

17320

<u>MODEL ANSWER</u> SUMMER- 19 EXAMINATION

Subject Title: Principles of Digital Techniques

Subject Code:17320

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Markin g Scheme
Q.1 a)		Attempt any SIX of the following :	12M
	i)	Convert the following binary number to gray code.	2M
		1)1101101	
		2)101110	
	Ans:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1M
		$2 1 0 1 1 1 0 \rightarrow Binary$ $1 0 1 1 1 0 \rightarrow Binary$ $1 0 1 1 1 0 \rightarrow Binary$ $1 1 1 0 0 1 \rightarrow Gray code$	1M
	ii)	List any two applications of multiplexer.	2M

1 2 3 4 5 3 ii) S Ans: 1 2 3 v) I Ans: 1 2 3 v) I Ans: 1 2 3 4 5 (v) I 2 3 (v) I 2 3 (vi) I 2 3 (vi) I	 Used in Data Acquis Used in Digital to An Used as Data selector Used in Designing co Used in Designing co Used in Designing co Etate the different trig Level Triggering- a. I Edge Triggering- a. I List any two application For temporary data se As a delay line. 	<pre>ition system. alog converters. r. ombinational circuits. ggering methods in digital cir Positive level triggering b. Ne Positive edge triggering b. Ne ons of shift registers.</pre>	r cuit. egative level triggering gative edge triggering	2M 2M 1M 1M
2 3 4 5 ii) S Ans: 1 2 v) I Ans: 1 2 3 4 5 6 v) I 1 2 3 4 5 6 v) I 1 2 3 4 5 6 v) I 1 2 3 4 5 6 v) I 1 2 3 4 5 6 7 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	 Used in Data Acquis Used in Digital to An Used as Data selecto Used in Designing co Used in Designing co State the different trig Level Triggering- a. Edge Triggering- a. I List any two application For temporary data selector As a delay line. 	alog converters. r. ombinational circuits. ggering methods in digital cir Positive level triggering b. Ne Positive edge triggering b. Ne ons of shift registers.	r cuit. egative level triggering gative edge triggering	2M 1M 1M
3 4 5 ii) S Ans: 1 2 v) I Ans: 1 2 3 4 5 (v) I Ans: 1 2 3 4 5 (v) I 2 3 4 5 (v) I 2 3 4 5 (v) I 2 3 (v) I 2 3 (vi) 1 (vi) 1 (vi) (vi)	 3.Used in Digital to An 4. Used as Data selecto 5.Used in Designing co 5.Used in Designing co 5.Used Triggering- a. 1. Level Triggering- a. 2. Edge Triggering- a. I List any two application 1. For temporary data so 2. As a delay line. 	alog converters. r. ombinational circuits. ggering methods in digital cir Positive level triggering b. Ne Positive edge triggering b. Ne ons of shift registers.	rcuit. egative level triggering gative edge triggering	2M 1M 1M
4 5 ii) S Ans: 1 2 v) I Ans: 1 2 3 4 5 6 v) I 1 2 3 4 5 6 v) I 1 2 3 4 5 6 v) I 1 2 3 4 5 6 v) I 1 2 3 4 5 6 v) I 1 2 3 4 5 6 v) I 1 2 3 4 5 6 v) I 1 2 3 4 5 6 v) I 1 2 3 4 5 6 6 v) I 1 2 2 4 5 6 6 v) I 1 2 2 5 6 v) I 1 2 2 5 6 v) I 1 2 2 5 6 v) I 1 2 2 5 6 1 2 5 6 1 1 2 2 5 6 1 1 2 2 5 6 1 1 2 2 5 6 6 1 1 2 5 6 6 1 1 2 2 5 7 1 2 2 7 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	 Used as Data selector Used in Designing constrained in Designing constrained by Designing constrained by Design and D	r. ombinational circuits. ggering methods in digital cir Positive level triggering b. Ne Positive edge triggering b. Ne ons of shift registers.	rcuit. egative level triggering gative edge triggering	2M 1M 1M
ii) 5 iii) S Ans: 1 2 2 v) I Ans: 1 2 3 4 5 6 7 1 2 Ans: 1 2 3 4 5 6 7 1 2 Ans: 1 2 2 Ans: 1 2 2 (i) (i)	 5.Used in Designing constrained by the second sec	ombinational circuits. ggering methods in digital cir Positive level triggering b. Ne Positive edge triggering b. Ne ons of shift registers.	rcuit. egative level triggering gative edge triggering	2M 1M 1M
ii) S Ans: 1 2 v) I Ans: 1 2 v) I 4 5 6 v) I 2 Ans: 1 2 Ans: 1 2 Ans: 1 2 Ans: 1 2 V) I 2 Ans: 1 2 vi) 0	State the different trig 1. Level Triggering- a. 2. Edge Triggering- a. I List any two application 1. For temporary data so 2. As a delay line.	gering methods in digital cir Positive level triggering b. Ne Positive edge triggering b. Ne ons of shift registers.	rcuit. egative level triggering gative edge triggering	2M 1M 1M
Ans: 1 2 2 v) I Ans: 1 2 3 4 5 6 7 v) I 2 3 4 5 6 7 1 2 Ans: 1 2 2 Ans: 1 2 2 Vi) I 2 2 Vi) I 2 2	 Level Triggering- a. Edge Triggering- a. I List any two application For temporary data s As a delay line. 	Positive level triggering b. Ne Positive edge triggering b. Ne ons of shift registers.	egative level triggering gative edge triggering	1M 1M
v) I Ans: 1 2 3 4 5 6 7 1 2 Ans: 1 2 2 Ans: 1 2 2 Ans: 1 2 2 Ans: 1 2 2	 Edge Triggering- a. I List any two application For temporary data s As a delay line. 	Positive edge triggering b. Ne	gative edge triggering	1M
v) I Ans: 1 2 3 4 5 6 6 v) 1 2 2 Ans: 1 2 2 Ans: 1 2 2 Ans: 1 2 2 Ans: 1 2 2	L ist any two application 1. For temporary data s 2. As a delay line.	ons of shift registers.		
Ans: 1 2 3 4 5 6 7 7 1 2 2 Ans: 1 2 2 7 1 2 2 3 3 4 5 6 6 7 7 1 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	 For temporary data s As a delay line. 			2M
v) I 1 2 Ans: 1 2 vi) (For serial data transn Serial to parallel dat Parallel to serial data As Ring counter. 	torage. nission. a converter. a converter.		Any 2 points- 2 M
Ans: 1 2 vi) (Identify following ICs 1)IC 0800 2)IC 0809			2M
vi) (1. IC 0800- 8 bit Dig 2. IC 0809- 8 bit An	gital to Analog converter alog to Digital converter		1M for each
F	Compare volatile men points)	nory and non-volatile memor	ry(any two-	2M
Ans:	Parameter	Volatile memory	Non-Volatile memory	Any 2
	definition	Information is lost if power is turned off	Information is not lost if power is turned off	points- 2M
	classification	All RAMs	ROMs, EPROM, magnetic memories	
	Effect of power	Stored information is retained only as long as power is on.	No effect of power on stored information	
	applications	For temporary Storage	For permanent storage of information	
vii) S	State any four Boolea	n laws.		2M

