

SUMMER – 19 EXAMINATION

Subject Name: Data Structure Model Answer

Subject Code: 17330

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgments on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q .	Sub	Answer	Marking
No.	Q.		Scheme
	N.		
1	Α	Attempt any SIX of the following :	12 M
	a	Define searching. Give its type.	2 M
	Ans	Searching is an operation or a technique that helps finds the place of a given	Definition
		element or value in the list.	: 1M,
			Types :
		Types:	1 M
		Linear Search or Sequential Search	
		Binary Search	
	b	Define a complete binary tree.	2 M
	Ans	A complete binary tree is a binary tree in which every level, except possibly the	Relevant
		last, is completely filled, and all nodes are as far left as possible.	definition
			: 2M
	c	Define following w.r.t. tree:	2 M
		i. tree	
		i. leaf node	
		II. Ical noue	
	Ans	1. Tree : A tree data structure can be defined recursively as a collection of nodes	Each
		(starting at a root node), where each node is a data structure consisting of a	Definition
		value, together with a list of references to nodes (the "children"), with the	: 1M
		constraints that no reference is duplicated, and none points to the root.	

	2. Leaf node: A node having no child or of degree zero is called a terminal node or leaf node.	
d	Give classification of data structure.	2 M
Ans	Data Structure Primitive Int Float Char Array List File File Char Stack Queue Graph Tree	Relevant answer : 2M
e	Define following w.r.t. tree: i. node ii. arcs	2 M
Ans	Node: A tree is a collection of entities called nodes. Nodes are connected by edges. Each node contains a value or data, and it may or may not have a child node.Arcs: A (rooted) tree consists of a set of nodes (or vertices) and a set of arcs (or edges). Each arc links a parent node to one of the parent's children.	Each definition : 1M
f	Write polish notations.	2 M
Ans	 Infix Notation Prefix (Polish) Notation Postfix (Reverse-Polish) Notation 	Each : 1M
g	Explain space complexity with example.	2 M
Ans	<pre>Space complexity: Space complexity of a program/algorithm is the amount of memory that it needs to run to completion. The space needed by the program is the sum of the following components:- Example: - additional space required when function uses recursion. void main() { int i,,n,sum ,x; sum=0; printf("\n enter no of data to be added"); scanf("%d",&n); for(i=1;i<=n;i++) { }</pre>	Definition : 1M, Example : 1M

h Ans	<pre>scanf("%d",&x); sum=sum+x; } printf("\n sum =%d", sum); } Space required to store the variables i,,n,sum and x=2+2+2+2=8 (int requires 2 bytes of memory space) Write Linear search algorithm. Algorithm:</pre>	2 M Relevant
1115	Linear Search (Array A, Value x)	algorithm : 2M
	Step 1: Set i to 1	. 2111
	Step 2: if $i > n$ then go to step 7	
	Step 3: if $A[i] = x$ then go to step 6	
	Step 4: Set i to $i + 1$	
	Step 5: Go to Step 2	
	Step 6: Print Element x Found at index i and go to step 8	
	Step 7: Print element not found	
	Step 8: Exit	
B	Attempt any TWO :	8 M
a	Explain 'Queue Full' and 'Queue Empty' condition with suitable example.	4 M
Ans	Queue full: A queue is full when its rear pointer points to max -1 position. Max is maximum number of elements in a queue. If rear pointer is not equal to max-1 then a new element can be added to a queue	Explanatio n : 2M, Example : 2M
	Example:-0123ABCD \uparrow \uparrow \uparrow FrontRear	
	Queue empty: A queue is empty when its front pointer points to -1 position. When front pointer is -1 then one cannot delete any data from a queue.	

	Example:	
	Front Rear	
b	State the need of data structure. Write the operations performed using data structure.	4 M
Ans	 Need of data structure: Data structures are an important way of organizing information or data in a computer. It has a different ways of storing & organizing data in a computer. It helps to store data in logical manner. It allows collection of data to grow & shrink dynamically over time & to organize the information so that one can access it using efficient algorithms. Specific data structures are essential ingredients of many efficient algorithms, & they make possible management of huge amount of data, such as large collections of databases. Operations perform on data structure: Insertion Searching Sorting Traversing Merging 	Need : 2M, Operation s : 2M
C	Describe binary search algorithm. Give example to search an element using binary search.	4 M
Ans	 Binary search algorithm locates the position of an element in a sorted array. Binary search works by comparing an input value to the middle element of the array. 	Descriptio n : 2M, Example : 2M
	3. The comparison determines whether the element equals the input, less than the input or greater.4. When the middle element being compared to equals the input the search stops and typically returns the position of the element displaying search is	

successful. 5. If the middle element is not equal to the input then a comparison is made to determine whether the input is less than or greater than the middle element. 6. Accordingly given input array is divided into two sub arrays, lower subarray containing elements less than the middle element and upper subarray containing elements greater than the middle element. 7. This process continues from step 2-6 till either the input value is found or the search is unsuccessful. **Searching Element in Given List:** List: 23, 12, 5, 29, 10, 65, 55, 70 Pre-condition for Binary search is array elements must be in ascending order. The given list is not sorted. Sorted List A= {5, 10, 12, 23, 29, 55, 65, 70} Search element (k) = 65i. Low=0, high=7 Mid = (0+7)/2 = 3A[mid] = a[3] = 2365>23 k > a [mid]ii. Low=mid+1, High=7 Mid = (4+7)/2=5A[mid] = a[5] = 2965>29 iii. Low=6, high=7 Mid = (6+7)/2 = 6A[mid] = a[6] = 65A[mid] = kTherefore key element is found at 6th position, no. of comparison required = 3.

