## Model Answers

Summer-2019 Examinations

## Subject \& Code: Electrical Circuits \& Networks (17323)

## Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

# Model Answers <br> Summer-2019 Examinations <br> Subject \& Code: Electrical Circuits \& Networks (17323) 

1 Attempt any TEN of the following:
1 a) Define waveform and instantaneous value of an alternating quantity.

## Ans:

i) Waveform: It is a graph of magnitude of an AC quantity against time.
ii) Instantaneous value: It is defined as the value of an AC quantity at a particular 1 mark instant of time.

1 b) An alternating voltage is having maximum value 230 volt. What is its average value and rms value?
Ans:

## Assuming that the alternating quantity is a sinusoidal quantity,

i) Average value $=0.637 \times$ maximum value $=0.637 \times 230$

Average value $=146.51$ volt
ii) RMS value $=0.707 \times$ maximum value $=0.707 \times 230$

RMS value $=\mathbf{1 6 2 . 6 1}$ volt.
1 c) Define Inductive reactance and Capacitive reactance.

## Ans:

i) Inductive reactance:

The opposition offered by the inductance of a circuit to the flow of an alternating current is called an inductive reactance.
It is denoted by " $\mathbf{X}_{\mathbf{L}}$ " and given by $\mathbf{X}_{\mathbf{L}}=\mathbf{2 \pi f L} \boldsymbol{\Omega}$
ii) Capacitive reactance:

The opposition offered by the capacitance of a circuit to the flow of an alternating current is called an capacitive reactance.
It is denoted by " $\mathbf{X}_{\mathrm{C}}$ " and given by $\mathbf{X}_{\mathrm{C}}=\frac{\mathbf{1}}{\mathbf{2 \pi \mathrm { fC }} \mathbf{\Omega}}$
1 d) Define power factor and reactive power.
Ans -
i) Power factor:

It is the cosine of the angle between the applied voltage and the resulting 1 mark current.
Power factor $=\cos \Phi$
where, $\Phi$ is the phase angle between applied voltage and current.
OR
It is the ratio of true or effective or real power to the apparent power.
Power factor $=$ True Or Effective Or Real Power /Apparent Power

$$
\begin{aligned}
& =\mathrm{VI} \cos \Phi / \mathrm{VI} \\
& =\cos \Phi
\end{aligned}
$$

OR
It is the ratio of circuit resistance to the circuit impedance.
Power factor $=$ Circuit Resistance / Circuit Impedance

$$
\begin{aligned}
& =\mathrm{R} / \mathrm{Z} \\
& =\cos \Phi
\end{aligned}
$$

ii) Reactive Power:

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION <br> (Autonomous) <br> (ISO/IEC-27001-2013 Certified) 

## Model Answers <br> Summer-2019 Examinations <br> Subject \& Code: Electrical Circuits \& Networks (17323)

Reactive power $(\mathrm{Q})$ is the product of voltage, current and the sine of the phase angle between voltage and current.
$\mathrm{Q}=\mathrm{VIsin} \Phi$ volt-amp-reactive
OR
It is the quantity of "unused" power that is developed by reactive components in an AC circuit.

1 e) Draw a admittance triangle by considering capacitive susceptance and inductive susceptance.
Ans:


1 mark each
$=2$ marks

1 mark for each of any two applications $=2$ marks
vii) Tank circuit.
viii) Power-factor improvement circuit

1 g) State the relations between line and phase values of voltage and current for balanced star connected load.
Ans:
For balanced star connected load,

$$
\begin{array}{ll}
\text { Line voltage }=\sqrt{ } \mathbf{3} \times \text { Phase Voltage } & 1 \text { mark } \\
\text { i.e } \quad V_{L}=\sqrt{3} \times V_{\text {ph }} & \\
\text { Line current }=\text { Phase current } & 1 \text { mark } \\
\text { i.e } \quad I_{L}=I_{p h} &
\end{array}
$$

1 h) Define phase sequence of three phase ac quantity.
Ans:

## Phase Sequence:

Phase sequence is defined as the order in which the voltages (or any other alternating quantity) of the three phases attain their positive maximum values.
In the waveforms, it is seen that the R-phase voltage attains the positive maximum

## Model Answers <br> Summer-2019 Examinations <br> Subject \& Code: Electrical Circuits \& Networks (17323)

maximum and further after $120^{\circ}$, B-phase voltage attains its positive maximum value.

So the phase sequence is R-Y-B.


1 mark for diagram

1 mark for circuit

1 mark

1 mark

1 mark
1 k) State Thevenin's theorem applied to DC circuits.
Ans:

## Thevenin's Theorem:

Any two terminal circuit having number of linear resistances and sources (voltage, current, dependent, independent) can be represented by a simple equivalent circuit consisting of a single voltage source $\mathrm{V}_{\mathrm{Th}}$ in series with resistance $\mathrm{R}_{\mathrm{Th}}$, where the source voltage $\mathrm{V}_{\mathrm{Th}}$ is equal to the open circuit voltage appearing across the two terminals due to internal sources of circuit and the series resistance $\mathrm{R}_{\mathrm{Th}}$ is equal to the resistance of the circuit while looking back into the circuit across the two terminals, when the internal independent voltage sources are replaced by short-circuits and independent current sources by open circuits.

2 marks for statement

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION <br> (Autonomous) <br> (ISO/IEC-27001-2013 Certified) 

Model Answers<br>Summer-2019 Examinations<br>Subject \& Code: Electrical Circuits \& Networks (17323)

1 1) Give the meaning of "Steady state condition" and state the behavior of pure C at steady state condition.

## Ans: <br> Meaning of Steady state condition:

Steady state condition is that condition which exists after all initial transients or
fluctuations have damped out and all currents, voltages or fields are settles down to essentially constant values.
Usually the steady state is said to be reached at time instant $\mathrm{t} \rightarrow \infty$.
Steady state behavior of Pure C:
At steady state condition the capacitor acts as open circuit.
1 mark

1 mark
2 Attempt any FOUR of the following: 16

2 a) Instantaneous expression for voltage and current are given by

$$
\mathrm{V}=141.4 \sin 314 \mathrm{t}, \quad \mathrm{i}=28.28 \sin (314 \mathrm{t}+\pi / 3)
$$

Determine:
i) Voltmeter and ammeter reading.
ii) Frequency of current
iii) Power factor
iv) Power consumed.