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	Ans:	1.	Law of Identity	$\frac{A}{A} = \frac{A}{A}$] /	Any 4
		2.	Commutative Law	$A = A$ $A \cdot B = B \cdot A$ $A \cdot B = B \cdot A$		each of
		3.	Associative Law	$A + B = B + A$ $A \cdot (B \cdot C) = A \cdot B \cdot C$ $A + (B + C) = A + B + C$		1/2M
		4.	Idempotent Law	$A \cdot A = A$		
		5.	Double Negative Law	$\overline{A + A = A}$		
		6.	Complementary Law	$A \cdot \overline{A} = 0$		
		7.	Law of Intersection	$A \cdot 1 = A$		
		8.	Law of Union	A + 0 = 0 A + 1 = 1 A + 0 = 0		
		9.	DeMorgan's Theorem	$\overline{A} + 0 = A$ $\overline{AB} = \overline{A} + \overline{B}$ $\overline{A} + \overline{B} = \overline{A} + \overline{B}$		
		10.	Distributive Law	$A + B = AB$ $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$ $A + (BC) = (A + B) \cdot (A + C)$		
		11.	Law of Absorption	$A \cdot (A + B) = A$ $A + (AB) = A$		
		12.	Law of Common Identities	$A \cdot (\overline{A} + B) = AB$ $A + (\overline{A}B) = A + B$		
		Nota	Nome of the law is ontion		-J _	
		Note.	Ivalle of the law is option	121		
	VIII)	Draw the log	ic symbol and truth table	for two input EX-OR gate.		21/1
			L	logic Symbol:		1M-
			^	IT I		symbol
			В —	#		
			7	Fruth table:		
			2 Ir	nut EXOR gate		
			A			1M- truth
						table
			1			
			1	1 0		
•		Attempt any	TWO of the following :			014
D)	;)					
	1)	Solve the foll	lowing subtraction using 9	9's and 10's complement method.		4171
		$(84)_{10}$ -(23) ₁₀				