	Attempt any FOUR :	16 M
a	What is collision resolution techniques? State its types.	4 M
Ans	Collision Resolution Techniques are the techniques used for resolving or handling the collision.	Definition : 2M, Types :
	Types:	2M
	 Separate Chaining Open Addressing Linear probing Quadratic probing Double hashing 	
b	Draw tree structure for following expression:	4 M
	$[3A + 7B] - [(6D - 4E)^{6} + C]$	
Ans	$[3A + 7B] - [(6D - 4E)^{6} + C]$	Correct diagram : 4M
	3 A G B Q 6	
c	Draw binary search tree using following elements:	4 M
	53,40,7,15,25,3,35,100,10,82,70,28	

Ans		Correct diagram : 4M							
d	Describe the following operations on single linked list:	4 M							
	i. Inserting a new node in a linked listii. Deleting a new node from a linked list								
Ans	Inserting node at the beginning:	For any one type							
	1. Create a New Node with two fields as "Data" and "Next".	from							
	2. Store information (data) into "Data Field".	insertion and							
	3. Store address from start node (first node address) in its "Next field".	deletion : 2M Any other							

	4. Make the new node as first node by storing its address start pointer.	relevant
	Inserting node at the end:	descriptio n can be
	1. Create a New Node with two fields as "Data" and "Next".	considered
	2. Store information (data) into "Data Field".	·
	3. Store NULL value in "Next field".	
	4. Traverse the list up to the last node (temp).	
	5. Store address of New Node inside "Next" field of temp node to make the New Node last node in the list.	
	Inserting node after a position:	
	1. Traverse the Linked list up to position-1 nodes.	
	2. Once all the position-1 nodes are traversed, allocate memory and the given	
	data to the new node.	
	3. Point the next pointer of the new node to the next of current node.	
	4. Point the next pointer of current node to the new node.	
	Delete a node from the beginning:	
	1. Create temporary node 'temp'.	
	2. Assign address of first node to 'temp' pointer.	
	3. Store address of second node (temp->next) in header pointer 'start'.	
	4. Free temp.	
	Delete a node from in between position:	
	1. Create temporary node 'temp', 'q'.	
	2. Assign address of first node to 'temp' pointer.	
	3. Traverse list up to previous node of node to be deleted.	
	4. Mark the node to be deleted 'q'.	
	5. Store address from node 'q' in address field of 'temp' node	
	(Temp->next=q->next).	
	6. Free q	
1		

	Delete a node from the end:							
	1. Create temporary node 'temp','q'.							
	2. Assign address of first node to 'temp' pointer.							
	3. Traverse list up to second last node.							
	4. Mark last node's address in node 'q'.							
	5. Store NULL value in address field of second last node (temp->next).							
	6. Free q							
e	Write any four applications of Queue.	4 M						
An	 scheduling etc. 2. In real life scenario, Call Center phone systems uses Queues to hold people calling them in an order, until a service representative is free. 3. Handling of interrupts in real-time systems. 4. Queue of packets in data communication. 	Each : 1M						
f	Describe PUSH and POP operation on stack.	4 M						
An	push () : This operation is used to insert an element in a stack. Inserting an element in stack requires increment of stack top by one position and then store data element in it.	Each : 2M						
	Push B							
	$Max=3 \qquad Max=3$ $2 \qquad 2 \qquad 1 \qquad 3 \qquad 4 \qquad ST \qquad 0 \qquad A \qquad ST $							
	pop(): This operation is used to remove an element from stack. Removing an element from stack requires decrement of stack top by one position.							

		Before Pop After Pop					
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
3		Attempt any FOUR :					
	a	Sort following elements by Radix sort algorithm: 87, 3, 234, 729, 359, 45, 8, 379, 320, 422.		4 M			