Ans:
Data Given:
$\mathrm{V}=141.4 \sin 314 \mathrm{t}, \quad \mathrm{i}=28.28 \sin (314 \mathrm{t}+\pi / 3)$
i) Voltmeter and Ammeter reading:

Voltmeter reads RMS value:
$\therefore$ Vrms $=0.707 \times$ Vm $=0.707 \times 141.4=99.97 \mathrm{~V} \approx 100 \mathrm{~V}$
Voltmeter reading $=99.97 \mathrm{~V}$ i.e. $100 \mathrm{~V} \quad 1 / 2 \mathrm{mark}$
Ammeter reads RMS value:
Irms $=0.707 \times \operatorname{Im}=0.707 \times 28.28=19.99$ A i.e. 20 A
Ammeter reading $=19.99 \mathrm{~A} \approx 20 \mathrm{~A}$.
ii) Frequency of current

Comparing the current equation with standard equation
$\mathrm{I}=\mathrm{Im} \sin (\omega \mathrm{t}+\Phi) \mathrm{amp}$
we get, $\omega=314$
we know that, $\mathrm{f}=\omega / 2 \pi=314 / 2 \pi$
$\therefore$ Frequency of current $f=49.97 \mathrm{~Hz} \approx 50 \mathrm{~Hz}$

## iii) Power factor:

Power Factor $=\operatorname{Cos}(\Phi)=\operatorname{Cos}(\pi / 3)$
$\therefore$ Power factor $=0.5$ leading

## iv) Power consumed:

$\mathrm{P}=\mathrm{V} \times \mathrm{I} \times \operatorname{Cos} \Phi=99.97 \times 19.99 \times 0.5$
Power consumed $=$ 999.2 Watt $\approx 1000$ Watt

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION <br> (Autonomous) <br> (ISO/IEC-27001-2013 Certified) 

## Model Answers <br> Summer-2019 Examinations <br> Subject \& Code: Electrical Circuits \& Networks (17323)

2 b) Derive the expression for current and voltage in pure resistive circuit when connected to sinusoidal AC voltage. Draw the phasor diagram.
Ans:-


1 mark for circuit diagram

1 mark for phasor diagram

Referring to fig. the instantaneous voltage across the resistor $\left(\mathrm{v}_{\mathrm{R}}\right)$ is same as source voltage.
Therefore, $\mathbf{v}_{\mathbf{R}}=\mathbf{v}=\mathbf{V}_{\mathbf{m}} \boldsymbol{\operatorname { s i n }}(\omega \mathbf{t})$
Applying ohms law, the expression for the instantaneous current flowing through the resistor is given by, $i=v_{R} / R$

$$
\begin{gather*}
\mathrm{i}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}) / \mathrm{R}=\left(\mathrm{V}_{\mathrm{m}} / \mathrm{R}\right) \sin (\omega \mathrm{t}) \\
\text { where, } \mathrm{I}_{\mathrm{m}}=\mathrm{V}_{\mathrm{m}} / \mathrm{R}, \mathrm{i}=\mathrm{I}_{\mathrm{m}} \angle 0^{\circ} \\
\text { Therefore, } \mathrm{I}=\mathbf{I}_{\mathrm{m}} \sin (\omega \mathrm{t}) \ldots \tag{2}
\end{gather*}
$$

On comparing Eq. (1) and (2), we conclude that,

- The current flowing through a purely resistive ac circuit is sinusoidal.
- The current through the resistive circuit and the applied voltage are in phase with each other.

2 c) For the given impedance triangle as shown in Fig. No. 1.
i) Identify the type of circuit.
ii) Mark parameters of all sides of the triangle
iii) State the nature of power factor
iv) Draw a sinusoidal waveform of voltage and current.


Fig. No. 1

## Ans:

i) The types of circuit:

Type of circuit is $\mathbf{R}$-L series circuit.
ii) Parameters of all sides of the triangle:

1 mark for each bit
$=4$ marks

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION <br> (Autonomous) <br> (ISO/IEC-27001-2013 Certified) 

## Model Answers

Summer-2019 Examinations
Subject \& Code: Electrical Circuits \& Networks (17323)

iii) Nature of power factor:

The nature of power factor is lagging.
iv) Sinusoidal waveform of voltage and current:


2 d) Define the impedance and draw the impedance triangle.
Ans:
i) Definition of Impedance: The impedance $(\mathrm{Z})$ of the circuit is defined as the total opposition of the circuit to the alternating current flowing through it.

## OR

It is combined effect produced by the resistance, inductive reactance and capacitive reactance in the AC circuit. It is denoted by " $Z$ " and measured in ohm.
ii) Impedance Triangle:

For R-L series circuit


For R-C series circuit


1 mark for each triangle $=2$ marks

2 e) A resistance of $100 \Omega$ and $50 \mu \mathrm{f}$ capacitor are connected in series across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find:
i) The impedance.
ii) The current flowing through the circuit.
iii) Voltage across resistance and capacitance.
iv) Power factor and Power.

## Ans:

$\mathrm{V}=230 \angle 0^{\circ}$ volts,

$$
\mathrm{f}=50 \mathrm{~Hz}
$$

$$
\mathrm{R}=100 \Omega
$$

$$
\mathrm{C}=50 \mu \mathrm{~F}=50 \times 10^{-6} \mathrm{~F}
$$

2 marks for definition

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION <br> (Autonomous) <br> (ISO/IEC-27001-2013 Certified) 

## Model Answers

Summer-2019 Examinations
Subject \& Code: Electrical Circuits \& Networks (17323)
Capacitive Reactance ( $\mathbf{X}_{\mathbf{C}}$ ):
$\mathrm{X}_{\mathrm{C}}=1 /(2 \pi \mathrm{fC})$
$=1 /\left(2 \pi \times 50 \times 50 \times 10^{-6}\right)$
$X_{C}=63.66 \Omega$
i) $\quad$ Impedance $(\mathbf{Z})=\sqrt{ }\left(\mathbf{R}^{\mathbf{2}}+\mathbf{X}_{\mathbf{C}}{ }^{\mathbf{2}}\right)$

$$
\begin{aligned}
& =\sqrt{ }\left(100^{2}+63.66^{2}\right) \\
& \mathbf{Z}=\mathbf{1 1 8 . 5 4} \boldsymbol{\Omega}
\end{aligned}
$$

ii) The current flowing through the circuit (I) :

$$
\begin{aligned}
\mathrm{I} & =\mathrm{V} / \mathrm{Z} \\
& =230 / 118.54 \\
\mathbf{I} & =\mathbf{1 . 9 4} \mathbf{~ a m p}
\end{aligned}
$$

iii) Voltage across resistance( $V R$ ) and capacitance(VC)

Voltage across resistance $\left(\mathrm{V}_{\mathrm{R}}\right)=\mathrm{I} \times \mathrm{R}=1.94 \times 100$

$$
=194 \text { Volt }
$$

Voltage across capacitance $\left(V_{C}\right)=I \times X_{c}=1.94 \times 63.66$

$$
=123.5 \text { Volt }
$$

iv) Power factor and Power.