	Step-1) Implementation of $F(A, B, C, D) = \sum m(1, 2, 3, 5, 7, 9, 12)$ using $K \cdot map$. ABCP ED EP (D CD (D) ABCP ED (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array}\end{array}\end{array}\end{array}$	
	equations - Group 1) - AD Group 2) - ABCD Group 3) - ABCD Group 3) - ABCD Group 4) - BCD Step 2) - Simplified equation using K-map - Y = AD + ABCD + ABCD + ABC + DCD	
iii)	Implement the following function using 16:1 multiplexer. $Y=\sum m(1,2,5,6,8, 12)$	4M

	Ans:	D ₁ D ₂ D ₃ D ₃ D ₄ D ₆ D ₇ D ₇ B ₈ 18:1 D ₇ D ₇ D ₇ D ₇ D ₇ D ₇ D ₇ D ₇	4M
Q.2		Attempt any FOUR of the following:	16M
	a)	Convert the following numbers in binary and add them. (174) ₈ +(253) ₈	4M
	Ans:	$\frac{\text{step 1}}{1} = \text{Binary of (174)}_{8}$ $\frac{1}{7} = \frac{7}{4}$ $001 111 100 \rightarrow (1M)$ $\frac{\text{step - 2}}{10} = \text{Binary of (253)}_{8}$ $010 101 011 \rightarrow (1M)$ $\frac{\text{step - 3}}{101} = \text{Add binary of (174)}_{8}$ $\frac{1}{100} = 101 011$ $\frac{1}{100} = 101 011$ $\frac{1}{100} = 101 011$ $\frac{1}{100} = 100 111 (2M)$ $\frac{1}{100} = \frac{1}{100} = \frac$	

b)	Why NAND gate is called universal gate? Implement basic gates using NAND	4 M
Ans:	 gate only. 1. With the help of NAND gate it is possible to implement all basic gates hence it is called as Universal gate. 	1M for reason
	2. Implementation of basic gates (NOT, AND OR) using NAND gate:	
		1M for each basic
		gate design
	$A = \begin{bmatrix} NAND \\ A \\ \hline \\ NAND \\ \hline \\ NAND \\ \hline \\ NAND \\ \hline \\ \hline \\ NAND \\ \hline \\ \hline \\ NAND \\ \hline \\ \hline \\ \hline \\ NAND \\ \hline \\ $	
c)	Convert the following expressions into their standard forms	4M
	i)Y=A+BC+ABC ii)Y=(A+B)(A+C)	

Ans:
1)
$$Y_{=} A + Bc + ABC$$

 $i \in Y_{=} A + Bc + ABC$
 $i \in Y_{=} A + Bc + ABC + ABC$
 $i \in Y_{=} A + Bc + ABC + ABC + ABC$
 $i \in ABC + ABC + ABC + ABC + ABC$
 $i = ABC + ABC + ABC + ABC + ABC + ABC$
 $i = ABC + ABC + ABC + ABC + ABC + ABC$
 $i = ABC + ABC + ABC + ABC + ABC + ABC + ABC$
 $i = Y_{=} ABC + ABC$

