SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques
 Subject Code:
 17333

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
1.	(A) (i) Ans.	Attempt any SIX of the following: Define digital system and give its two applications. Definition of digital system: The system which processes or works on the digital signal is known as digital system Applications: 1. Flip flops 2. Counters 3. Register 4. Digital calculators 5. Computers	12 2 M Definitio n 1M Any two applicati ons ${ }^{1 / 2} M$ each
	$\begin{gathered} \text { (ii) } \\ \text { Ans. } \end{gathered}$	State any four Boolean Laws. Boolean laws: $\begin{aligned} & A+1=1 \\ & A+0=A \end{aligned}$ A. $1=\mathrm{A}$ A. $0=0$ $\mathrm{A}+\mathrm{A}=\mathrm{A}$ A. $\mathrm{A}=\mathrm{A}$	$\begin{gathered} 2 \mathrm{M} \\ \text { Any four } \\ \text { laws } \\ 1 / 2 M \\ \text { each } \end{gathered}$

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

	Universal gates: i) NAND gate ii) NOR gate The NAND and NOR gates are called Universal gates because it is possible to implement any Boolean expression with the help of only NAND or only NOT gates.	List ${ }^{1 / 2} M$ each Universal gate 1M
(vi) Ans.	Name the IC for digital comparator and ALU. Digital comparator: IC 7485 ALU: IC 74181	2M Each 1M
(vii) Ans.	Draw T flip-flop using NAND gate.	2M Diagram 2M
(viii) Ans.	State advantages of digital system. Advantages of digital circuits: 1. Digital Electronic circuits are relatively easy to design. 2. It has higher accuracy, programmability. 3. Transmitted signals are not degraded over long distances. 4. Digital Signals can be stored easily. 5. Digital Electronics is comparatively more immune to "error" and "noise". But in case of high speed designs a small noise can induce error in signal. 6. More Digital Circuits can be fabricated on integrated chips; this helps us obtain complex systems in smaller size.	2M Any two advantag es 1M each

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} \& \multicolumn{7}{|l|}{Theorem2: It states that, the complement of a product is equal to} \& \multirow[t]{6}{*}{Prove 1M each}

\hline \& \& A \& B \& AB \& \bar{A} \& B \& $\bar{A}+\bar{B}$ \&

\hline \& \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \&

\hline \& $\overline{\mathrm{A} \cdot \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$ \& 0 \& 1 \& 1 \& 1 \& 0 \& 1 \&

\hline \& \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \&

\hline \& NAND $=$ Bubbled OR \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \&

\hline (iii)

Ans. \& | Convert the following: |
| :--- |
| (1) $(\mathbf{1 0 1 1 0 1 0 1 1 0})_{2}=(?)_{10}$ |
| (2) $(576)_{10}=(?)_{2}$ |
| (3) $(237)_{8}=(?)_{10}$ |
| (4) $(327.89)_{10}=(\text { ? })_{B C D}$ |
| (1) $(\mathbf{1 0 1 1 0 1 0 1 1 0})_{2}=(?)_{10}$ $\begin{aligned} = & 1 \times 2^{9}+0 \times 2^{8}+1 \times 2^{7}+ \\ & +1 \times 2^{2}+1 \times 2^{1}+0 \\ = & 512+0+128+6 \\ = & 726 \end{aligned}$ |
| $(1011010110)_{2}$ |
| (2) $(\mathbf{5 7 6})_{10}=(?)_{2}$ | \& \[

+

\] \& \& \[

6+0

\] \& \[

+

\] \& \[

+2
\] \& \& 4M

\hline
\end{tabular}

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

		(3) $(237)_{8}=(?)_{10}$ $\begin{aligned} & =2 \times 8^{2}+3 \times 8^{1}+7 \times 8^{0} \\ & =2 \times 64+3 \times 8+7 \times 1 \\ & =159 \\ & \quad(237)_{8}=(159)_{10} \end{aligned}$ (4) $(\mathbf{3 2 7 . 8 9})_{10}=(\text { ? })_{B C D}$ $(327.89)_{10}=(001100100111 \cdot 10001001)_{\mathrm{BCD}}$	
2.	(a) Ans.	Attempt any FOUR of the following: Derive AND gate and OR gate using NAND gate only. AND gate using NAND gate only 2 marls OR gate using NAND gate only 2 marks.	16 4M AND Gate 2M OR Gate 2M

