MAHARASHTR (Autonomous) (ISO/IEC - 2700) OARD OF TECHNICAL EDUCATION rtified)

SUMMER- 19 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer Subject Code:

17319

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answers			
No.	Q.		Scheme		
	N.				
1	Α	Attempt any SIX:	12- Total		
			Marks		
	(a)	Name two types of BJT & draw their symbols.	2M		
	Ans:	Two types of BJT:	1M for		
			types		
		• PNP			
		C C			
			Symbols		
		n-p-n transistor p-n-p transistor			
	(b)	Define Q-point	2M		
	Ans:	Q-point:	2M for		
		For proper operation of transistor in any application, we set fixed levels of certain	correct		
		voltages and currents in a transistor. These values of currents and voltages define the	definition		
		voltages and currents in a datasistor. These values of currents and voltages define the			

Page No: ____/ N

Subject Name: Electronic Devices & Circuits Model Answer Subject Code:

	point, at which transistor operates. This point is called operating point. It is also known	
	as quiescent point or Q point.	
(c)	State the need and types of amplifier coupling.	2M
Ans:	 Need of amplifier coupling: 1. When ever large amplifier with very good impedance matching is required, a signal stage amplifier circuit will not able to amplify the signal to a large extent. 2. Thus, a number of stages are required for amplification, for this output of the first stage is connected to the input of the second stage, this is called as cascade system or multistage system. 3. The connection of output first stage to the input second stage is called coupling. 4. In case of a multistage system, the very good coupling is very essential, or else there will be a large number of losses at the output. Types of amplifier coupling: 1. R-C coupled amplifier 2. Transformer coupled amplifier 4. Inductance (LC) coupling 	1M for need 1M for types
(d)	Draw symbol for n-channel and p-channel MOSFET.	2M
Ans:	Symbol n-channel and p-channel MOSFET:	1M for n channel symbol 1M for p channel symbol
	(OR)	

MAHARAS HTR (Autonomous) (IS O/IEC - 2700) SOARD OF TECHNICAL EDUCATION rtified)

Subject Name: Electronic Devices & Circuits

SUMMER- 19 EXAMINATION

Model Answer Subject Code:

	N-channel Enhancement -MOSFET P-channel Enhancement -MOSFET	
(e)	State the necessity of tuned amplifier.	2M
Ans:	Necessity of tuned amplifier: 1. Selection of the desired radio frequency signal.	1M for each point
	2. Amplification of the selected signal to a selected voltage level.	
(f)	List applications of power amplifier.	2M
Ans:	Below are the applications of power amplifiers across different sectors: 1.Consumer Electronics: Audio power amplifiers are used in almost all consumer electronic devices ranging from microwave ovens, headphone drivers, televisions, mobile phones and Home theatre systems to theatrical and concert reinforcement systems.	1M each for any 2 correct applications
	2.Industrial: Switching type power amplifiers are used for controlling most of the industrial actuator systems like servos and DC motors.	
	3.Wireless Communication: High power amplifiers are important in transmission of cellular or FM broadcasting signals to users. Higher power levels made possible because of power amplifiers increases data transfer rates and usability. They are also used in satellite communication equipment.	
(g)	Sketch p-channel JFET construction.	2M

Subject Name: Electronic Devices & Circuits

SUMMER- 19 EXAMINATION

Model Answer Subject Code:

Ans:	p- channel JFET constructional diagram:	2M for			
	N-region P Channel Channel G G S S S	correct diagram			
(h)	State the working principle of UJT	2M			
Ans:	Figure shows the equivalent circuit of a unijunction transistor with voltage source V _{EE} connected across emitter and base 1 and V _{BB} connected across base 1 and base 2. Hence the Emitter diode is reversed biased by a voltage drop across the r _{B1} and its own barrier potential V _D . Thus total reverse bias voltage across a diode is equal to sum of η_V _{BB} and V _D . As long as the V _{EE} is below the total reverse bias voltage across the diode, it remains reverse biased and there is no emitter current. However if the V _{EE} voltage reaches or exceeds the value equal to $(\eta_v V_{BB} + V_D)$, the diode conducts V _{EE} , which causes the diode to conduct , is called peak point voltage. $V_{P} = \eta_v V_{BB} + V_D$	2M for correct answer			
	When the emitter current begins to flow ,the UJT is said to be fired, triggered or turned on.				
В	Attempt any TWO:				
(a)	Compare between CE, CB &CC configuration. (Any four points)	4M			

