MODEL ANSWER

SUMMER- 19 EXAMINATION

Subject Title: Principles of Digital Techniques

Subject Code:17320

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Markin g Scheme
Q. 1 a)		Attempt any SIX of the following :	12M
	i)	Convert the following binary number to gray code. 1)1101101 2)101110	2M
	Ans:	1) $1101101 \rightarrow$ Binary $\text { 2) } \begin{array}{rcccccc} 1 & 0 & 1 & 1 & 1 & 0 & \rightarrow \begin{array}{l} \text { Binary } \\ \text { number } \end{array} \\ \begin{array}{\|llllll} \pm & 1 & 0 & 0 & \oplus & 1 \\ \hline \end{array} & \rightarrow \text { Graycode } \end{array}$	1M $1 \mathrm{M}$
	ii)	List any two applications of multiplexer.	2M

	Ans:	1. Law of Identity $A=A$ $A=$ A 2. Commutative Law $A \cdot B=B \cdot A$ $A+B=B+A$ 3. Associative Law $A \cdot(B \cdot C)=A \cdot B \cdot C$ $A+(B+C)=A+B+C$ 4. Idempotent Law $A \cdot A=A$ $A+A=A$ 5. Double Negative Law $\overline{\bar{A}}=A$ 6. Complementary Law $A \cdot \bar{A}=0$ $A+\bar{A}=1$ 7. Law of Intersection $A \cdot 1=A$ $A \cdot 0=0$ 8. Law of Union $A+1=1$ $A+0=A$ 9. DeMorgan's Theorem $\overline{A B}=\bar{A}+\bar{B}$ $A+B=\bar{A}$ 10. Distributive Law $A \cdot(B+C)=(A \cdot B)+(A \cdot C)$ $A+(B C)=(A+B) \cdot(A+C)$ 11. Law of Absorption $A \cdot(A+B)=A$ $A+(A B)=A$ 12. Law of Common Identities $A \cdot(\bar{A}+B)=A B$ $A+(\bar{A} B)=A+B$ Note: Name of the law is optional	Any 4 Lawseach of 1/2M
	vii	Draw the logic symbol and truth table for two input EX-OR gate.	2M
		Logic Symbol: Truth table:	1Msymbol 1M- truth table
b)		Attempt any TWO of the following :	8M
	i)	Solve the following subtraction using 9's and 10's complement method. $(84)_{10-}(23)_{10}$	4M

	Step-1) Implementation of $F(A, B, C, D)=\operatorname{\sum m}(1,2,3,5,7,9,12)$ using k. map. equations - Group 1) - $\bar{A} D$ Group 2) $-A B \bar{C} \bar{D}$ Group 3) $-\bar{A} \bar{B} C$ Group 4) $-\bar{B} \overline{C D}$ Step 2)- simplified equation using K-map - $Y=\bar{A} D+A B \bar{C} \bar{D}+\bar{A} \bar{B} C+\bar{B} \bar{C} D$	
iii)	Implement the following function using 16:1 multiplexer. $\mathrm{Y}=\Sigma \mathrm{m}(1,2,5,6,8,12)$	4M

(Autonomous)
(ISO/IEC - 27001-2005 Certified)

Ans:

1) $Y=A+B C+A B C$
\rightarrow step-1) find the missing literals from each term -

$$
\text { i.e. } Y=\sim_{B \& C}^{A}+\underset{\sim}{B C}+\underset{A}{A B C}
$$

$B \& C \quad A \quad A l l$ literals are present
step 2) - ANDing each term (missing literals + complement of it) \&solve to get canonical sos form.

$$
\therefore Y=A(B+\bar{B})(C+\bar{c})+B C(A+\bar{A})+A B C
$$

$$
=(A B+A \bar{B})(C+\bar{C})+A B C+\bar{A} B C+A B C
$$

$$
=A B C+A B \bar{C}+A \bar{B} C+A \bar{B} \bar{C}+A B C+\bar{A} B C+A B C
$$

$$
=A B \bar{C}+A \bar{B} C+A \bar{B} \bar{C}+\bar{A} B C+A B C
$$

$$
[\because A B C+A B C+A B C=A B C]
$$

$$
\therefore Y=A B \bar{C}+A \bar{B} C+A \bar{B} \bar{C}+\bar{A} B C+A B C \ldots(1 M)
$$

2) $Y=(A+B)(A+C)$
step 1) - find missing literals-

$$
Y=\frac{(A+B)}{\vdots} \frac{(A+C)}{\square}
$$

Step 2). Oping each term (missing literal. Complement of it) \& Solve to get canonical pos form

$$
\begin{aligned}
& \therefore Y=(A+B+C \bar{C})(A+C+B \bar{B}) \\
&=(A+B+C)(A+B+\bar{C})(A+B+C)(A+\bar{B}+C) \\
& Y=(A+B+C)(A+B+\bar{C})(A+\bar{B}+C) \quad\{\because A \cdot A=A\} \cdots \\
& \cdots(1 M)
\end{aligned}
$$

d)	Draw the circuit diagram of master-slave J-K flip-flop with the help of NAND gates.	4 M
Ans:	Circuit diagram of master-slave J-K flip-flop :	$\mathbf{4 M}$