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

\begin{tabular}{|c|c|c|}
\hline (b)

Ans. \& \begin{tabular}{l}
For the following logic expressions given below. $\mathrm{Y}=\overline{\mathrm{A}} \cdot \mathrm{B}+\mathrm{A} \cdot \overline{\mathrm{B}}$ Do:

(i) Obtain truth table

(ii) Name the operation performed from the truth table

(iii) Realize this operation using basic gates

(iv) Realize this operation using only NOR gates.

(i) Obtain truth table:

Truth table

(ii) Name the operation performed from the truth table: From truth table, the operation performed is EX-OR.

(iii) Realize this operation using basic gates

(iv) Realize this operation using only NOR gates.

 \&

4M

Each sub question 1M
\end{tabular}

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

	or	
(c) Ans.	Design half subtractor circuit using K-Map. Half subtractor: Half subtractor is a combinatonal circuit with two inputs and two outputs (difference and borrow) Truth Table	$\mathbf{4 M}$
	A B Difference A- B Borrow B	Truth table 1M
	0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0	
	K-map for difference Difference $=\bar{A} B+A \bar{B}$ $=A \oplus B$ K-map for borrow Borrow $=\bar{A} B$	K-map 1M Equation s 1M

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333
(sogic implementation of half subtractor:

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

(d) Ans.	Minimize the following function using K-Maps: $\mathrm{F}=\Sigma \mathrm{m}(\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{1 1}, \mathbf{1 2}, 14,15)$ Realise the expression using basic gates. Kmap $F=\bar{A} \cdot \bar{B}+A C D+A B \bar{D}$	Grouping 1M Expressi on 1M Realisati on 1M
(e) Ans.	Draw the block diagram of ALU IC 74181 and explain function of all pins.	4M

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

Fig: Block diagram of 74181 ALU
The functions of various input, output and control lines are given below:
A and B : 4-bit binary data inputs.
\bar{C}_{n} : Carry input (active-low)
F : 4-bit binary data output.
Block
diagram 2M
\bar{C}_{n+4} : Carry output (active-low)
For subtraction operation, it indicates the sign of the output. Logic 0 indicates positive result and logic 1 indicates negative result expressed in 2's complement form.
$A=B$: Logic 1 on this line indicates $A=B$
G : Carry generate output
P : Carry propagate output
G and P outputs are used when a number of 74181 circuits are used in cascade along with 74182 Look-ahead Carry-generator circuit to make the arithmetic operations faster.
Select input (S): Used to select any operation
Model Control (M): $M=0$ Arithmetic operations
$M=1$ Logic operations

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

	(f) Ans.	Perform following binary operations: (i) 1011011×101 (ii) $1101101+1001$ (i) 1011011×101 (ii) $\mathbf{1 1 0 1 1 0 1}+\mathbf{1 0 0 1}$	4M $2 M$ $2 M$
3.	(a) Ans.	Attempt any FOUR of the following: Design 1:32 demultiplexer using 1:4 demultiplexer.	$\begin{gathered} 16 \\ 4 M \end{gathered}$

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

		Correct diagram 4M
(b) Ans.	Implement following logical expression using basic gates. $\mathbf{Y}=$ $\overline{\mathbf{A}} \overline{\mathbf{B}}+\overline{\mathbf{A C}}+\overline{\mathbf{A}} \mathbf{B}$.	Correct diagram 4M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques
Subject Code:
17333

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

Applying Thevenins theorem at YY

Similarly for digital input 010 and 100 the equivalent voltages are $\mathrm{VR} / 2^{2}$ and VR/2 ${ }^{1}$ respectively. The equivalent resistance is 3Rin each case. So the simplified
Circuitof3bit R-2R ladder DAC is