Power Factor $(\operatorname{Cos} \Phi)=\mathrm{R} / \mathrm{Z}=100 / 118.54$
$=0.84$ (leading)
$\operatorname{Power}(\mathrm{P})=\mathrm{V} \times \mathrm{I} \times \operatorname{COS} \Phi=230 \times 1.94 \times 0.84$

$$
=374.80 \text { Watt }
$$

$2 \mathrm{f})$ A circuit consists of a resistance of $20 \Omega$ in series with an inductance of 95.6 mH and a capacitor of $318 \mu \mathrm{f}$. It is connected to a $500 \mathrm{~V}, 25 \mathrm{~Hz}$ supply. Find the current in the circuit and power factor.
Ans:
Data Given: $\mathrm{R}=20 \Omega, \quad \mathrm{~L}=95.6 \mathrm{mH}=95.6 \times 10^{-3} \mathrm{H} \quad \mathrm{C}=318 \mu \mathrm{f} \quad=318 \times 10^{-6} \mathrm{~F}$ $\mathrm{V}=500 \mathrm{~V} \quad \mathrm{f}=25 \mathrm{~Hz}$.
Inductive Reactance :

$$
\begin{array}{ll}
\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}=2 \pi \times 25 \times 95.6 \times 10^{-3} & 1 / 2 \mathrm{mark} \\
\mathbf{X}_{\mathbf{L}}=\mathbf{1 5 . 0 1} \boldsymbol{\Omega} &
\end{array}
$$

1 mark for
each bit
$=4$ marks

## Capacitive Reactance :

$$
X_{C}=1 / 2 \pi \mathrm{fc}=1 /\left(2 \pi \times 25 \times 318 \times 10^{-6}\right)
$$

$$
X_{C}=20.01 \Omega
$$

## Impedance :

$$
\begin{aligned}
& \mathrm{Z}=\sqrt{ }\left\{\mathrm{R}^{2}+(\mathrm{XL}-\mathrm{XC})^{2}\right\}=\sqrt{ }\left\{20^{2}+(15.01-20.01)^{2}\right\} \\
& \mathbf{Z}=\mathbf{2 0 . 6 1} \boldsymbol{\Omega}
\end{aligned}
$$

i) Current in the circuit(I):
$\mathrm{I}=\mathrm{V} / \mathrm{Z}=500 / 20.61$
$I=24.26 \mathrm{amp}$
ii) Power factor $(\cos \Phi)$ :
$\cos \Phi=R / Z=20 / 20.61$
$\cos \Phi=0.97$ (leading)
$1 / 2 \operatorname{mark}$

$$
1 \text { mark for } Z
$$

1 mark for I

1 mark for pf

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION <br> (Autonomous) <br> (ISO/IEC-27001-2013 Certified) 

Model Answers<br>Summer-2019 Examinations<br>Subject \& Code: Electrical Circuits \& Networks (17323)

3 a) Compare series resonance circuit with parallel resonance circuit.
Ans:
Comparison between series and parallel resonance circuit:

| Sr. No. | Series resonant Circuit | Parallel resonant Circuit |
| :---: | :--- | :--- |
| 1 | For series R-L-C circuit, the <br> resonance frequency is, <br> $f_{r}=\frac{1}{2 \pi \sqrt{L C}}$ | For parallel R-L-C circuit, the <br> resonance frequency is, |
| 2 | At resonance, the series RLC <br> circuit offers minimum total <br> impedance Z $=\mathrm{R}$ | At resonance, the parallel RLC <br> circuit offers maximum total <br> impedance Z $=\mathrm{L} / \mathrm{CR}$ |
| 3 | At resonance, series RLC <br> circuit draws maximum <br> current from source, I $=$ <br> (V/R) | At resonance, parallel RLC <br> circuit draws minimum current <br> from source, $\left.I=\frac{V}{[L / C R}\right]$ |
| 4 | At resonance, in series RLC <br> circuit, voltage magnification <br> takes place. | At resonance, in parallel RLC <br> circuit, current magnification <br> takes place. |
| 5 | The Q-factor for series <br> resonant circuit is | The Q-factor for parallel <br> resonant circuit is, <br> $Q=\frac{1}{R} \sqrt{C}$ |
| 6 | Series RLC resonant circuit <br> is Accepter circuit. | Parallel RLC resonant circuit is <br> Rejecter circuit. |

1 mark for each of any four points $=4$ marks

3 b) Derive the expression for resonant frequency for the circuit as shown in Figure No. 2


Fig. No. 2

## Ans:

Resonance Frequency for a RL-C Parallel Circuit: -


## Model Answers

## Summer-2019 Examinations

## Subject \& Code: Electrical Circuits \& Networks (17323)

The circuit is said to be in electrical resonance when the reactive component of line current becomes zero. The frequency at which this happens is known as resonance frequency.
Net reactive component $=I_{C}-I_{L} \sin \emptyset_{L}$
As at resonance, its value is zero, hence
$I_{c}-I_{L} \sin \emptyset_{L}=0 \quad$ OR $\quad I_{C}=I_{L} \sin \emptyset_{L}$
Now, $I_{L}=\frac{V}{Z} \quad$ and $I_{c}=\frac{V}{X_{c}}$
Hence condition for resonance becomes
$\frac{V}{X_{c}}=\frac{V}{Z} \times \frac{X_{L}}{Z} \quad$ OR $\quad X_{c} X_{L}=Z^{2}$ where $\mathrm{Z}=\left(\mathrm{R}+\mathrm{j} \mathrm{X}_{\mathrm{L}}\right)$
Now, $X_{L}=\omega \mathrm{L}, \quad X_{c}=\frac{1}{\omega C}$
$\frac{\omega \mathrm{L}}{\omega \mathrm{C}}=Z^{2} \quad$ OR $\quad \frac{L}{C}=Z^{2}$
$\frac{L}{C}=R^{2}+X_{L}{ }^{2}=R^{2}+\left(2 \pi f_{0} L\right)^{2}$
$\left(2 \pi f_{0} L\right)^{2}=\frac{L}{C}-R^{2}$
$2 \pi f_{0}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
$f_{0}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
3 c) If $Z_{1}=3+j 7$ and $Z_{2}=12-j 16$ are connected in parallel. Find the equivalent impedance of combination.
Ans:
Converting $Z_{1}$ and $Z_{2}$ in Polar form we get,
$\mathrm{Z}_{1}=(3+\mathrm{j} 7)=7.61 \angle 66.80^{\circ} \Omega$
$\mathrm{Z}_{2}=(12-\mathrm{j} 16)=20 \angle-53.13^{\circ} \Omega$.
$\mathrm{Z}_{1}$ and $\mathrm{Z}_{2}$ are connected in parallel,

$$
\begin{aligned}
& \mathrm{Z}_{\text {eq }}=\frac{\mathrm{Z}_{1} \mathrm{Z}_{2}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}}=\frac{7.61 \angle 66.80^{\circ} \times 20 \angle-53.13^{\circ}}{(3+\mathrm{j})+(12-\mathrm{j} 16)} \\
&= \frac{7.61 \angle 66.80^{\circ} \times 20 \angle-53.13^{\circ}}{17.49 \angle-30.96^{\circ}} \\
&=\mathbf{8 . 7 0} \angle \mathbf{4 4 . 5 3}{ }^{\circ} \stackrel{(6.20+\mathbf{j 6 . 1 0})}{=} \Omega
\end{aligned}
$$

OR any equivalent method
3 d) If $\mathrm{A}=4+\mathrm{j} 7, \mathrm{~B}=8+\mathrm{j} 9, \mathrm{C}=5-\mathrm{j} 6$ then calculate,
i) $\frac{A+B}{C}$
ii) $\frac{A \times B}{C}$
iii) $\frac{A+B}{B+C}$
iv) $\frac{B-C}{A}$