	for FF-B, hence it will toggle so QB becomes 1, which will acts as positive clock edge to FF-C hence QC remains unchanged so QC=0 therefore QC QB QA= 010 after 2nd clock pulse 3rd clock pulse: After the 3rd clock pulse, the output are QCQBQA=011 accordingly. So all flip-flops will never trigger at the same time hence the counter is called as Asynchronous counter. Timing (output) waveform: $\int_{Q_{Q}} \int_{Q_{Q}} \int_{Q_{Q}$	1M
f)	State and define any four specifications of DAC.	4 M
Ans	 specifications of DAC Resolution Accuracy Setting time or DAC speed Gain Temperature sensitivity Linearity Môn tonicity Resolution:- It is defined as the smallest possible change in the output voltage as a fraction or Percentage of the full scale output range it can be produced by a single step change in digital input. Accuracy:- The accuracy of DAC is a measure of difference between the actual output as a percentage of full scale or maximum output voltage. Setting time or DAC speed:- It is the time required for the DAC output to go from zero to full scale as the binary input is changed from 0 s to all 1s. Actually the setting time is measured as the time for the DAC output to settle within ±½ step size of its final value. Gain:- It is defined as the ratio of the output voltage at DAC to the analogy equivalent of digital input. Temp sensitivity: The parameters of active and passive devices varies with temp. These changes affects the	Any 4 pont- 1M each point

	1	1							1
		analogy output v	oltage	of DAC	Cs. It is spec	cified a	as $\pm pp m/oc$.		
		 6) Linearity: - In DAC converter result in equal in The linearity of relationship is sa 7) Môn tonicity: It is defined as the implies ±½ LSB 	ers, eq crement the contrisfied tisfied the qua accura	ual incr nt in the nverter lity of E acy.	rements in t e analogy ou is a measur DAC having	the num utput v re of th g no di	nerical signific oltage. ne precision wi fferential linear	cance of the digital input should th which the linear input output rity problem. Thus monotonicity	
Q.3		Attempt any FC	OUR of	f the fol	llowing :				16M
	a)	Add (248) ₁₀ and	(568)	10 in BC	^C D				4 M
	Ans:	(248)10 001	0 0	0100	1000				
		$(568)_{10}$ + 0102	L 0)110	1000	-	(1M)		
		011 Va B(l1 1 lid I CD F	011 nvalid 3CDBC	0000 In valid D		(1M)		
		ADD 0110 TO I	NVAI	LID BC	D				
		11 011 + 000	1 1 1 1 0 02	1 011 110	0000 0110				
		10	00 0	001	0110	·	(1M)		
		8		1	6				
			=	: (816)	10	(11	M)		
	b)	Compare CMO	S, TT	L and E	ECL logic f	amilie	s. (any four po	ints)	4 M
	Ans:								A m
		Parameter		СМО	S		TTL	ECL	four
		Basic gates		NOR	/NAND		NAND	OR/NOR	1M
		Fan out		>50			10	25	Cach

	Propagation delay(in ns)	70-105	10		2				
	Power dissipation(in mW)	1.01mW	10mW		40-55				
	Noise Immunity	Excellent	Very go	od	Good				
c)	Design 16:1 multiplex	er using 4:1 mu	ltiplexer.			4N			
	$12 \rightarrow 4xx$ $13 \rightarrow 4xx$ $13 \rightarrow 4xx$ $14 \rightarrow 4xx$ $15 \rightarrow 4xx$ $16 \rightarrow 4xx$ $17 \rightarrow 4xx$ $17 \rightarrow 4xx$ $10 \rightarrow 4xx$ $11 \rightarrow 4xx$								
d)	Write the use of prese	t and clear tern	ninal in a flip-floj	p		4N			
A115;	In the Flip-flop when the It may be set(Q=1) or read of the set(Q=1) or read o	ne power is switc eset(Q=0)state. is desired to init ed. This is done l t & Clear I/P	whed ON,the state ially set or reset th by preset(Pr)and c	of the circuit is ne flip flop ie. 7 elear(Cr) inputs	uncertain. The initial state of the				
		Input		Output(Q)	Operation Performed	ter			
	CLK	Cr	Pr			al ea			
	1 X	1	1	Qn+1	Normal FF	-			
	X	1	0	1					
	So ,the O/P of the flip-f output or reset the outp & Clear are used. These	flop changes whe ut i e, to start wit	enever a clock sign th definite initial s resets the flip-flop	nal is applied, i state, then two a	t is necessary to set the additional inputs Preset f clock.				
e)	State advantages and	disadvantages o	of single slope AD	OC. (any two p	oints each)	4N			
Ans:	Any relevant Advanta	ges of single slo	pe AD	<u> </u>		:21			