Itera	How 1	. 1	1 -14	is par	s, an	ange	aland	4,72	cordin	y to
S	white the second	s- In	nan			()	Alem	noto rac	()
		M	ntts p	lace		The second se		7	8	19
	0	1	2	3	4	5	6	087	0	
087				003				1007		
003				005	234					
234	-			-						729
359										350
045			1			045				-
008				1					008	
				1	-					370
379	0.00			-						
320	320	1 million	1							
100			122							
422 Qu tenatio	Hout:	- 320 Appl	422), 422 ying 1	-,003	,234,0 t of	145,0 first pa	87,00 100 ao tens p	an i place .	9,35°	1,37°
0	n 2:-	Appl Secon	ying a	putpu 125 ra	t of a	first pa	no ao teno p	an n place .	9,35° nput	1,37° for
Qi enatio	1 2:- 0	- 320 Øppl Secon	ying a ving a ving po	outpu 125 a 3	,234,0 t -of - ccondi 4	145,0 first party 19 19 5	87,00 pp ros tens p 6	an n place .	npia	Dar
0	1 2:- 0	Øppl Secon	ying A ying A ying A ying A po 2 320	autpu 123 a 3	t of a	first pa	no ao teno p	an n place .	npia	Dar
Or enation 320 422	(tput: n 2:- ∼	Appl Secon	ying a ving a ving po	autpu 123 a 3	t of a	first pa	no ao teno p	an n place .	npia	Dar
Or enatio 320 422	ttput: n 2:- ~~	Øppl Secon	ying A ying A ying A ying A po 2 320	autpu 123 a 3	t of a	first pa	no ao teno p	an n place .	npia	Dar
Or enatio 320 422	uput: n 2:- 0 003	Øppl Secon	ying A ying A ying A ying A po 2 320	autpu 123 a 3	t -of - ccondi	first pa	no ao teno p	an n place .	npia	Dar
Or enatio 320 422 003 234	12:- 2:- 0 003	Øppl Secon	ying A ying A ying A ying A po 2 320	21 23	t -of - ccondi	fist party to	no ao teno p	an n place .	npia	Dar
Or enatio 320 422 003 234 04-5	12:- 0 0 003	Øppl Secon	ying A ying A ying A ying A po 2 320	21 23	t of - ccondi	fist party to	no ao teno p	an n place .	npia	Dar
Or enatio 320 422 003 234 04.5 087	12:- 0 003	Øppl Secon	ying A ying A ying A ying A po 2 320	21 23	t of - ccondi	fist party to	no ao teno p	an n place .	E	Dar
Or enation 320 422 003 234 045 087 008	12:- 0 0 003	Øppl Secon	2 320 422	234	t of - ccondi	fist party to	no ao teno p	an n place .	E	9
Or enation 320 422 003 234 04-5 087 008 729	12:- 0 003	Øppl Secon	ying A ying A ying A ying A po 2 320	234	t of - ccondi	first pa ing to . 5	no ao teno p	an n place .	E	9
Or enation 320 422 003 234 04-5 087 008	12:- 0 003	Øppl Secon	2 320 422	234	t of - ccondi	fist party to	no ao teno p	an n place .	8 087	Dar