## Ans:

Converting $\mathrm{A}, \mathrm{B}$ and C in Polar form we get,
$A=(4+j 7)=8.06 \angle 60.25^{\circ}$,
$B=(8+j 9)=12.04 \angle 48.37^{\circ}$,

1 mark for each bit
$=4$ marks

Model Answers<br>Summer-2019 Examinations<br>Subject \& Code: Electrical Circuits \& Networks (17323)

$C=(5-j 6)=7.81 \angle-50.19^{\circ}$
i) $\frac{\mathrm{A}+\mathrm{B}}{\mathrm{C}}=\frac{4+\mathrm{j} 7+8+\mathrm{j} 9}{7.81 \angle-50.19^{\circ}}=\frac{20 \angle 53.13^{\circ}}{7.81 \angle-50.19^{\circ}}$

$$
=2.56 \angle 103.32^{\circ}=0.589+\mathrm{j} 2.491
$$

ii) $\quad \frac{\mathrm{A} \times \mathrm{B}}{\mathrm{C}}=\frac{8.06 \angle 60.25^{\circ} \times 12.04 \angle 48.37^{\circ}}{7.81 \angle-50.19^{\circ}}=\frac{97.04 \angle 108.62^{\circ}}{7.81 \angle-50.19^{\circ}}$

$$
=12.42 \angle 158.81^{\circ}=-11.58+\mathrm{j} 4.489
$$

iii) $\frac{A+B}{B+C}=\frac{4+\mathrm{j} 7+8+\mathrm{j} 9}{8+\mathrm{j} 9+5-\mathrm{j} 6^{\circ}}=\frac{20 \angle 53.13^{\circ}}{13.34 \angle-12.99^{\circ}}$

$$
=1.49 \angle 66.12^{\circ} .=0.603+\mathrm{j} 1.362
$$

iv) $\frac{B-C}{A}=\frac{8+\mathrm{j} 9-5+\mathrm{j} 6}{8.06 \angle 60.25^{\circ}}=\frac{15.29 \angle 78.69^{\circ}}{8.06 \angle 60.25^{\circ}}$

$$
=1.897 \angle 18.44^{\circ} .=1.799+\mathrm{j} 0.600
$$

3 e) What is meant by independent voltage source? What are its type?

## Ans. <br> Independent Voltage Source:

The voltage source which can deliver steady voltage (fixed or variable with time) to 1 mark the circuit and it does not depend on any other elements or quantity in the circuit.
Types of Independent Voltage Source:
i) Direct Voltage Source or Time Invariant Voltage Source

The voltage source which can produce or deliver constant voltage as output is termed as Direct Voltage Source. The flow of electrons will be in one direction that is polarity will be always same. The movement of electrons or current will be in one direction always. The value of voltage will not alter with time. Example: DC generator, battery, Cells etc.

 intervals. This voltage causes the current to flow in a direction for a time and after that in a different direction for another time. That means it is time varying. Example: DC to AC converter, Alternator etc.

$1 / 2$ mark

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION <br> (Autonomous) <br> (ISO/IEC-27001-2013 Certified) 

## Model Answers <br> Summer-2019 Examinations <br> Subject \& Code: Electrical Circuits \& Networks (17323)

3 f) A resistance of $100 \Omega$ and capacitor of $50 \mu \mathrm{~F}$ are connected in series across a 230 V , 50 Hz supply. Find:
i) The impedance
ii) The current flowing through circuit
iii) Voltage across resistance and capacitance
iv) Power factor and power

Ans:
Data Given: $\mathrm{R}=100 \Omega, \mathrm{C}=50 \mu \mathrm{~F}, \mathrm{~V}=230 \mathrm{~V}, \quad \mathrm{f}=50 \mathrm{~Hz}$.
The Capacitive reactance is given by, $\mathrm{Xc}=\frac{1}{2 \pi \mathrm{fC}}$

$$
\begin{aligned}
& =\frac{1}{2 \pi(50)\left(50 \times 10^{-6}\right)} \\
& =\mathbf{6 3 . 6 9 \Omega} .
\end{aligned}
$$

1 mark for each bit
$=4$ marks

$$
\mathrm{Z}=\sqrt{\left(\mathrm{R}^{2}+(-\mathrm{Xc})^{2}\right.}=\sqrt{(100)^{2}+(-63.66)^{2}}=118.55 \Omega .
$$

ii) Current flowing through the circuit (I):
$\mathrm{I}=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{Z}}=\frac{230}{118.55}=\mathbf{1 . 9 4 A}$
iii) Voltage across Capacitance and Resistance

Voltage across capacitance $=\mathrm{V}_{\mathrm{c}}=\mathrm{I} \times \mathrm{Xc}$

$$
\begin{aligned}
& =1.94 \times 63.69 \\
& =123.55 \mathrm{~V}
\end{aligned}
$$

Voltage across Resistance $=\mathrm{V}_{\mathrm{R}}=\mathrm{I} \times \mathrm{R}$

$$
\begin{aligned}
& =1.94 \times 100 \\
& =\mathbf{1 9 4 V}
\end{aligned}
$$

iv) Power factor and Power:

Phase angle between voltage and current $(\phi)$
$\Phi=\tan ^{-1} \frac{(-X c)}{R}=\tan ^{-1} \frac{(-63.69)}{100}=-32.49^{\circ}=32.49$ leading.
Power factor $=\cos \Phi=\cos 32.49=\mathbf{0 . 8 4 3 4}$ leading
Power $=$ VIcos $\Phi=230 \times 1.94 \times 0.8434=376.32 \mathbf{W}$
4 Attempt any FOUR of the following:
4 a) Distinguish between balanced and unbalanced load.
Ans:
Comparison between balanced and unbalanced load:

| Sr. No. | Balanced load | Unbalanced load |  |
| :---: | :--- | :--- | :---: |
| 1 | Balanced three phase load is <br> defined as star or delta <br> connection of three equal <br> impedances having equal real <br> parts and equal imaginary parts. | When the magnitudes and <br> phase angles of three <br> impedances are differ from <br> each other, then it is called as <br> unbalanced load. |  |
|  | All the phase and line voltage <br> will have equal magnitudes. <br> Line currents also have equal | All the voltages are fixed and <br> line currents will not be equal <br> nor will have a $120^{\circ}$ phase |  |

1 mark for each of any four points $=4$ marks

# Model Answers <br> Summer-2019 Examinations <br> Subject \& Code: Electrical Circuits \& Networks (17323) 

|  | magnitude. | difference. |
| :---: | :---: | :---: |
| 3 | For balanced load, there is fixed relationship between the phase voltage \& the line voltage. | For unbalanced load, there is not a fixed relationship between the phase voltage \& the line voltage |
| 4 | Phase angles of impedances are equal. | Phase angles of impedances are not equal. |
| 5 | Example circuit: | Example circuit: |

4 b) State any four advantages of Polyphase circuits over single phase circuit.