(ISO/IEC - 27001-2005 Certified)

e)	With the help of block diagram. Describe the working of successive approximation ADC.	4M
Ans:	Working Of Successive Approximation ADC : DAC=Digital to Analog converter EOC=End of Conversion SAR=successive approximation register S/H=sample and hold circuit Vin=input voltage Verve=reference voltage The successive approximation Analog to digital converter circuit typically consists of four chief sub circuits: 1. A sample and hold circuit to acquire the input voltage (Vin). 2. An analog voltage comparator that compares Vin to the output of the internal DAC and outputs the result of the comparison to the successive approximation register(SAR). 3. A successive approximation register sub circuit designed to supply an approximate digital code of Vin to the internal DAC. 4. An internal reference DAC that supplies the comparator with an analog voltage equivalent of the digital code output of the SAR for comparison with Vin. The successive approximation register is initialized so that the most significant bit (MSB) is equal to digital 1.This code is fed into DAC, which then supplies the analog equivalent of this digital code (Vref/2) into the comparator circuit for comparison with the sampled input voltage. If this analog voltage exceeds Vin the comparator causes the SAR to reset this bit; otherwise, the bit is left a 1 . Then the next bit is set to 1 and the same test is done, continuing this binary search until every bit in the SAR has been tested. The resulting code is the digital approximation of the sampled input voltage and is finally output by the DAC at the end of the conversion (EOC). This code is fed into the DAC, which then supplies the analog equivalent.	Block Diagra m-2M Worki ng-2M
f)	Compare static RAM with Dynamic RAM, (any four points)	4M
Ans:	Static RAM and dynamic RAM	Any four points1M

(ISO/IEC - 27001 - 2005 Certified)

		Parameter	I		Each
		Parameter	Static RAM		
		Circuit Configuration	Each SRAM cell is a flip flop	Each cell is one MOSFET \& a capacitor	
		Bits stored	In the form of voltage	In the form of charges	
		No. of components per cell	More	Less	
		Storage capacity	Less	More	
Q5		Attempt any FOUR of the following			16
	a)	Draw the circuit diagram of CMOS working.	NOT gate and	xplain its	4M
	Ans:	Circuit diagram of CMOS NOT gat Input, Vi Digit NO Working: 1. With $\mathrm{V}_{\mathrm{i}}=0 \mathrm{~V}$ (logic 0) - With $\mathrm{V}_{\mathrm{i}}=0, \mathrm{~V}_{\mathrm{GS}}$ of Q_{1} $V_{D D} . S o Q_{2} O N$. - Hence $V_{o}= \pm V_{D D}$ i.e l 2. With $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{DD}}$ (logic 1) - With $\mathrm{V}_{\mathrm{i}}=+\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{GS}}$ $(\mathrm{PMOS})=0 \mathrm{~V}$. So $\mathrm{Q}_{2} \mathrm{O}$ - Hence, Vo is connecte - Thus inversion takes p	$($ NMOS $)=0 \mathrm{~V}$, ogic 1. f $Q_{1}($ NMOS $)=$ FF. to ground i.e. V ace.	Q2) Output (Q1) Q_{1} OFF. But V_{GS} of $\mathrm{Q}_{2}(\mathrm{PMOS})=$ DD , So Q_{1} ON. But VGS of Q2 $=0$ i.e logic 0.	2M $2 \mathrm{M}$
	b)	Draw and explain circuit diagram of logic gates.	1:4 de multip	xer using	4M

		$\begin{aligned} \mathrm{Vo} & =-\mathrm{VR}\left(\mathrm{~B} 1.2^{-1}+\mathrm{B} 2.2^{-2}+\mathrm{B} 3.2^{-3}+\mathrm{B} 4.2^{-4}+\mathrm{B} 5.2^{-5}\right) \\ & =-10\left(1 * 1 / 2+0+0+0+1 * 1 / 2^{5}\right) \\ & =-10(1 * 1 / 2+1 * 1 / 16) \\ & =-10(0.5+0.03125)=5.3125 \mathrm{~V} \\ \mathrm{Vo} & =\underline{5.3125 \mathrm{~V}} \end{aligned}$	
	f)	State any four advantages of semiconductor memories.	4M
	Ans:	1. Occupy a small area. 2. Have a fast access time. 3. Operate with low power consumption. 4. They are non - volatile.	(Each advant age 1mk)
Q. 6		Attempt any FOUR of the following:	16M
	a)	Solve the following subtraction using 1 's and 2 's complement method (10110) $)_{2}-(10011)_{2}$	4M
	Ans:		2M $\mathbf{2 M}$
	b)	Simplify the following expressions using Boolean laws. (i) $\mathrm{Y}=\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+\mathrm{B} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{BC}+\mathrm{ABC}$ (ii) $\mathrm{Y}=\overline{\overline{\mathrm{D}}(\mathrm{C}+\mathrm{D})}$	4M

		$\begin{aligned} & \text { TT- } \\ & 1.5 \mathrm{M} \end{aligned}$
e)	Draw the block diagram of IC 7490 and specify it's working as decade counter.	4M
Ans:	IC 7490 as decade counter: Decade Counter Operation: 1. The output of MOD-2 $\left(\mathrm{Q}_{\mathrm{A}}\right)$ is externally connected to the input B which is the clock input of the internal MOD-5 counter. 2. Hence Q_{A} toggles on every falling edge of clock input whereas the output Q_{D}, Q_{C}, Q_{B} of the MOD-5 counter will increment from 000 to 100 on low going change of QA output. 3. Due to cascading of MOD-2 and MOD-5 counter, the overall configuration becomes a MOD-10 i.e. decade counter. 4. The reset inputs $\operatorname{Ro}(1), \operatorname{Ro}(2)$ and preset inputs $\mathrm{R} 9(1), \mathrm{R} 9(2)$ are connected to ground so as to make them inactive.	2M
f)	Draw the circuit diagram of 3-bit binary weighted resistor type DAC. Derive the expression for its output voltage.	4M
Ans	Circuit diagram:	2M