	10	~	~ thi	nd p	ting of	iccord	ing -t	0 , 10	mare	1-1						
			0	1	2	3	4	5	6	7	8	9				
	0	03	003										1			
	0	08	008													
	6	20		_		320						-	-			
		+22					422						-			
		129								729			-			
	2	234	3		234											
	C	45	045													
	3	359				359	Train 1									
		,79				379										
	C	087	087													
b	Write p	_	am t	o se	arch	an el	lemer	nt in	an	array	. Dis	play	posi	tion (of	4 M
b Ans	element. #include	<stdi< th=""><th>o.h></th><th>o sea</th><th>arch</th><th>an el</th><th>lemer</th><th>nt in</th><th>an</th><th>array</th><th>. Dis</th><th>play</th><th>posi</th><th>tion o</th><th></th><th>Correct</th></stdi<>	o.h>	o sea	arch	an el	lemer	nt in	an	array	. Dis	play	posi	tion o		Correct
	element. #include #include	<stdi <con< th=""><th>o.h></th><th>o se</th><th>arch</th><th>an el</th><th>lemer</th><th>nt in</th><th>an</th><th>array</th><th>. Dis</th><th>play</th><th>posi</th><th>tion o</th><th></th><th>Correct logic : 21</th></con<></stdi 	o.h>	o se	arch	an el	lemer	nt in	an	array	. Dis	play	posi	tion o		Correct logic : 21
	element. #include	<stdi <con< th=""><th>o.h></th><th>o sea</th><th>arch</th><th>an el</th><th>lemer</th><th>nt in</th><th>an</th><th>array.</th><th>. Dis</th><th>play</th><th>posi</th><th>tion (</th><th></th><th>Correct logic : 21 Syntax</th></con<></stdi 	o.h>	o sea	arch	an el	lemer	nt in	an	array.	. Dis	play	posi	tion (Correct logic : 21 Syntax
	element. #include- #include- void mai {	<stdi <con n()</con </stdi 	o.h> io.h>						an	array.	. Dis	play	posi	tion (Correct logic : 21
	element. #include- woid mai { int x,k,ar clrscr();	<stdi <con n() r[100</con </stdi 	o.h> io.h> 0],i,j,ł	nigh,l	ow,m	id,fou	nd=0	;	an	array.	. Dis	play	posi	tion (Correct logic : 21 Syntax
	element. #include- #include- void main { int x,k,ar clrscr(); printf("\n	<stdi <con n() r[100</con </stdi 	o.h> io.h> 0],i,j,ł	nigh,l	ow,m	id,fou	nd=0	;	an	array.	. Dis	play	posi	tion (Correct logic : 21 Syntax
	element. #include- #include- void main { int x,k,ar clrscr(); printf("\n scanf("%	<stdi <con n() r[100 nEnte d",&</con </stdi 	0.h> io.h> 0],i,j,ł er nun cx);	nigh,l	ow,m	id,fou	nd=0	;	an	array.	. Dis	play	posi	tion (Correct logic : 21 Syntax
	element. #include- #include- void main { int x,k,ar clrscr(); printf("\n	<stdi <con n() r[100 nEnte d",&</con </stdi 	0.h> io.h> 0],i,j,ł er nun cx);	nigh,l	ow,m	id,fou	nd=0	;	an	array.	. Dis	play	posi	tion (Correct logic : 21 Syntax
	element. #include- #include- void mair { int x,k,ar clrscr(); printf("\n scanf("% for(i=0;i- {	<stdi <con n() r[100 hEnte d",& <x;i+< td=""><td>o.h> io.h> 0],i,j,ł er nun cx); -+)</td><td>nigh,l</td><td>ow,m of arra</td><td>id,fou y elei</td><td>ind=0 ments</td><td>; :");</td><td>an</td><td>array.</td><td>Dis</td><td>play</td><td>posi</td><td>tion (</td><td></td><td>Correct logic : 21 Syntax</td></x;i+<></con </stdi 	o.h> io.h> 0],i,j,ł er nun cx); -+)	nigh,l	ow,m of arra	id,fou y elei	ind=0 ments	; :");	an	array.	Dis	play	posi	tion (Correct logic : 21 Syntax
	element. #include- #include- void main { int x,k,ar clrscr(); printf("\n scanf("%	<stdi <con n() r[100 hEnte d",& <x;i+< td=""><td>o.h> io.h> 0],i,j,ł er nun cx); -+) eleme</td><td>nigh,l nber o</td><td>ow,m of arra</td><td>id,fou y elei</td><td>ind=0 ments</td><td>; :");</td><td>an</td><td>array</td><td>Dis</td><td>play</td><td>posi</td><td>tion (</td><td></td><td>Correct logic : 21 Syntax</td></x;i+<></con </stdi 	o.h> io.h> 0],i,j,ł er nun cx); -+) eleme	nigh,l nber o	ow,m of arra	id,fou y elei	ind=0 ments	; :");	an	array	Dis	play	posi	tion (Correct logic : 21 Syntax
	<pre>element. #include- #include- void mair { int x,k,ar clrscr(); printf("\n scanf("% for(i=0;i- { printf("E scanf("% } } }</pre>	<stdi <con n() r[100 bEnte d",& <x;i+ nter d",&</x;i+ </con </stdi 	o.h> io.h> 0],i,j,ł er nun cx); -+) eleme carr[i]	nigh,l nber o	ow,m of arra	id,fou y elei	ind=0 ments	; :");	an	array.	. Dis	play	posi	tion (Correct logic : 21 Syntax
	element. #include- #include- void main { int x,k,ar clrscr(); printf("\n scanf("% for(i=0;i- { printf("E	<stdi <con n() r[100 bEnte d",& <x;i+ nter d",&</x;i+ </con </stdi 	o.h> io.h> 0],i,j,ł er nun cx); -+) eleme carr[i]	nigh,l nber o	ow,m of arra	id,fou y elei	ind=0 ments	; :");	an	array	. Dis	play	posi	tion d		Correct logic : 21 Syntax
	<pre>element. #include- #include- void mair { int x,k,ar clrscr(); printf("\n scanf("% for(i=0;i- { printf("E scanf("% } for(i=0;i- { } for(i=0;i- { } for(i=0;i- { } } for(i=0;i- { } } for(i=0;i- { } } for(i=0;i- { } for(i=0;i- { } for(i=0;i-] for(i=0;i- { } for(i=0;i-] for(i=0;i-]</pre>	<stdi <con n() r[100 Ente d",& <x;i+ nter (d",& <x;i+< td=""><td>o.h> io.h> 0],i,j,ł er nun cx); -+) eleme carr[i] -+)</td><td>nigh,l nber o</td><td>ow,m of arra</td><td>id,fou y elei</td><td>ind=0 ments</td><td>; :");</td><td>an</td><td>array.</td><td>. Dis</td><td>play</td><td>posi</td><td>tion (</td><td></td><td>Correct logic : 21 Syntax</td></x;i+<></x;i+ </con </stdi 	o.h> io.h> 0],i,j,ł er nun cx); -+) eleme carr[i] -+)	nigh,l nber o	ow,m of arra	id,fou y elei	ind=0 ments	; :");	an	array.	. Dis	play	posi	tion (Correct logic : 21 Syntax
	<pre>element. #include- #include- void mair { int x,k,ar clrscr(); printf("\n scanf("% for(i=0;i- { printf("E scanf("% } } }</pre>	<stdi <con n() r[100 Ente d",& <x;i+ nter (d",& <x;i+< td=""><td>o.h> io.h> 0],i,j,ł er nun cx); -+) eleme carr[i] -+)</td><td>nigh,l nber o</td><td>ow,m of arra</td><td>id,fou y elei</td><td>ind=0 ments</td><td>; :");</td><td>an</td><td>array</td><td>Dis</td><td>play</td><td>posi</td><td>tion (</td><td></td><td>Correct logic : 21 Syntax</td></x;i+<></x;i+ </con </stdi 	o.h> io.h> 0],i,j,ł er nun cx); -+) eleme carr[i] -+)	nigh,l nber o	ow,m of arra	id,fou y elei	ind=0 ments	; :");	an	array	Dis	play	posi	tion (Correct logic : 21 Syntax
	<pre>element. #include- #include- void mair { int x,k,ar clrscr(); printf("\n scanf("% for(i=0;i- { printf("E scanf("% } for(i=0;i- { } for(i=0;i- { } for(i=0;i- { } } for(i=0;i- { } } for(i=0;i- { } for(i=0;i-] } for(i=0;i- { } for(i=0;i- { } for(i=0;i- { } for(i=0;i-] for(i=0;i-]</pre>	<stdi <con n() r[100 DEnte d",& <x;i+ nter (d",& <x;i+< td=""><td>o.h> io.h> io.h> 0],i,j,f er nun cx); -+) eleme carr[i] -+) ;j++)</td><td>nigh,l nber o</td><td>ow,m of arra</td><td>id,fou y elei</td><td>ind=0 ments</td><td>; :");</td><td>an</td><td>array</td><td>Dis</td><td>play</td><td>posi</td><td>tion (</td><td></td><td>Correct logic : 21 Syntax</td></x;i+<></x;i+ </con </stdi 	o.h> io.h> io.h> 0],i,j,f er nun cx); -+) eleme carr[i] -+) ;j++)	nigh,l nber o	ow,m of arra	id,fou y elei	ind=0 ments	; :");	an	array	Dis	play	posi	tion (Correct logic : 21 Syntax
	<pre>element. #include- #include- woid main { int x,k,ar clrscr(); printf("\m scanf("% for(i=0;i-4 { printf("E scanf("% } for(i=0;i-4 { for(j=0;j-4 { } for(j=0;j-4 { } } }</pre>	<stdi <con n() r[100 DEnte d",& <x;i+ nter (d",& <x;i+< td=""><td>o.h> io.h> io.h> 0],i,j,f er nun cx); -+) eleme carr[i] -+) ;j++)</td><td>nigh,l nber o</td><td>ow,m of arra</td><td>id,fou y elei</td><td>ind=0 ments</td><td>; :");</td><td>an</td><td>array</td><td>. Dis</td><td>play</td><td>posi</td><td>tion (</td><td></td><td>Correct logic : 21 Syntax</td></x;i+<></x;i+ </con </stdi 	o.h> io.h> io.h> 0],i,j,f er nun cx); -+) eleme carr[i] -+) ;j++)	nigh,l nber o	ow,m of arra	id,fou y elei	ind=0 ments	; :");	an	array	. Dis	play	posi	tion (Correct logic : 21 Syntax


```
arr[j]=arr[j+1];
arr[j+1]=t;
}
}
}
printf("\n Enter element to be searched:");
scanf("%d",&k);
low=0;
high=x-1;
while(low<=high)
{
mid=(low+high)/2;
if(arr[mid]==k)
{
printf("\n Element %d found at position %d",k,mid+1);
found=1;
break;
}
else
{
if(arr[mid]>k)
high=mid-1;
else
low=mid+1;
}
}
if(found!=1)
{
printf("Not found");
}
getch();
}
Output:
Enter number of array elements:10
Enter element number 1: 10
Enter element number 2: 0
Enter element number 3: 3
Enter element number 4: 2
Enter element number 5: 5
Enter element number 6: 6
Enter element number 7: 4
Enter element number 8: 1
Enter element number 9: 8
```