Subject Name: Electronic Devices & Circuits Model Answer Subject Code:

	1.Input resistance	Moderate	low	Very high	comparison points
	2.output resistance	Moderate	Very high	low	
	3.voltage gain	highest	high	Equal to one	
	4.current gain	$\beta = \frac{IC}{IB}$	$\alpha = \frac{IC}{IE}$	$\mathbf{\gamma} = \frac{IE}{IB}$	
	5.Applications	AF Applications	HF Applications	Impedance matching	
(b)	Draw the circuit diagram o obtained?	f based biased with e	emitter feedback	. How stability point i	s 4M
Ans:	Circuit diagram of based	biased with emitter	feedback		2M for circuit diagram
		(I _c I _b ↓ R _b ↓I _c C B V _{be} E	$ \begin{array}{c} \mathbf{F}_{\mathbf{r}} + \mathbf{I}_{\mathbf{b}} + \mathbf{V}_{\mathbf{cc}} \\ \mathbf{K}_{\mathbf{c}} \\ \end{array} $		2M for stability point
	Stability Point:				

MAHARAS HTR (Autonomous) (ISO/IEC - 2700) SOARD OF TECHNICAL EDUCATION (rtified)

Subject Name: Electronic Devices & Circuits

SUMMER- 19 EXAMINATION

Model Answer Subject Code:

T		
	To find S:	
	$S = \frac{(1+\beta)}{\beta}$	
	$(1-\beta)\frac{\partial I_B}{\partial I_C}$	
	∂I _R	
	$\frac{1}{\partial I_C}$ is obtained by diff. I_B WRT I_S	
	$I_B = \frac{V_{CC} - I_C R_C - V_{BE}}{P_{CC} + P_{CC}}$	
	$R_C + R_B$	
	$\frac{\partial I_B}{\partial I_C} = \frac{-R_C}{R_C + R_B}$	
	$S = \frac{(1+\beta)}{\beta}$	
	$(1-\beta)\frac{-R_C}{R_C+R_B}$	
	$ (1+\beta)$	
	$(1+\beta)\frac{R_C}{R_C+R_B}$	
	$S = \frac{(1+\beta)(R_c + R_B)}{2}$	
	$R_{C} + R_{B} + \beta R_{C}$	
	$S = \frac{(1+\beta)(R_C + R_B)}{R_C + (2\beta + 1)R_C}$	
	$R_B + (\beta + 1)R_C$	
(c)	State the need of regulation. Explain the concept of load & line regulation.	4M
Ans:	Need of Regulation:	2M for
	The major disadvantage of a power supply is that the output voltage changes with the	need of
	variations in the input voltage or the DC output voltage of the rectifier also increase	regulation
	similarly. In many electronic applications, it is desired that the output voltage, should remain constant regardless of the variations in the input voltage or load. In order to get	
	ensure this ;a voltage stabilizing device called voltage regulator is used.	
	Load Regulation:	
	The load regulation indicates the change in output voltage that will occur per unit	
	change in load current.	
	Mathematically	
1		

MAHARAS HTR (Autonomous) (ISO/IEC - 2700) SOARD OF TECHNICAL EDUCATION (rtified)

SUMMER- 19 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer Subject Code: 173

$Load Regulation = \frac{V_{NL} - V_{FL}}{\Delta I_L}$ The load regulation of voltage regulator is expressed in terms of $\mu v/\mu A$. Where, V_{NL} is no load output voltage V_{FL} is full load voltage	1M each for load and line regulation
ΔI_L is change in laod current	
Line Regulation:	
The line regulation rating of a voltage regulator indicates the change in output voltage that will occur per unit change in the input voltage.	
$Line \ regulation = \frac{\Delta V_L}{\Delta V_S}$	
Where, ΔV_L is the change in output voltage in mV or $\mu V \Delta V_S$ is the change in input voltage in volts.	