		2.Be sides th Any relevan 1.It provide 2.Large erro	e accuracy at Disadvan less speed a ors possible	these types t ages of Si s compared due to noise	of converters ngle slope A l to dual slope e.	offer a lo DC	w cost alternative to others.	:2M
	f)	Compare E	PROM and	d EEPRON	A with any fo	our points	•	4M
	Ans:	SR.NO.	EPROM			EEPRO	M	
		1	Ultraviole the conten	t Light is us t of EPRO	sed to erase M.	EEPRON electroni	A contents are erased using c signal.	Any
		2	EPROM h crystal wit	nas a transpa ndow at the	arent quartz top.	EEPRON opaque p	A are totally encased in an lastic case.	four points Each
		3	EPROM c from the c and reprog BIOS.	chip has to b computer cir gram the co	be removed rcuit to erase mputer	EEPRON reprogram to erase a compute	A chip can be erased and mmed in the computer circuit and reprogram the content of r BIOS.	point 1M
		4	EPROM i	s an older to	echnology	EEPRON EPROM	A is a modern version over	
Q.4		Attempt an	y FOUR of	the follow	ing :			16M
	a)	State and p	rove De' M	organ's th	eorems.			4 M
	Ans:	i) \overline{AB} = It states 1 A 0 0 1 1 1 Column i.e. \overline{AB} = Hence pr ii) $\overline{A+B}$ It states t 1 A 0 0 1 1 1 Column \overline{A} \overline{A}	$\overline{A} + \overline{B}$ s that compl 2 B 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	iment of provide the second s	oduct is equal $ \begin{array}{c c} $	to sum of \overline{B} \overline{B} 1 0 1 0 \overline{B} \overline{B} 1 0 1 0 1 0	6 $\overline{A} + \overline{B}$ 1 1 1 1 1 0 0 beir complements. $\overline{6}$ $\overline{\overline{A} \cdot \overline{B}}$ 1 0 0 0 0 0 0 0 0	State 2M Proof 2M
	b)	Realize the I) F1=∑m(following fu 0, 1,2,5,7,9,	unction usi , 11,15)	ng de multip	lexer.		4M

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

	where 1 allowed to enter i Therefore $Q_A Q_B Q_C Q_D = 10$ next in a circulating mani Therefore upon applicatio	in 1st flip f 000. Upon ner. on of 1s t C	flop by applic	activating ation of c ulse status	g preset terminal. lock the data shifts from c s of $Q_A Q_B Q_C Q_D = 0100$.	one flip flop to	
	2nd click pulse status of Q 3rd click pulse status of Q And status of Q _A Q _B Q _C Q _L	QAQBQCQE QAQBQCQE will repe	= 001 = 000 eat after	0; 1. r 4th click	pulse as shown in truth		
d)	Convert J-K flip into 'D'	' and 'T' f	flip-flo	p. Write	their truth tables.		4N
Ans:	D Flip flop :	D –	V	J 7 _ JI Flip I K	Q K Flop Q		11
	Truth Table : T Flip flop :	D 0 1	CLK ↑ ↑	Qn+1 0 1	Comments Reset Set		11
		C		-J →CLK -K			11
	Truth table:						
			0 1		n+1		11