	Enter element number 10:7	
	Enter element to be searched: 2	
	Element 2 found at position 3	
0		4 M
A	 Queue is a linear data structure in which the insertion and deletion operations are performed at two different ends. In a queue data structure, adding and removing of elements are performed at two different positions. The insertion is performed at one end and deletion is performed at other end. In a queue data structure, the insertion operation is performed at a position which is known as 'rear' and the deletion operation is performed at a position which is known as 'front'. In queue data structure, the insertion and deletion operations are performed at a position which is known as 'front'. In queue data structure, the insertion and deletion operations are performed based on FIFO (First In First Out) principle. 	Correct explanatio n : 4M
	Front Rear	
d	Explain Binary tree traversal. Write algorithm for following : (i) In-order traversal (ii) Pre-order traversal (iii) Post-order traversal	4 M
A	A binary tree is a tree in which each non-leaf node from the tree has maximum two child nodes. Each node can have one child, two child nodes or no child node in a binary tree. A child node on a left side of parent node is called as left child node. A child node on a right side of parent node is called as right child node. Often we wish to process a binary tree by "visiting" each of its nodes, each time performing a specific action such as printing the contents of the node. Any process for visiting all of the nodes in some order is called a traversal. Any traversal that lists every node in the tree exactly once is called an enumeration of the tree's nodes. In-order traversal: The algorithm works by: 1. Traversing the left sub-tree 2. Visiting the root node, and finally	Explanatio n of Binary tree traversal 1M Algorithm of each traversal 1M

	2 Traversing the right sub tree	1
	3. Traversing the right sub-tree. OR	
	INORDER(ROOT)	
	Step 1: Repeat Steps 2 to 4 while (ROOT != NULL)	
	Step 2: INORDER(ROOT-> LEFT)	
	Step 3: Write ROOT->DATA	
	Step 4: INORDER(ROOT-> RIGHT) [END OF LOOP]	
	Step 5: END	
	Pre-order traversal:	
	The algorithm works by:	
	1. Visiting the root node,	
	2. Traversing the left sub-tree, and finally	
	3. Traversing the right sub-tree.	
	OR	
	Step 1: Repeat Steps 2 to 4 while TREE != NULL	
	Step 1: Repeat Steps 2 to 4 while TREE != NOLL Step 2: Write TREE DATA	
	Step 2: WHE TREE DATA Step 3: PREORDER(TREE LEFT)	
	Step 4: PREORDER(TREE RIGHT)	
	[END OF LOOP]	
	Step 5: END	
	Post-order traversal:	
	The algorithm works by:	
	1. Traversing the left sub-tree,	
	2. Traversing the right sub-tree, and finally	
	3. Visiting the root node.	
	OR	
	Step 1: Repeat Steps 2 to 4 while TREE != NULL	
	Step 2: POSTORDER(TREE LEFT)	
	Step 3: POSTORDER(TREE RIGHT)	
	Step 4: Write TREE DATA	
	[END OF LOOP]	
	Step 5: END	
e	Write an algorithm to search an element from single linked list.	4 M
Ans	Step 1: [INITIALIZE] SET PTR = START	Correct
	Step 2: Repeat Step 3 while PTR != NULL	algorithm
	Step 3: IF VAL = PTR \rightarrow DATA	: 4M
	SET POS = PTR	
	Go To Step 5	
	ELSE	
	SET $PTR = PTR \rightarrow NEXT$	
	[END OF IF]	
	[END OF LOOP]	
I		•