## Ans:

Advantages and of Polyphase circuits over Single phase circuit:
i) Three-phase transmission is more economical than single-phase transmission. It requires less copper material.
ii) Parallel operation of 3-phase alternators is easier than that of single-phase alternators.
iii) Single-phase loads can be connected along with 3-ph loads in a 3-ph system.
iv) Instead of pulsating power of single-phase supply, constant power is obtained in 3-phase system.
v) Three-phase induction motors are self-starting. They have high efficiency, better power factor and uniform torque.
vi) The power rating of 3-phase machine is higher than that of 1-phase machine of the same size.
vii) The size of 3-phase machine is smaller than that of 1-phase machine of the same power rating.
viii) Three-phase supply produces a rotating magnetic field in 3-phase rotating machines which gives uniform torque and less noise.

4 c) A $3 \emptyset$ star connected load having $\mathrm{R}=15 \Omega, \mathrm{~L}=0.04 \mathrm{H}, \mathrm{C}=50 \mu \mathrm{~F}$ in each phase. It is supplied by $440 \mathrm{~V}, 3 \emptyset, 50 \mathrm{~Hz}$ AC. Find:
i) Impedance per phase (Zph)
ii) Line current
iii) Power factor
iv) Power Consumed

Ans:
Given: $\mathrm{R}=15 \Omega, \mathrm{~L}=0.04 \mathrm{H}, \mathrm{C}=50 \mu \mathrm{~F}, \mathrm{~V}=440 \mathrm{~V}, \mathrm{~F}=50 \mathrm{~Hz}$.
In star connected load $\mathrm{V}_{\mathrm{L}}=\sqrt{3} \mathrm{~V}_{\mathrm{Ph}} \quad$ and $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{Ph}}$
$\mathrm{V}_{\mathrm{ph}}=\frac{\mathrm{V}_{\mathrm{L}}}{\sqrt{3}}=\frac{440}{\sqrt{3}}=254.034 \mathrm{~V}$

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION <br> (Autonomous) <br> (ISO/IEC-27001-2013 Certified) 

## Model Answers

## Summer-2019 Examinations

## Subject \& Code: Electrical Circuits \& Networks (17323)

The Capacitive reactance is given by, $\mathrm{Xc}=\frac{1}{2 \pi \mathrm{fC}}$

$$
\begin{aligned}
& =\frac{2 \pi \mathrm{fC}}{1} \\
& =63(50)\left(50 \times 10^{-6}\right) \\
& =63.69 \Omega .
\end{aligned}
$$

The inductive reactance is given by, $\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}$

$$
\begin{aligned}
& =2 \times 3.14 \times 50 \times 0.04 \\
& =12.56 \Omega
\end{aligned}
$$

i) Impedance per phase:

1 mark for each bit
$=4$ marks

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{ph}} & =\mathrm{R}+\mathrm{j}\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) . \\
\mathrm{Z}_{\mathrm{ph}} & =15+\mathrm{j}(12.56-63.69) \\
& =\mathbf{1 5 - j 5 1 . 1 3 = 5 3 . 2 8} \angle-\mathbf{- 7 3 . 6 4}{ }^{\circ} \Omega
\end{aligned}
$$

ii) Line Current:

$$
\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{ph}}=\frac{\mathrm{V}_{\mathrm{ph}}}{\mathrm{Z}_{\mathrm{ph}}}=\frac{254.034 \angle 0^{\circ}}{53.28 \angle-73.64^{\circ}}=4.76 \angle 73.64^{\circ} \mathrm{A}
$$

iii) Power factor:

$$
\cos \phi=\frac{\mathrm{Rph}}{\mathrm{Zph}}=\frac{15}{53.28}=\mathbf{0 . 2 8} \text { (lead). }
$$

iv) Power Consumed:

$$
\begin{aligned}
& \mathrm{P}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi=\sqrt{3}(440)(4.76)(0.28) \\
&=1015.73 \text { watt or } 1.015 \mathrm{~kW} .
\end{aligned}
$$

4 d) Derive the formulae for delta to star transformation.

## Ans:


(a) Delta Circuit

(b) Star Circuit

It is possible to replace delta by its equivalent star circuit.
Considering terminals 1 and 2, Resistance $\mathrm{R}_{12}$ parallel with ( $\mathrm{R}_{23}+\mathrm{R}_{31}$ ),
Hence resistance between terminals 1 and 2

$$
\begin{equation*}
\frac{\mathrm{R}_{12}\left(\mathrm{R}_{23}+\mathrm{R}_{31}\right)}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} . \tag{1}
\end{equation*}
$$

$1 / 2$ mark
In Case of Star Network Resistance between terminals 1 and 2 is

$$
\begin{equation*}
=\mathrm{R}_{1}+\mathrm{R}_{2} \tag{2}
\end{equation*}
$$

For equivalence between two networks, equating Equation (1) \& (2)

$$
\begin{equation*}
\mathrm{R}_{1}+\mathrm{R}_{2}=\frac{\mathrm{R}_{12}\left(\mathrm{R}_{23}+\mathrm{R}_{31}\right)}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} . \tag{3}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
& \mathrm{R}_{2}+\mathrm{R}_{3}=\frac{\mathrm{R}_{23}\left(\mathrm{R}_{31}+\mathrm{R}_{12}\right)}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} .  \tag{4}\\
& \mathrm{R}_{3}+\mathrm{R}_{1}=\frac{\mathrm{R}_{31}\left(\mathrm{R}_{12}+\mathrm{R}_{23}\right)}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} . \tag{5}
\end{align*}
$$

By subtracting equation (4) from (3)

## Model Answers

## Summer-2019 Examinations

## Subject \& Code: Electrical Circuits \& Networks (17323)

$$
\begin{aligned}
\mathrm{R}_{1}-\mathrm{R}_{3} & =\frac{\mathrm{R}_{12} \mathrm{R}_{23}+\mathrm{R}_{12} \mathrm{R}_{31}-\mathrm{R}_{23} \mathrm{R}_{31}-\mathrm{R}_{23} \mathrm{R}_{12}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \\
& \mathrm{R}_{1}-\mathrm{R}_{3}=\frac{\mathrm{R}_{12} \mathrm{R}_{31}-\mathrm{R}_{23} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \ldots \ldots \ldots \ldots \ldots \text { (6) }
\end{aligned}
$$

By adding equation (5) \& (6)

$$
2 R_{1}=\frac{R_{31} R_{12}+R_{31} R_{23}+R_{12} R_{31}-R_{23} R_{31}}{R_{12}+R_{23}+R_{31}}
$$

Equivalent star resistances for delta connection

$$
\begin{aligned}
\mathrm{R}_{1} & =\frac{\mathrm{R}_{12} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \\
\mathrm{R}_{2} & =\frac{\mathrm{R}_{12} \mathrm{R}_{23}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \\
\mathrm{R}_{3} & =\frac{\mathrm{R}_{23} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}}
\end{aligned}
$$

4 e) Using Mesh analysis calculate current through $10 \Omega$ resistor as shown in Figure No. 3.