Ans:	Static RAM and dynamic RAM	Any four point
f)	Compare static RAM with Dynamic RAM, (any four points)	4M
	 Working Of Successive Approximation ADC : DAC=Digital to Analog converter EOC=End of Conversion SAR=successive approximation register S/H=sample and hold circuit Vin=input voltage Verve=reference voltage The successive approximation Analog to digital converter circuit typically consists of four chief sub circuits: 1. A sample and hold circuit to acquire the input voltage (Vin). 2. An analog voltage comparator that compares Vin to the output of the internal DAC and outputs the result of the comparison to the successive approximation register(SAR). 3. A successive approximation register sub circuit designed to supply an approximate digital code of Vin to the internal DAC. 4. An internal reference DAC that supplies the comparator with an analog voltage equivalent of the digital code output of the SAR for comparison with Vin. The successive approximation register is initialized so that the most significant bit (MSB) is equal to digital 1.This code is fed into DAC, which then supplies the analog equivalent of this digital code (Vref/2) into the comparator causes the SAR to reset this bit; otherwise, the bit is left a 1. Then the next bit is set to 1 and the same test is done, continuing this binary search until every bit in the SAR has been tested. The resulting code is the digital approximation of the sampled input voltage and is finally output by the DAC at the end of the conversion (EOC). This code is fed into the DAC, which then supplies the analog equivalent. 	
Ans:	What the neip of block diagram. Describe the working of successive approximation ADC.	Bloc Diag m-2 Wor ng-2
^	With the help of blook diagram. Decembe the working of guessessing approximation ALM'	

			Parameter	Static RAM	Dynamic RAM		Each	
			Circuit Configuration	Each SRAM cell is	Each cell is one			
				a flip flop	MOSFET & a capacitor			
			Bits stored	In the form of voltage	In the form of charges			
			No. of components per cell	More	Less			
			Storage capacity	Less	More			
Q5		Attempt any FC	OUR of the following	J•			16	
	a)	Draw the circuit diagram of CMOS NOT gate and explain its working.						
	Ans:	Circuit diagram	n of CMOS NOT gat Input Vi Digit NC	te:	(Q2) <mark>Output</mark> O (Q1)		2M	
		Working: 1. With $V_i =$ • W V • H 2. With $V_i =$ • W (F • H • T	= 0V (logic 0) Vith $V_i = 0$, V_{GS} of Q_1 T_{DD} . So Q_2 ON. Vence $V_o = \pm V_{DD}$ i.e. I = V_{DD} (logic 1) Vith $V_i = + V_{DD}$, $V_{GS} = 0$ PMOS) = 0V. So Q_2 (Vence, Vo is connected hus inversion takes p	(NMOS) = 0V, S logic 1. of Q ₁ (NMOS) = 7 DFF. d to ground i.e. Ve lace.	So Q_1 OFF. But V_{GS} of Q_1 OFF. But V_{DD} , So Q_1 ON. But V_{DD}	Q ₂ (PMOS) =	2M	
	b)	Draw and expla logic gates.	in circuit diagram o	of 1 : 4 de multip	lexer using		4M	

Ans:	Circuit diagram o	f 1 : 4 de r	nultipl	exer us	ing logi	c gates:				(dia – 2M
			DAȚA D —		o 4 Demultiplexer		$\begin{array}{c} & & Y_{0} \\ & & & Y_{1} \\ & & & Y_{2} \\ & & & & Y_{3} \end{array}$			
	 Working: A 1-to-4 de outputs (Y₀) The input of combination The truth ta From the truth ta From the truth ta Similarly, of lines. 	e multiplex to Y_3). data goes n of select ble of this uth table it and when S other outpu	er has to any lines. type of is clea $_1=0$ an ts are c	a single one of de mul r that, w nd s0=1, connecte	input (I the fou tiplexer then S1= then the ed to the	D), two r outpu is given =0 and S e data in e input fo	selection ts at a $\frac{1}{2}$ below. 30=0, th put is co or other	n lines (given ti e data in onnected two cor	S_1 and S_0) and four me for a particular uput is connected to to output Y_1 . mbinations of select	Work 2M
	Truth Table: (Optional)									
		Data Input	Select	Inputs		Out	puts			
		D	S ₁	S ₀	Y ₃	Y ₂	Y ₁	Yo		
		D	0	0	0	0	0	D		
		D	1	0	0	D	0	0		
		D	1	1	D	0	0	0		
c)	In the Fig. No. 1 t	he control	signal	s S ₁ ,S ₀	changes	from 0	0 to		<u> </u>	4 M
	11. Write the trut	h table for Fig	[.] outpu gure N	its Q _A a o. 1.	SA nd					