Q. No	Sub Q. N.	Answers	Marking Scheme
2		Attempt any FOUR:	16- Total Marks
	(a)	State the need of biasing and describe the concept of DC load line	4M
	Ans :	 Need of Biasing for Transistor: The transistor should be biased in the active region if it is to be used for amplification and in saturation and cut off if it is used as a switch. 2. The Q point should be adjusted approximately at the center of the load line for voltage amplifier application. 3. The value of stability factor (S) should be as small as possible. 	2M for need of biasing

SUMMER-19 EXAMINATION 17319 Subject Name: Electronic Devices & Circuits Subject Code: Model Answer 4. Q point should be stabilized by introducing a negative feedback in the biasing circuit. 5. The Q-point should not be affected due to temperature changes or device to device variation. 6. Bypass capacitor should be included to avoid reduction in voltage gain due to 2M for negative feedback. concept of DC load line 7. Transistor should be biased in the linear region of the transfer characteristics. (diagram optional) **Concept of DC load line:** The DC word indicates that this line is drawn under the dc operating conditions without any ac signal at the input. And the word load line is used because the slope of this line is -1/Rc is the load resistance. Operating point is the point on the load line which represents the dc current through a transistor (I_{CQ}) and the voltage across it (V_{CEQ}) When no ac signal is applied. The dc load line is a set of infinite number of such operating points and the user or designer can choose any point on the dc load as the operating point. The position of operating point on the load line is dependent on the application of the transistor. Ic (mA) Active region 1 Vcc (A) • I_{B4} = 40 μA IC max = Rc $I_{B3} = 30 \ \mu A$ Saturation Q point 613 $I_{B2} = 20 \ \mu A$ region Ical $I_{B1} = 10 \ \mu A$ DC load line $I_{\rm H} = 0 \ \mu A$ + VCE volts 0 B VCEQ V_{CE} = V_{CC} Cutoff region (b) Define the following terms: 4M

MAHARAS HTR (Autonomous) (IS O/IEC - 2700) SOARD OF TECHNICAL EDUCATION rtified)

SUMMER- 19 EXAMINATION

Subject Name: Electronic Devices & Circuits

Model Answer Subject Code:

	(i) Stabilization	
	(ii) Thermal runaway	
Ans :	Stabilization: The process of making operating point independent of temperature changes or variation in transistor parameter is known as stabilization.	2M for stabilization
	The maintenance of the operating point stable is called the stabilization.	
	Thermal runaway:	
	Power dissipation t ICEO t Ict	2M for Thermal runaway
	1. The reverse saturation current in semiconductor devices changes with temperature. The reverse saturation current approximately doubles for every 10 degree rise in temperature.	
	2.As the leakage current of transistor increases, collector current increases.	
	3. The increase in power dissipation at collector base junction.	
	4. This in turn increases the collector base junction causing the collector current current to further increase.	
	5. This process becomes cumulative. and it is possible that the ratings of the transistor are exceeded. If it happens, the device gets burnt out. This process is known as "Thermal Runaway".	
(c)	Draw the transfer characteristics for N-channel JFET.	4M
Ans :	Transfer characteristics for N-channel JFET:	2M for characteristi c
	V _{GS (off)} = V _p - Gate-to-source0	2M for label

Subject Name: Electronic Devices & Circuits

SUMMER- 19 EXAMINATION

Model Answer Subject Code:

(a)	Draw th	ne circuit of using transistor as a s	witch & explain its workir	ng.	4M
Ans :			Ro		2M for diagram
	a) Whe switch.	vcc	it works in saturation reg	gion & act as closed	2M for explanatior
	b) Whe switch.	n both junctions are reverse biase	ed it works in cutoff regio	n & act as open	
	c) If inp switch.	ut is not given to base ,transistor		e off. IC=0,Acts as open	
(e)	c) If inp switch. d) when starts f	ut is not given to base ,transistor n input is applied to base above 0. owing ,Transistor acts as close sw	7V ,transistor becomes (itch.	DN, Diode is ON. Ic	4M
(e) Ans :	c) If inp switch. d) when starts f Compa Sr No.	n input is applied to base ,transistor owing ,Transistor acts as close sw re between positive and negative Parameter	7V ,transistor becomes (itch. feedback. (four points) Positive Feedback	Negative Feedback	4M 1M each fo any four
(e) Ans :	c) If inp switch. d) when starts f Compa Sr No. 1	n input is applied to base shove 0. owing ,Transistor acts as close sw re between positive and negative Parameter Overall Phase shift	7V ,transistor becomes (itch. feedback. (four points) Positive Feedback 0 degree or 360 degree	Negative Feedback	4M 1M each fo any four correct comparison points
(e) Ans :	c) If inp switch. d) when starts f Compa Sr No. 1 2	n input is applied to base above 0. owing ,Transistor acts as close sw re between positive and negative Parameter Overall Phase shift Input voltage	7V ,transistor becomes (itch. feedback. (four points) Positive Feedback 0 degree or 360 degree Increases	Negative Feedback 180 degree Decreases	4M 1M each fo any four correct compariso points
(e) Ans :	c) If inp switch. d) when starts f Compare Sr No. 1 2 3	n input is applied to base above 0. owing ,Transistor acts as close sw re between positive and negative Parameter Overall Phase shift Input voltage Output voltage	7V ,transistor becomes (itch. feedback. (four points) Positive Feedback 0 degree or 360 degree Increases	N, Diode is ON. Ic Negative Feedback 180 degree Decreases Decreases	4M 1M each fo any four correct comparison points
(e) Ans :	c) If inp switch. d) when starts f Compare Sr No. 1 2 3 4	n input is applied to base above 0. owing ,Transistor acts as close sw re between positive and negative Parameter Overall Phase shift Input voltage Output voltage Feedback signal & Input signal	7V ,transistor becomes (itch. feedback. (four points) Positive Feedback 0 degree or 360 degree Increases Increases Are in phase	Negative Feedback 180 degree Decreases Decreases Are out of phase	4M 1M each fo any four correct compariso points
(e) Ans :	c) If inp switch. d) when starts fi Compai Sr No. 1 2 3 4 5	ut is not given to base ,transistor n input is applied to base above 0. owing ,Transistor acts as close sw re between positive and negative Parameter Overall Phase shift Input voltage Output voltage Feedback signal & Input signal Voltage Gain	7V ,transistor becomes (itch. feedback. (four points) Positive Feedback 0 degree or 360 degree Increases Are in phase Increases	Negative Feedback 180 degree Decreases Are out of phase Decreases	4M 1M each fo any four correct comparison points
(e) Ans :	c) If inp switch. d) when starts f Compa Compa Sr No. 1 2 3 4 5 6	ut is not given to base ,transistor n input is applied to base above 0. owing ,Transistor acts as close sw re between positive and negative Parameter Overall Phase shift Input voltage Output voltage Feedback signal & Input signal Voltage Gain Noise	7V ,transistor becomes (itch. feedback. (four points) Positive Feedback 0 degree or 360 degree Increases Are in phase Increases Increases Increases Increases Increases Increases Increases	Negative Feedback 180 degree Decreases Are out of phase Decreases Decreases Decreases Decreases Decreases Decreases Decreases Decreases Decreases Decreases	4M 1M each fo any four correct comparison points

Subject Name: Electronic Devices & Circuits Model Answer

____Subject Code:

	8	Applications		Oscillators, Schmitt triggers	Amplifier	
(f)	List the	ICs used for po	sitive and negative	e voltage regulation with	two example each.	4M
Ans :	IC 78xx IC 79xx	(7805,7806, 78 (7905, 7906,79	08,,7812,7815,781 08,7912, 7915, 79	.8)-Positive Voltage Regu 18) - Negative Voltage Re	ilator. egulator	2M for correct IC Number and
	Exampl 7805=	e: +5v	7905= -5v			2M for example
	7806=	+6v	7906= -6v			(Two examples
	7808=	+8v	7908= -8v			positive and
	7812=	+12v +15v	/912= -12v 7915= -15v			voltage regulator)
	7818=	+18v	7918= -18v			

