present the present of the third input of the presence of the presence of the provided set of the pro	Son to ad inputs the put is add B_n are p previous	d the carr hat is whe led and th resent sta carry. Th	ry en is te is		
			An	Bn	Cn-1	Sum Sn	Carry Cn				
			0	0	0	0	0				
			0	0	1	1	0			Trut	h
			0	1	0	1	0			table 2	2M
			0	1	1	0	1				

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

17333

Subject Code:

Subj	ect: Digit	al Tech	niques	Subject Code:	17333	
	(a) Ans.	(ii) Def It has o perform and dist selected enable output l	The and draw logical symbol of nly one input, "n" outputs and "m is the reverse operation of a multi tributes it over several outputs. At l lines and the input is transmitted input will enable the demultiplex ines and m select lines as follows:	f a demultiplexer. i'' select inputs. A demuliplex plexer i.e. it receives one inp t a time only one output line to the selected output line. The er. The relation between the $n = 2^m$ Outputs (destinations)	er ut is n n Defin n 11 Diagr 1M	I itio M Sam
	(b)	(i) Dif	ferentiate between combinat s (2 points).	ional and sequential log	ic 2M	[
	Ans.	Sr. No	Combinational circuits	Sequential circuits		
		1	In combinational circuits, the output variables depends on the combinational of input variables	In sequential circuits, the output variables depends upon the present inputs as well a on the past output	n n NS Any	2
		2	Memory unit is not required in these circuits.	Memory unit is required it these circuits to store the previous output.	n IM ed	ts ach
		3	These circuits are faster in speed because the delay between the input and output is due to the propogation delay.	Sequential circuits are slower than the combination circuits.	er al	
		4	These are easy to design.	These are complex is designing.	n	
		5	Ex: Parallel Adder.	Ex: Serial Adder.		
	(b) Ans.	(ii) Sta	te the applications of shift regi	ster.	2M	[

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques

Subject Code: 17

17333

	4 M
(b) (iii) Draw the block diagram of 4-bit SISO shift register and	TIVE
Ans.Shift Left: Working: Initially all the flip flops are cleared so the output is 0000. When data (assumed data is 1) is applied serially to it is applied at the Din. The arrival of first clock pulse sets the right most flip flop making the output as 0001. With the next clock edge the Q1 flip flop sets and the register contents become 0011. Similarly at the third clock edge results in 0111 and at the fourth clock edge it becomes 1111.	Vorking 1M
Q3 D3 Q2 D2 Q1 D1 Q0 D0 Din (serial data input) FF-3 FF-2 FF-1 FF-0 FF-0 CLK CLK CLK	Diagram 2M
Clock Din Q_0 Q_0 Q_0 Q_0 G_1 Q_2 Q_2 Q_2 Q_2 Q_3 Q_2 Q_3 Q_2 Q_3 Q_3 Q_4 FF-0 sets FF-1 sets G_1 G_2 G_3	Timing liagram 1M

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subje

ect: Digit	al Techniques Subject Code: 1	7333	
	resets the binary counter and makes it ready for counting. As the counter resets, output of the D/A converter reduces to zero and thus with positive analog input to the voltage comparator, the output of the comparator goes low, which makes $R = 0$. The start pulse also triggers the monostable multivibrator, which introduces the desired delay in the action of the other circuits. Thus the output of the monostable multivibrator goes high. This makes $S = 1$, while R was already made 0. The RS flip-flop sets and the Y output goes high. The AND gate is enabled & the counter starts the counting the clock pulses. The output of the counter is fed to n D/A converter which produces an analog output in response to the digital signal as its input. This binary output starts increasing continuously with time. The output of the D/A converter also starts increasing in steps. The analog output is a staircase signal as shown in fig. This D/A output is fed to the reference voltage for the comparator. The staircase signal (i.e. digital output) is compared by the comparator with the analog voltage. So long as the input signal, Vs is greater than the digital output the gate remains enabled and clock pulses are counted by the counter, thus continuously raising the digital output. But as soon as the staircase digital output exceeds the given analog input, the output of the counter changes from a low to a high level. This makes $R = 1$, while S is at 0. Thus, the flip-flop resets and Y output goes low. Hence the AND gate is disabled and no clock pulses can now reach the counter. This stops the counting and the binary output of the counter represents the final digital output	Explan ion 2.	nat M
(c)	(ii) What are advantages and disadvantages of DAC?	4M	[
Ans.	For Weighted Resister DAC:		-
	Advantages:		
	1. Simple circuit.	Advan	tag
	2. Easy calculations	es 21	М
	Dis-Advantages:		
	1. The accuracy and stability of this type of DAC depends upon the		

Subject: Digital Techniques	Subject Code: 17333	
 largest resistor is 128 times the smaller resistor be still worse for n =12. 3. The difficulty to achieve & maintain accura wide range of resistor values restricts the use DAC for the values of n < 8 hence the resolutio 4. The finite resistance of the switches will particularly in the MSB position where the cu are small in value. 	This proportion will ate ratios over such a of weighted resistor n is poor. disturb the currents rrent setting resistors	