Fig. No. 3
Ans:


By applying KVL to loop ABEFA

$$
\begin{align*}
& \quad 50-5 \mathrm{I}_{1}-15\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=0 \\
& 20 \mathrm{I}_{1}+15 \mathrm{I}_{2}=50 \\
& 4 \mathrm{I}_{1}+3 \mathrm{I}_{2}=10 \ldots \ldots \ldots \ldots(1) \tag{1}
\end{align*}
$$

By applying KVL to Loop DCBED

$$
\begin{aligned}
& 20-10 \mathrm{I}_{2}-15\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=0 \\
& 15 \mathrm{I}_{1}+25 \mathrm{I}_{2}=20
\end{aligned}
$$

## Model Answers

Summer-2019 Examinations
Subject \& Code: Electrical Circuits \& Networks (17323)

$$
\begin{equation*}
3 \mathrm{I}_{1}+5 \mathrm{I}_{2}=4 \tag{2}
\end{equation*}
$$

Expressing eq.(1) and (2) in matrix form,

$$
\left.\therefore \Delta=\left\lvert\, \begin{array}{ll}
4 & 3 \\
3 & 5
\end{array}\right.\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{c}
10 \\
4
\end{array}\right]
$$

By Cramer's rule,

$$
\left.\begin{aligned}
& \mathrm{I}_{1}=\frac{\left|\begin{array}{cc}
10 & 3 \\
4 & 5
\end{array}\right|}{\Delta}=\frac{(10 \times 5)-(4 \times 3)}{11}=\frac{50-12}{11}=\mathbf{3 . 4 5 4 ~ A} \\
& \left.\mathrm{I}_{2}=\frac{\left|\begin{array}{|r}
4 \\
3
\end{array}\right|}{\Delta} \right\rvert\,
\end{aligned} \right\rvert\,=\frac{(4 \times 4)-(10 \times 3)}{11}=\frac{16-30}{11}=-\mathbf{1} .272 \mathrm{~A} .
$$

Current flowing through resistance of $10 \Omega=\mathbf{I}_{\mathbf{2}}=\mathbf{- 1 . 2 7 2 A}$ from $C$ to $B$ $=+1.272 \mathrm{~A}$ from B to C

4 f) Using Nodal analysis calculate current through $15 \Omega$ resistor as shown in Figure No.4.


Fig. No. 4

## Ans:



By applying KCL to Node A

$$
\begin{gathered}
\frac{\mathrm{V}_{\mathrm{A}}-20}{10}+\frac{\mathrm{V}_{\mathrm{A}}}{15}+\frac{\mathrm{V}_{\mathrm{A}}-18}{5}=0 \\
\frac{3 \mathrm{~V}_{\mathrm{A}}-60+2 \mathrm{~V}_{\mathrm{A}}+6 \mathrm{~V}_{\mathrm{A}}-108}{30}=0 \\
\frac{11 \mathrm{~V}_{\mathrm{A}}-168}{30}=0 \\
\mathrm{~V}_{\mathrm{A}}=\frac{168}{11}=15.27 \text { volts }
\end{gathered}
$$

# Model Answers <br> Summer-2019 Examinations <br> Subject \& Code: Electrical Circuits \& Networks (17323) 

5 Attempt any TWO of the following:
5 a) Explain the generation of three phase emf for two pole machines. Represent them mathematical as well as graphical form.
Ans:
Generation of three-phase emf:


Three-phase emf generation can be possible using following two simple ways:
i) Stationary Field - Rotating Armature System:

Here magnetic field poles are stationary and three coils, say $R\left(a_{1}-a_{2}\right), Y\left(b_{1}-b_{2}\right)$ and $B\left(c_{1}-c_{2}\right)$ coils, are placed on cylindrical rotor (Armature) in the gap between the poles, as shown in Fig. A. When the rotor is rotated, the coils also rotate in the magnetic field and cut the magnetic flux. So according to the Faraday's laws of electromagnetic induction, emf is induced in each coil. Since the coils are identical, the emfs are also identical, but as the coils are displaced in space by $120^{\circ}$, the emfs are displaced in time phase by $120^{\circ}$, as shown in the graph.
ii) Rotating Field - Stationary Armature System:

Here the magnetic field poles are mounted on the rotor and the three-phase winding (three coils) are placed in the stator slots. When rotor is rotated, the magnetic field rotates with respect to the coils. Therefore, each coil cuts the magnetic field and emf is induced in it. Since the coils are identical, the emfs are also identical, but as the coils are displaced in space by $120^{\circ}$, the emfs are displaced in time phase by $120^{\circ}$, as shown in the graph.
Mathematically the three-phase emfs are represented by,

$$
\begin{aligned}
& e_{r}=E_{m} \sin \omega \mathrm{t} \\
& e_{y}=E_{m} \sin \left(\omega \mathrm{t}-120^{0}\right) \\
& \qquad e_{b}=E_{m} \sin \left(\omega \mathrm{t}-240^{\circ}\right)=E_{m} \sin \left(\omega \mathrm{t}+120^{\circ}\right)
\end{aligned}
$$

5 b) i) State Norton's theorem and write its procedural steps of to find current in a branch.

## Ans:

Norton's theorem:
It states that, any linear, active, resistive network containing one or more voltage and/or current source, can be replaced by an equivalent circuit containing a single current source and equivalent conductance (resistance across the current source).
The equivalent current source (Norton's source) $\mathrm{I}_{\mathrm{N}}$ is the current through the short circuited terminals of the load. The equivalent conductance $\mathrm{G}_{\mathrm{N}}$ (or $\mathrm{R}_{\mathrm{N}}$ ) is the conductance (or resistance) seen between the load terminals while looking back into

2 marks for any one constructiona 1 sketch

2 marks for waveform

3 marks for explanation

1 mark for equations

2 marks for statement

## Model Answers <br> Summer-2019 Examinations <br> Subject \& Code: Electrical Circuits \& Networks (17323)

the network with the load removed and internal sources replaced by their internal resistances.

If $R_{L}$ is load resistance then current through it is $I_{L}=I_{N} R_{N} /\left(R_{N}+R_{L}\right)$.
Procedural steps to apply Norton's theorem to find current in a branch:

1) Identify the branch, whose current is to be determined, as load $R_{L}$.
2) Replace load by short circuit.
3) Using circuit analysis techniques, determine the current flowing through the short-circuit, it is the Norton's Equivalent current source $\mathrm{I}_{\mathrm{N}}$.
4) Now remove the short-circuit and keep load terminals open.
5) Replace all internal voltage/current sources by their internal resistances. If the sources are ideal, replace voltage sources by short-circuits and current sources by open-circuits.
6) Now determine the equivalent resistance seen between the open load terminals while looking back into the network. It is the Norton's equivalent resistance $\mathrm{R}_{\mathrm{N}}$.
7) Compute the load current using current division formula:

$$
I_{L}=I_{N} \frac{R_{N}}{R_{N}+R_{L}}
$$

5 b) ii) Find the current passing load resistance $R_{L}$ as shown in Figure No. 5


Fig. No. 5

## Ans:

Referring to Fig. No. 5 , it is seen that $5 \Omega$ and $\mathrm{R}_{\mathrm{L}}=1 \Omega$ are in parallel.
Therefore, the total resistance across the voltage source is given by,
$\mathrm{R}_{\mathrm{T}}=5+5 \| 1=5+(5 / 6)=35 / 6=5.83 \Omega$
Current supplied by voltage source is given by,
$\mathrm{I}=\mathrm{V} / \mathrm{R}=20 / 5.83=3.43 \mathrm{~A}$
This current is divided and partly flows through $5 \Omega \& R_{L}$.
The load current is given by current division formula as,
$\mathrm{I}_{\mathrm{L}}=\mathrm{I}(5 / 6)=3.43(5 / 6)$
$\mathrm{I}_{\mathrm{L}}=\mathbf{2 . 8 6 A}$
5 c) i) State superposition theorem and write its procedural steps to find current in a branch.
Ans:
Superposition Theorm:
Superposition theorem states that the current in any branch is given by the algebraic sum of the currents caused by the independent sources acting alone while the other voltage sources replaced by short circuit and current sources replaced by open circuit.