		Step 4: SET POS = NULL Step 5: EXIT	
	f	Find out prefix equivalent of following expressions : (i) [(A + B) + C] * D (ii) A + [(B * C) + D]	4 M
	Ans	(3)f)(i) [(A+B)+c]*D $[(+AB)+c]*D$ $[(+AB)+c]*D$ $[(+AB)+c]*D$ $[(+X+C)]*D$ $[(+X+C)]*D$ $[(+X+C)]*D$ $[(+X+C)]*D$ $[(+Y+D)]$ $[(Y+D)]$ $[(Y+D)]$ $[(Y+D)]$ $[(Y+D)]$ $[(Y+D)]$ $[(Y+D)]$ $[(+X+D)]$ $A+[(+BC)+D]$ $A+[(+BC)+D]$ $A+[(+XD)]$ $A+[+XD]$ $A+[+XD]$ $A+Y$ (HX) $($	Correct output : 2M each
4			16 M
4		Attempt any FOUR :	16 M
	a Ans	Explain different approaches for designing an algorithm. Approaches to design an algorithm: 1. Top-down approach 2. Bottom-up	4 M For Top
		 Approaches to design an argorithm: 1. Top-down approach 2. Bottom-up approach Top-down approach: a. A top-down design approach starts by dividing complex algorithm into one or more modules or subsystems b. Each subsystem is then refined in yet greater detail, sometimes in many additional sub system levels, until the entire specification is reduced to base elements. c. Top-down design method is a form stepwise refinement where we begin with the Top most modules and incrementally add modules that it calls. 2. Bottom-up approach: a. In this approach the individual base elements of the system are first specified in detail. b. These elements are then linked together to form larger subsystems, which then in turn are clubbed in many levels, until a complete top-level system is 	For Top down Approach Explanatio n 2M For Bottom Up Approach explanatio n 2M

	formed.	
	Top-down approach Module 1 Module 2 Module 1 Each module can be divided into one or more sub modules	
b	Write a program to find factorial of a number using recursion.	4 M
Ans	#include <stdio.h></stdio.h>	Correct
	#include <conio.h></conio.h>	logic : 2M
	intrec(int x);	Syntax 2
	void main()	Μ
	{	
	inta, fact;	
	printf("Enter a number to calculate its factorial:");	
	scanf("%d", &a);	
	fact = rec(a);	
	printf("Factorial of $%d = %d n$ ", fact);	
	int rec(int x)	
	int f;	
	if(x = 1)	
	return 1;	
	else	
	f = x * rec(x-1);	
	return(f);	
	}	
	Output:	
	Enter a number to calculate its factorial: 5	
	Factorial of $5 = 120$	
с	Define Queue. Write an algorithm to delete an element from a queue.	4 M
Ans	A queue is an ordered collection of items from which items may be deleted at	Definition
	one end (called the front of the queue) and into which items may be inserted at	: 2M,
	the other end (called the rear of the queue). A queue is logically a First in First	Algorithm
	Out (FIFO) type of list. Queue means a line, for example, at railway reservation	: 2M
	booth; we have to get into the reservation queue.	

	Algorithm to delete an element from a queue: Step 1: IF FRONT = -1 OR FRONT > REAR Write UNDERFLOW ELSE SET VAL = QUEUE[FRONT] SET FRONT = FRONT+1 [END OF IF] Step 2: EXIT	
d	Write an algorithm to insert and delete element from circular linked list.	4 M
Ans	Inserting element in circular linked list: Step 1: IF AVAIL = NULL Write OVERFLOW Go to Step 11 [END OF IF] Step 2: SET NEW_NODE = AVAIL Step 3: SET AVAIL = AVAIL -> NEXT Step 4: SET NEW_NODE -> DATA = VAL Step 5: SET PTR = START Step 6: Repeat Step 7 while PTR NEXT != START Step 6: Repeat Step 7 while PTR NEXT != START Step 7: PTR = PTR -> NEXT [END OF LOOP] Step 8: SET NEW_NODE -> NEXT = START Step 9: SET PTR -> NEXT = NEW_NODE Step 10: SET START = NEW_NODE Step 11: EXIT Deleting element from circular linked list: Step 1: IF START = NULL Write UNDERFLOW Go to Step 8 [END OF IF] Step 2: SET PTR = START Step 3: Repeat Step 4 while PTR -> NEXT != START Step 4: SET PTR = PTR -> NEXT [END OF LOOP] Step 5: SET PTR -> NEXT = START -> NEXT Step 7: SET START = PTR -> NEXT Step 7: SET START = PTR -> NEXT Step 7: SET START = PTR -> NEXT Step 8: EXIT	Insertion : 2M, Deletion : 2M OR Any other correct algorithm can be considered