	- Q + Fig. No. 1	
Ans:	If the control signals S1S0 changes from 00 to 11 then the truth table for outputs QA and $\overline{Q_A}$ are as below. $ \begin{array}{c c} \hline S1 & S0 & QA & \overline{QA} \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 1 \end{array} $	4M
d)	Draw 4 bit SISO shift register using D-flip-flop. Explain its working in brief with waveforms.	4M
Ans:	Circuit Diagram:	2M
	 Working: In this serial in serial out shift register, when the clock signal is applied and the serial data is given; only one bit will be available at output at a time in the order of the input data. 	1M

		$Vo = -VR (B1.2^{-1} + B2.2^{-2} + B3.2^{-3} + B4.2^{-4} + B5.2^{-5})$	
		$= -10 (1*1/2 + 0 + 0 + 0 + 1 * 1/2^{5})$	
		= -10 (1*1/2 + 1 *1/16)	
		= -10(0.5 + 0.03125) = 5.3125V	
		Vo = 5.3125 V	
	f)	State any four advantages of semiconductor memories.	4M
	Ans:	1. Occupy a small area.	(Each
		2. Have a fast access time.	advant
		3. Operate with low power consumption.	age
		4. They are non – volatile	1mk)
Q.6		Attempt any FOUR of the following:	16M
	a)	Solve the following subtraction using L's and 2's complement	
		method $(10110)_{2}$ - $(10011)_{2}$	4M
	Δns·		2M
	1115.	1'se complement:	2111
		$\frac{1}{(10110)_2} - (10011)_2 = (00011)_2$	
		1 'sc of $(10011)_2 = (01100)_2$	
		10110	
		+ 01100	
		$\frac{1}{1}$ 00010 Add Carry	
		1	
		$\frac{1}{00011}$	
		2'sc complement:	2M
		$\frac{1}{(10110)_2 - (10011)_2} = (00011)_2$	
		$2^{\circ}sc of (10011)_2 = (01100)_2 + (00001)_2 = (01101)_2$	
		10110	
		01101	
		+ 01101	
		$\frac{+ 01101}{1 00011}$ Discard Carry	
		$\frac{+ 01101}{1 00011}$ Discard Carry	
		$\frac{+ 01101}{1 00011}$ Discard Carry	
	b)	$\frac{+ 01101}{1 00011}$ Discard Carry Simplify the following expressions using Boolean laws.	
	b)	$\frac{+ 01101}{1 00011}$ Discard Carry Simplify the following expressions using Boolean laws.	
	b)	$\frac{+ 01101}{1 00011}$ Discard Carry Simplify the following expressions using Boolean laws. (i) $Y = \overline{A} \overline{B} C + B\overline{C} + \overline{ABC} + ABC$	
	b)	$\frac{+ 01101}{1 00011}$ Discard Carry Simplify the following expressions using Boolean laws. (i) $Y = \overline{A} \overline{B} C + B\overline{C} + \overline{A}BC + ABC$ (ii) $Y = \overline{D}(C + D)$	4M

e)	Draw the block diagram of IC 7490 and specify it's working as					
	decade counter.	4 M				
Ans:	IC 7490 as decade counter:					
	Input A OFFRA FFB FFC FFD Input B R1 R2 S1 S2 Reset inputs Set inputs					
	Decade Counter Operation :					
	1. The output of MOD-2 (Q_A) is externally connected to the input B which is the clock input of					
	the internal MOD-5 counter.					
	2. Hence Q_A toggles on every falling edge of clock input whereas the output Q_D, Q_C, Q_B of the					
	MOD-5 counter will increment from 000 to 100 on low going change of QA output.					
	3. Due to cascading of MOD-2 and MOD-5 counter, the overall configuration becomes a					
	MOD-10 i.e. decade counter.					
	4. The reset inputs Ro(1), Ro(2) and preset inputs R9(1), R9(2) are connected to ground so as to					
	make them inactive.					
f)	Draw the circuit diagram of 3-bit binary weighted resistor type					
	DAC. Derive the expression for its output voltage.	4M				
Ans	Circuit diagram:	2N				

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