1 mark for
$\mathrm{R}_{\mathrm{T}}$
1 mark for I
2 marks for stepwise procedure

1 mark for current division formula 1 mark

## Model Answers <br> Summer-2019 Examinations <br> Subject \& Code: Electrical Circuits \& Networks (17323)

i) Identify the branch whose current is to be determined as the load branch.
ii) If there are ' $n$ ' no. of sources, then consider only one source out them as acting alone in the circuit \& other voltage sources being replaced by short-circuit and and current sources being replaced by open-circuit.
iii) Thus with only one source acting alone in the circuit, use circuit analysis techniques to determine the load branch current. Let the load current due to this first source acting alone be $\mathrm{I}_{\mathrm{L} 1}$.
iv) Repeat the process to find the load current caused by second source acting alone. Let this load current be $\mathrm{I}_{\mathrm{L} 2}$.
v) Repeat the process to find the load currents $\mathrm{I}_{\mathrm{L} 3}, \mathrm{I}_{\mathrm{L} 4}, \ldots \ldots \mathrm{I}_{\mathrm{Ln}}$ due to remaining sources acting alone in the circuit.
vi) According to the Superposition theorem, the load current due to all sources acting simultaneously is given by the algebraic sum of the load currents caused by each source acting alone.
i.e $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L} 1}+\mathrm{I}_{\mathrm{L} 2}+\mathrm{I}_{\mathrm{L} 3}+\ldots \ldots \ldots+\mathrm{I}_{\mathrm{Ln}}$

5 c) ii) Find the $I_{L}$ for the circuit shown in Figure No. 6 using superposition theorem.


Fig. No. 6

3 marks for steps

## Ans:

(A) Consider voltage source of 50 V acting alone:


The total resistance appearing across 50 V source is given by,

$$
\mathrm{R}_{\mathrm{T}}=10+(30 \| 20)=10+(600 / 50)=22 \Omega
$$

The current $\mathrm{I}=50 / 22=2.273 \mathrm{~A}$
The current through $30 \Omega$ due to 50 V source alone is given by,

$$
\mathrm{I}_{\mathrm{L} 1}=\mathrm{I}(20 / 50)=2.273(20 / 50)=\mathbf{0 . 9 1 ~ A}
$$

(B) Consider voltage source of 20 V acting alone:


The total resistance appearing across 20 V source is given by,

$$
\mathrm{R}_{\mathrm{T}}=20+30 \| 10=20+(300 / 40)=27.5 \Omega
$$

The current $\mathrm{I}=20 / 27.5=0.73 \mathrm{~A}$

11/2 Marks
for Steps
$11 / 2$ Marks

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION <br> (Autonomous) <br> (ISO/IEC-27001-2013 Certified) 

## Model Answers

Summer-2019 Examinations
Subject \& Code: Electrical Circuits \& Networks (17323)
The current through $30 \Omega$ due to 20 V source alone is given by,
for Steps

$$
\mathrm{I}_{\mathrm{L} 2}=\mathrm{I}(10 / 40)=0.73(1 / 4)=\mathbf{0 . 1 8 2} \mathbf{~ A}
$$

By Superposition theorem, the current through $30 \Omega$ due to both sources is given by,

$$
\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L} 1}+\mathrm{I}_{\mathrm{L} 2}=(0.91+0.182)=\mathbf{1 . 0 9 2} \mathrm{A}
$$

Attempt any FOUR of the following:
6 a) Find current through branch AB using Thevenin's theorem as shown in Figure No. 7


Fig. No. 7
Ans:
i) Calculation of $\mathrm{V}_{\mathrm{Th}}$ :

Remove $\mathrm{R}_{\mathrm{L}}$ and find open circuit voltage across it.


1 mark

Resistances 4 \& 2 are in parallel $=(4 \times 2) /(4+2)=\mathbf{1 . 3 3} \boldsymbol{\Omega}$
$\mathrm{R}_{\mathrm{Th}}=1.33 \Omega$
iii) Thevenin equivalent circuit:


Load Current $\mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\mathrm{Th}} /\left(\mathrm{R}_{\mathrm{Th}}+\mathrm{R}_{\mathrm{L}}\right)=7.33 /(1.33+5)=\mathbf{1 . 1 5 7 9} \mathbf{~ a m p}$

1 mark

1 mark

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION <br> (Autonomous) <br> (ISO/IEC-27001-2013 Certified) 

## Model Answers

## Summer-2019 Examinations

## Subject \& Code: Electrical Circuits \& Networks (17323)

6 b) Find the value of load resistance $R_{L}$ to get maximum power transformer to it in Figure No. 8 .


Fig. No. 8

## Ans:

Maximum power will be transferred to load $\mathrm{R}_{\mathrm{L}}$, when load resistance $\mathrm{R}_{\mathrm{L}}$ is equal to internal resistance i.e. $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{Th}}$, Thevenin's equivalent resistance of the network.


Thevenin's equivalent resistance of the network is given by,
$\mathrm{R}_{\mathrm{Th}}=5 \| 5=(5 \times 5) /(5+5)=25 / 10=2.5 \Omega$
Thus when $\mathbf{R}_{\mathbf{L}}=\mathbf{2 . 5 \Omega}$, maximum power will be transferred to it.
6 c) Using Nodal voltage analysis find current through each branch in Figure No. 9


Fig. No. 9
Ans:


Apply KCL at node A

$$
\begin{gather*}
\frac{\mathrm{V}_{\mathrm{A}}-12}{10}+\frac{\mathrm{V}_{\mathrm{A}}}{2}+\frac{\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}}{3}=0 \\
\quad V_{A}\left[\frac{1}{10}+\frac{1}{2}+\frac{1}{3}\right]-V_{B}\left[\frac{1}{3}\right]-\frac{12}{10}=0 \\
V_{A}[0.933]-V_{B}[0.33]=1.2 \ldots \ldots \ldots \ldots . . . . . . . . . . \tag{1}
\end{gather*}
$$

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION <br> (Autonomous) <br> (ISO/IEC-27001-2013 Certified) 