e	Explain linked list as an abstract data structure.	4 M
Ans	Linked List: A linked list is a linear data structure, in which the elements are not stored at contiguous memory locations. The elements in a linked list are linked using pointers.	Diagram: 1 M, Explanatio n: 3 M
	$A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow NULL$ Data Next	
	Operations performed on Linked List are:	
	Create () – Creation of node Destroy () – Deletion of node Add (element) – Adding element in the list	
	Remove (element) – Removing element from the list Traverse () – Changing the position of the element from the list Is Empty () – Checking if the node is empty.	
 f	Search(element) – Searching for the intended element Describe general tree and binary tree.	4 M
Ans	General Tree:	General
	 General trees are data structures that store elements hierarchically. The top node of a tree is the root node and each node, except the root, has a parent. 	tree : 2M, Binary tree : 2M
	• A node in a general tree (except the leaf nodes) may have zero or more sub- trees.	
	 General trees which have 3 sub-trees per node are called ternary trees. However, the number of sub-trees for any node may be variable. For example, a node can have 1 sub-tree, whereas some other node can have 3 sub-trees. 	
	Binary Tree:	
	 A binary tree is a data structure that is defined as a collection of elements called nodes. In a binary tree, the topmost element is called the root node, and each node has 0, 1, or at the most 2 children. A node that has zero children is called a leaf node or a terminal node. Every node contains a data element, a left pointer which points to the left child, and a right pointer which points to the right child. The root element is pointed by a 'root' pointer. 	

		• If root = NULL, then it means the tree is empty.	
		···· ··· ··· ··· ··· ··· ··· ··· ··· ·	
5		Attempt any TWO :	16 M
-	a	Write an algorithm for insertion sort and arrange given numbers in	8 M
		ascending order using insertion sort :9, 15, 5, 20, 10	
	Ans	Algorithm for insertion sort:	Correct
		Step 1:Start	algorithm
		Step 2 : Input array elements Step 3 : Compare 1 st index element with 0 th index element. If 0 th element is	: 4M, Sorting
		greater than 1^{st} element then store 1^{st} element in temporary variable and shift 0^{th}	steps: 4M
		element to its right by one and then insert temp variable data into 0 th index	Note: Any
		position.	correct
		Step 4 : Compare 2^{nd} index element with 0^{th} index element. If 0^{th} element is	logical
		greater than 2^{nd} element then store 2^{nd} element in temporary variable and shift 1^{st} and 0^{th} elements to their right by one and then insert temp variable data into	sequence
		0^{th} index position. Then compare 2^{nd} index element with 1^{st} index element and	of steps shall be
		if required perform shift insert operation.	considered
		Step 5: Continue the process of comparison of next index position elements	as an
		with all numbers stored before it in an array and if required perform shift insert	algorithm
		operation. If an array contains N number of elements then this procedure is	
		repeated for N-1 times to get sorted list. step 6:stop	
		Sorting:-	
		Input list: 9,15,5,20,10	
		step 1 9 15 5 20 10	
		9 15 5 20 10 9 < 15 No change	
		Step 2	
		9/15/5/20/10/	
		2 15 5 20 10	
		5<9	
		5 9 15 20 . 10	
		9 <15 No change	
			ſ

	Infix expression	Read chara cter	Stack contents	Postfix expression	
	(A+B)*D+E/(F+A*D)+C	((-	
	A+B)*D+E/(F+A*D)+C	А	(Α	
	+B)*D+E/(F+A*D)+C	+	(+	Α	
	B)*D+E/(F+A*D)+C	В	(+	AB	
)*D+E/(F+A*D)+C)		AB+	
	*D+E/(F+A*D)+C	*	*	AB+	
	D+E/(F+A*D)+C	D	*	AB+D	
	+E/(F+A*D)+C	+	+	AB+D*	
	E/(F+A*D)+C	Е	+	AB+D*E	
	/(F+A*D)+C	/	+/	AB+D*E	
	(F+A*D)+C	(+/(AB+D*E	
	F+A*D)+C	F	+/(AB+D*EF	
	+A*D)+C	+	+/(+	AB+D*EF	
	A*D)+C	А	+/(+	AB+D*EFA	
	*D)+C	*	+/(+*	AB+D*EFA	
	D)+C	D	+/(+*	AB+D*EFAD	
)+C)	+/	AB+D*EFAD*+	
	+C	+	+	AB+D*EFAD*+/+	
	С	С	+	AB+D*EFAD*+/+C	
				AB+D*EFAD*+/+C+	
		<u> </u>	1		
c	Explain BFS with suitable e	xample.			8 M
Ans	Algorithm for BFS:				Explanatio
	Step 1. Initialize all nodes to r				n
	Step 2. Insert starting node in	a queue	and change i	its state to waiting state.	algorithm