The analog output voltage for a given digital input is given by
$V_{\text {out }}=-\left(\left(R_{F} / 3 R\right) V_{R} \times b_{0} / 2^{3}+R_{F} / 3 R V_{R} \times b_{1} / 2^{2}+R_{F} / 3 R V_{R} \times b_{2} / 2^{1}\right)$
$=-\left(R_{F} / 3 R\right)\left(V_{R} / 2^{3}\right)\left(2^{2} b_{2}+2^{1} b_{1}+2^{0} b_{0}\right)$
$=-\left(R_{F} / 3 R\right)\left(V_{R} / 2^{3}\right)\left(4 b_{2}+2 b_{1}+b_{0}\right)$

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

(c) Ans.	Describe the function of present and clear terminals in JK flipflop. Write truth table of it. The PRESET and CLEAR inputs of a JK Flip-Flop There are two very important additional inputs in the JK Flip-Flop. - The PRESET input used to directly put a " 1 " in the Q output on the JK Flip-Flop. - The CLEAR input used to directly put a " 0 " in the Q output on the JK Flip-Flop. The PRESET and CLEAR inputs of the JK Flip-Flop are asynchronous, which means that they will have an immediate effect on the Q and Q' outputs regardless of the state of the clock and / or the J and K inputs. The Flip-Flop may or may not have a small bubble in the PRESET or CLEAR inputs which indicate that they are active low. JK Flip Flop Truth Table	4M 2Mfor function of preset and clear

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques
Subject Code:
17333

				Input					2Mfor truth table
		Preset	Clear	CLK	J	K	Q	$\overline{\mathrm{Q}}$	
	Invalid	0	0	X	X	X	1*	1*	
	Preset	0	1	\times	x	X	1	0	
	Clear	1	0	X	X	X	0	1	
	In order for the J and K inputs and the clock to be functional, the CLEAR and PRESET inputs must be at a "High" logic level								
(d) Ans.	Explain 2-bit synchronous counter with truth table and timing diagram. Synchronous Up Counter: In the circuit diagram, the basic Synchronous counter design is shown which is Synchronous up counter. A 2 -bit Synchronous up counter start to count from 0 (00 in binary) and increment or count upwards to 03 (11 in binary) and then start new counting cycle by getting reset. The external clock is directly provided to all J-K Flip-flops at the same time in a parallel way. If we see the circuit, the first flip-flop, FF0 which is the least significant bit in this 2-bit synchronous counter, is connected to a Logic 1 external input via J and K pin. Due to this connection, HIGH logic across the Logic 1 signal, change the state of first flip-flop on every clock pulse. Next stage, the second flip-flop FF1, input pin of J and K is connected across the output of the first Flip-flop. The truth table is as shown								1Mfor diagram 1Mfor explainat ion

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

Clock	Q1	Q0	Decimal Count
1st	0	0	0
2nd	0	1	1
3rd	1	0	2
4th	1	1	3

The timing diagram is as given below
(e) Draw block diagram of PISO shift register and describe its operations.
Ans. As name suggests the input data will enter in parallel that means at a time to all flip flop. And output will get serially. We now can develop an idea for the parallel entry of data into the register. Here the data bits are entered into the flip flops simultaneously, rather than a bit-by-bit basis. Let take an example suppose we have to save

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques
Subject Code: 17333

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques
Subject Code:
17333
(e)
Design 3-bit asynchronous up counter and describe its
operations.
The number of states in 3-bit counter is 8 that require 3 flip-flops and QA,
QB and QC are the output of the flip-flops. The output QA of the least
significant F/F changes for every clock pulse. This can achieved by using
the T-type F/F with TA=1. The output QB makes a transition from $0-1$ or
$1-0$ whenever QA changes from 1 to 0 . Therefore if QA is connected to the
clock input of next T -type F / F FF1 with $\mathrm{TB}=1$, QB goes from $1-0$.
Similarly QC makes a transition whenever QB goes from 1-0 and this is
achieved by connecting QB to the clock input of the most significant FF2
and $\mathrm{TC}=1$.

Operatio n 1M
Ans.
The number of states in 3-bit counter is 8 that require 3 flip-flops and QA, QB and QC are the output of the flip-flops. The output QA of the least significant F / F changes for every clock pulse. This can achieved by using $1-0$ whenever QA changes from 1 to 0 . Therefore if QA is connected to the clock input of next T-type $\mathrm{F} / \mathrm{F} F \mathrm{FF} 1$ with $\mathrm{TB}=1, \mathrm{QB}$ goes from 1-0. Similarly QC makes a transition whenever QB goes from 1-0 and this is and $\mathrm{TC}=1$.