## Model Answers

## Summer-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)
Apply KCL at node B

$$
\begin{aligned}
& \frac{\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{A}}{3}+\frac{\mathrm{V}_{\mathrm{B}}}{4}+\frac{\mathrm{V}_{\mathrm{B}}-6}{2}=0 \\
& \quad V_{B}\left[\frac{1}{3}+\frac{1}{4}+\frac{1}{2}\right]-V_{A}\left[\frac{1}{3}\right]-\frac{6}{2}=0
\end{aligned}
$$

$$
\begin{equation*}
V_{A}[-0.33]+V_{B}[1.0833]=3 . \tag{2}
\end{equation*}
$$

$1 / 2$ mark
Expressing eq.(1) and (2) in matrix form,

$$
\left[\begin{array}{cc}
0.933 & -0.33 \\
-0.33 & 1.0833
\end{array}\right]\left[\begin{array}{l}
\mathrm{V}_{\mathrm{A}} \\
\mathrm{~V}_{\mathrm{B}}
\end{array}\right]=\left[\begin{array}{c}
1.2 \\
3
\end{array}\right]
$$

$$
\therefore \Delta=\left|\begin{array}{cc}
0.933 & -0.33 \\
-0.33 & 1.0833
\end{array}\right|=1.011-0.1089=0.9021
$$

By Cramer's rule,

$$
\begin{array}{ccc}
\mathrm{V}_{\mathrm{A}} & =\frac{\left|\begin{array}{cc}
1.2 & -0.33 \\
3 & 1.0833
\end{array}\right|}{\Delta}=\frac{(1.2 \times 1.0833)-(3 \times-0.33)}{0.9021}=\frac{1.29996+0.99}{0.9021}=\mathbf{2 . 5 4} \mathbf{~ v o l t} & 1 / 2 \mathrm{mark} \\
\mathrm{~V}_{\mathrm{B}}=\frac{\left|\begin{array}{cc}
0.933 & 1.2 \\
-0.33 & 3
\end{array}\right|}{\Delta}=\frac{(0.933 \times 3)-(-0.33 \times 1.2)}{0.9021}=\frac{2.799+0.396}{0.9021}=\mathbf{3 . 5 4} \mathbf{~ v o l t} & 1 / 2 \mathrm{mark}
\end{array}
$$

Current through branch $\mathrm{AB}(3 \Omega)=\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right) / 3=(2.54-3.54) / 3=\mathbf{- 0 . 3 3} \mathbf{~ a m p}$

$$
=0.33 \mathrm{~A} \text { from } \mathrm{B} \text { to } \mathrm{A}
$$

Current through branches $(12 \mathrm{~V}$ source $\& 10 \Omega)=\left(12-\mathrm{V}_{\mathrm{A}}\right) / 10=(12-2.54) / 10$

$$
=0.946 \mathrm{amp} \text { from } 12 \mathrm{~V} \text { source to node } \mathrm{A}
$$

$1 / 2$ mark

Current through branches $(6 \mathrm{~V}$ source $\& 2 \Omega)=\left(6-\mathrm{V}_{\mathrm{B}}\right) / 2=(6-3.54) / 2$

$$
=1.23 \mathrm{amp} \text { from } 6 \mathrm{~V} \text { source to node } \mathrm{B}
$$

Current through branch $(2 \Omega)=\mathrm{V}_{\mathrm{A}} / 2=2.54 / 2$
$=1.27 \mathbf{~ a m p}$ from noade $\mathbf{A}$ to Reference node
$1 / 2$ mark
Current through branch $(4 \Omega)=V_{B} / 4=(3.54) / 4$
$=0.885 \mathrm{amp}$ from node $B$ to Reference node $1 / 2$ mark

6 d) Draw the curves for following parameters during series resonance condition with respect to frequency.
i) $X_{L}$
ii) $X_{C}$
iii) I
iv) Z

## Ans:

# Model Answers <br> Summer-2019 Examinations <br> Subject \& Code: Electrical Circuits \& Networks (17323) 



1 mark for each curve of $\mathrm{X}_{\mathrm{L}}, \mathrm{X}_{\mathrm{C}}, \mathrm{I} \&$ Z 0 instant is called "Initial Condition".
For the three basic circuit elements the initial conditions are used in following way:
i) Resistor:

At any time it acts like resistor only, with no change in condition.

## ii) Inductor:

The current through an inductor cannot change instantly. If the inductor current is zero just before switching, then whatever may be the applied voltage, just after switching the inductor current will remain zero. i.e the inductor must be acting as open-circuit at instant $\mathrm{t}=0$. If the inductor current is $\mathrm{I}_{0}$ before switching, then just after switching the inductor current will remain same as $\mathrm{I}_{0}$, and having stored energy hence it is represented by a current source of value $\mathrm{I}_{0}$ in parallel with open circuit.
As time passes the inductor current slowly rises and finally it becomes constant. Therefore the voltage across the inductor falls to zero $\left[\mathrm{v}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{dit}_{\mathrm{L}}}{\mathrm{dt}}=0\right]$.
iii) Capacitor:

The voltage across capacitor cannot change instantly. If the capacitor voltage is zero initially just before switching, then whatever may be the current flowing, just after switching the capacitor voltage will remain zero. i.e the capacitor must be acting as short-circuit at instant $t=0$. If capacitor is previously charged to some voltage $\mathrm{V}_{0}$, then also after switching at $\mathrm{t}=0$, the voltage across capacitor remains same $\mathrm{V}_{0}$. Since the energy is stored in the capacitor, it is represented by a voltage

# MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION <br> (Autonomous) <br> (ISO/IEC-27001-2013 Certified) 

## Model Answers <br> Summer-2019 Examinations

Subject \& Code: Electrical Circuits \& Networks (17323)
source $\mathrm{V}_{0}$ in series with short-circuit.
As time passes the capacitor voltage slowly rises and finally it becomes constant.
Therefore the current through the capacitor falls to zero $\left[\mathrm{i}_{\mathrm{C}}=\mathrm{C} \frac{\mathrm{dv} \mathrm{C}_{\mathrm{C}}}{\mathrm{dt}}=0\right]$.
The initial conditions are summarized in following table:

| Element and condition at $\mathrm{t}=0^{-}$ | Initial Condition at $\mathrm{t}=0^{+}$ |
| :---: | :---: |
| ~~~~~~ | ~~~~~~~ |
| - | $0$ |
| $\stackrel{\mathrm{I}_{0}}{\longrightarrow} \mathrm{~L}$ |  |
|  | $\xrightarrow{\text { S.C. }}$ |
| $\stackrel{\text { - }}{\substack{c \\ v_{0}=\frac{q_{0}}{c}}}$ |  |

6 f) Compare single phase system with three phase system by using following points.
i) Voltage.
ii) Transmission efficiency.
iii) Size of machine to produce same output.
iv) Cross sectional area of conductor.

## Ans:

| Particulars | Single-phase System | Three-phase System |
| :---: | :--- | :--- |
| Voltage | Only one voltage level is <br> possible i.e phase voltage | Two voltage levels are <br> possible i.e Phase voltage <br> and Line voltage |
| Transmission <br> Efficiency | Comparatively less | Comparatively higher |
| Size of machine to <br> produce same output | Comparatively Bigger | Comparatively Smaller |
| Cross-sectional area <br> of conductor | Comparatively Bigger | Comparatively Smaller |

1 mark for each point $=4$ marks