		Step 4 – Remove front element G and change its states to visit. Find its adjacent nodes and insert them into queue if their state is ready. E is already visited. Front = 4 queue = K, E, G, D Rear = 4 origin = O, K, K, E Step 5 - Remove front element D and change its states to visited. Find its adjacent nodes and insert them into queue if their state is ready. Node D does not have any adjacent node. Path between K to D is K -> E -> D	
6		Attempt any TWO :	16 M
~	a	Describe the process of pre-order traversal and post-order traversal of a binary tree with suitable example.	8 M
	Ans	Proorder traversal: - In preorder traversal method, first visit root element, then visit left sub tree and then visit right sub tree. It uses recursive function call to perform preorder traversal while visiting left and right tree. Procedure:- Step 1: Visit root node Step 2: Visit left sub tree in preorder Step 3: Visit right sub tree in preorder Step 3: Visit right sub tree in preorder Postorder traversal:-In postorder traversal method, first visit process left sub tree, then visit right sub tree and then visit the root element. It uses recursive function call to perform postorder traversal while visiting left and right tree. Procedure:- Step 1: Visit left sub tree in postorder Step 1: Visit left sub tree in postorder 	Each traversal- descriptio n : 2M, Example : 2M

n sequential a e. ential represent y of size V x V is bit matrix as in re is an edge fromosion vertex i to always symme and representat s two columns t vertices of ea intation is done. elds, one is the is used to point le:	ntation: It is / where V is it contains or om vertex i t vertex j or v etric. tion: It is rep as vertex na ach vertex in . Each node to e data, secon	b represented the number aly two value to vertex j. V vice versa. A presented wi me and adja a graph are from a grap ad is pointe	d using adja of vertices ies i.e. 1 and Value 0 indi Adjacency n ith adjacenc acent vertic e. With the oh is represe	cency Matrix in a graph. I d 0.Value 1 i cates that the natrix for un y list. Adjace es. It shows help this lise ented as a no	x. It is a It is also ndicates ere is no idirected ency list who all st linked ode with	8 M Each representa tion- explanatio n : 2M, Example : 2M
y of size V x V s bit matrix as is re is an edge fro om vertex i to s always symme red representat s two columns t vertices of ea ntation is done. elds, one is the is used to point	 <i>i</i> where V is it contains or vertex i t vertex j or vertex j or vertex. tion: It is repas vertex national vertex in the vertex. 	the number nly two value to vertex j. V vice versa. A presented wi ame and adja a graph are from a grap nd is pointe	th adjacence acent vertices acent vertice with the bh is represe	in a graph. I d 0.Value 1 i cates that the natrix for un y list. Adjace es. It shows help this lis ented as a no	It is also ndicates ere is no idirected ency list who all st linked ode with	representa tion- explanatio n : 2M, Example :
s two columns t vertices of ea ntation is done. elds, one is the is used to point	as vertex na ach vertex in . Each node : e data, secor	me and adja a graph are from a grap nd is pointe	acent vertic e. With the oh is represe	es. It shows help this list ented as a not	who all st linked ode with	
le:	X)	Y			
) 			W	
	V cency Matrix	x	Z			
X	Y	W	Z	V		
0	1	0	0	1		
0	0	1	0	0		
0	0	0	1	0		
0	1	0	0	0		
1	1	0	1	0		
	X 0 0 0 0	XY0100000001	X Y W 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0	X Y W Z 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0	X Y W Z V 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0	X Y W Z V 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0

	Linked represe	ntation: Adjace	ncy list		
		Node	Adjacency List	7	
		Х	Y,V		
		Y	W	_	
		W	Z	_	
		Z	Y	_	
		V	X,Y,Z		
		→ Y	→ v		
		→ w -	<u> </u>		
	w	→ z	<u> </u>		
		→ Y	1		
		→ x	→ Y→ Z	<u>}</u>	
c	stack.		valuate following post-fix	expression using	8 M
Ans	6, 2, 3, +, -, 3, 8, Principle:-	$2, 1, +, *, 2\emptyset 3, -$	+		Principle :
Alls	-	data structure in	which all the elements are sto	ored in sequence.	2M, Correct
	Stack works on inserted at last in		2. LIFO is Last In First O a ved first from it.	utie. An element	answer for evaluation : 6M
	As stack has onl from top so it wo		tack top it inserts and removinciple	ves elements only	
1					

Step No	Postfix expression	Read char acter	Stack contents	Evaluation
1	6,2,3,+,-,3,8,2,1,+,*,2,Ø,3,+	6	6	
2	2,3,+,-,3,8,2,1,+,*,2,Ø,3,+	2	6,2	
3	3,+,-,3,8,2,1,+,*,2,Ø,3,+	3	6,2,3	
4	,+,-,3,8,2,1,+,*,2,Ø,3,+	+	6,5	2+3=5
5	,-,3,8,2,1,+,*,2,Ø,3,+	-	1	6-5=1
6	3,8,2,1,+,*,2,Ø,3,+	3	1,3	
7	8,2,1,+,*,2,Ø,3,+	8	1,3,8	
8	2,1,+,*,2,Ø,3,+	2	1,3,8,2	
9	1,+,*,2,Ø,3,+	1	1,3,8,2,1	
10	+,*,2,Ø,3,+	+	1,3,8,3	2+1=3
11	*,2,Ø,3,+	*	1,3,24	8*3=24
12	2,Ø,3,+	2	1,3,24,2	
13	Ø, 3 ,+	Ø		
14	3,+	3		
15	+	+		