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques
Subject Code:
17333

	(a) Ans.	(ii) Define and draw logical symbol of a demultiplexer. It has only one input, " n " outputs and " m " select inputs. A demuliplexer performs the reverse operation of a multiplexer i.e. it receives one input and distributes it over several outputs. At a time only one output line is selected lines and the input is transmitted to the selected output line. The enable input will enable the demultiplexer. The relation between the n output lines and m select lines as follows: $n=2^{m}$			2M Definitio n 1M Diagram 1M
	(b) Ans.	(i) Differentiate between combinational and sequential logic circuits (2 points).			Any 2 points 1M each
		Sr. No 1	Combinational circuits In combinational circuits, the output variables depends on the combinational of input variables.	Sequential circuits In sequential circuits, the output variables depends upon the present inputs as well as on the past output.	
		2	Memory unit is not required in these circuits.	Memory unit is required in these circuits to store the previous output.	
		3	These circuits are faster in speed because the delay between the input and output is due to the propogation delay.	Sequential circuits are slower than the combinational circuits.	
		4	These are easy to design.	These are complex in designing.	
		5	Ex: Parallel Adder.	Ex: Serial Adder.	
	$\begin{gathered} \hline \text { (b) } \\ \text { Ans. } \end{gathered}$	(ii) State the applications of shift register.			2M

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques
Subject Code:
17333

SUMMER - 2019 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: D	1 Techniques Subject Code:	17333
	resets the binary counter and makes it ready for counting. As the counter resets, output of the D/A converter reduces to zero and thus with positive analog input to the voltage comparator, the output of the comparator goes low, which makes $\mathrm{R}=0$. The start pulse also triggers the monostable multivibrator, which introduces the desired delay in the action of the other circuits. Thus the output of the monostable multivibrator goes high. This makes $S=1$, while R was already made 0 . The RS flip-flop sets and the Y output goes high. The AND gate is enabled \& the counter starts the counting the clock pulses. The output of the counter is fed to n D/A converter which produces an analog output in response to the digital signal as its input. This binary output starts increasing continuously with time. The output of the D/A converter also starts increasing in steps. The analog output is a staircase signal as shown in fig. This D/A output is fed to the reference voltage for the comparator. The staircase signal (i.e. digital output) is compared by the comparator with the analog voltage. So long as the input signal, Vs is greater than the digital output the gate remains enabled and clock pulses are counted by the counter, thus continuously raising the digital output. But as soon as the staircase digital output exceeds the given analog input, the output of the comparator changes from a low to a high level. This makes $\mathrm{R}=1$, while S is at 0 . Thus, the flip-flop resets and Y output goes low. Hence the AND gate is disabled and no clock pulses can now reach the counter. This stops the counting and the binary output of the counter represents the final digital output.	Explanat ion 2M
(c) Ans.	(ii) What are advantages and disadvantages of DAC? For Weighted Resister DAC: Advantages: 1. Simple circuit. 2. Easy calculations Dis-Advantages: 1. The accuracy and stability of this type of DAC depends upon the accuracy of the resistors used. 2. This type of DAC requires a wide range of resistor values. If the no. of digits n per binary word is 8 then the smallest resistor is $2^{0} \mathrm{x}$ $\mathrm{R}=\mathrm{R} \Omega$, while the largest resistance is $2^{7} \mathrm{R}=128 \mathrm{R} \Omega$. Thus the	4M Advantag es 2M Disadvan tages 2M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

SUMMER - 2019 EXAMINATION MODEL ANSWER

Subject: Digital Techniques \quad Subject Code: 17333

| | largest resistor is 128 times the smaller resistor. This proportion will
 be still worse for $\mathrm{n}=12$.
 3. The difficulty to achieve \& maintain accurate ratios over such a
 wide range of resistor values restricts the use of weighted resistor
 DAC for the values of $\mathrm{n}<8$ hence the resolution is poor.
 4. The finite resistance of the switches will disturb the currents
 particularly in the MSB position where the current setting resistors
 are small in value. | |
| :--- | :--- | :--- | :--- |