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any FOUR:	16- Total Marks
	(a)	In CE configuration if β = 90, leakage current I _{CEO} = 40µA, base current is 0.4mA, determine I _c and I _E	4M
	Ans:	Given:	
		β = 90	
		I _{CEO} = 40μA	Each
		I _B = 0.4mA	2M
		Required :	

(Autonomous) (IS O/IEC - 2700) rtified)

SUMMER- 19 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer Subject Code: 1

	$l_{c} = ?$ Solut $l_{c} = \beta$ $= 90$ $l_{c} = 3$ $l_{E} = l_{c}$ $l_{E} = 3$	and $I_E = ?$ tion: $I_B + I_{CEO}$ $D \times 0.4 \times 10^{-3} + 40 \times 10^{-6}$ 6.04 mA $+ I_B = 36.04$ mA $+ 0.4$ mA 6.44 mA		Each ans : 2M
(b)	Com	pare FET and BJT. (four points)		4M
Ans:	Sr. no	FET	BJT	Any four points: 4M
	1.	It is unipolar device i.e. current in the device is carried either by electrons or holes	It is bipolar device i.e. current in the device is carried either by both electrons & holes	
	2.	It is a voltage controlled device i.e. voltage at the gate (or drain) terminal controls amount of current flowing through the device.	It is a current controlled device i.e. the base current controls the amount of collector current.	
	3.	It has a negative temperature co- efficient at high current levels. It means that current decreases as temperature increases.	It has a positive temperature co- efficient at high current levels. It means that current increases as temperature increases.	
	4.	It has relatively lower gain bandwidth product as compared to BJT.	It has relatively higher gain bandwidth product as compared to FET.	
	5. 6.	It is less noisy. It is relatively immune to radiation.	It is comparatively more noisy. It is susceptible to radiation	
	-		· · · ·	1

Subject Name: Electronic Devices & Circuits

Model Answer Subject Code:

Ans:	$ \begin{array}{c} \bigvee_{v} \bigvee_{v} & \bigvee_{$	Circuit diagram : 1M Working: 2M Waveform : 1m
(d)	Draw the frequency response of DC amplifier. Comment on it.	4M
Ans:	Trequency response:	Response : 2M

MAHARASHTR (Autonomous) (ISO/IEC - 2700) OARD OF TECHNICAL EDUCATION rtified)

Subject Name: Electronic Devices & Circuits

SUMMER- 19 EXAMINATION

Model Answer

Subject Code:

17319 Subject Name: Electronic Devices & Circuits Subject Code: Model Answer A step down transformer will step down the voltage from the ac mains to the required voltage level. The turn's ratio of the transformer is so adjusted such as to obtain the required voltage value. The output of the transformer is given as an input to the rectifier circuit. **Rectifier:-**Rectifier is an electronic circuit consisting of diodes which carries out the rectification process. The input to a rectifier is ac whereas its output is unidirectional pulsating dc. Usually a full wave rectifier or a bridge rectifier is used to rectify both the half cycles of the ac supply (full wave rectification). Filter :-The rectified voltage from the rectifier is a pulsating dc voltage having very high ripple content. Hence a filter is used. **Regulator:** This is the last block in a regulated DC power supply. The output voltage or current will change or fluctuate when there is change in the input from ac mains or due to change in load current at the output of the regulated power supply or due to other factors like temperature changes. This problem can be eliminated by using a regulator. A regulator will maintain the output constant even when changes at the input or any other changes occur. (f) Draw the circuit of Zener diode as a voltage regulator and explain its working. 4M Circuit Ans: diagram : 2M ٧R Unregulated Voltage zener diode Working

MAHARASHTR (Autonomous) (IS O/IEC - 2700) SOARD OF TECHNICAL EDUCATION

SUMMER- 19 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer Subject Code: 17319

For proper operation, the input voltage Vi must be greater than the Zener • voltage Vz. This ensures that the Zener diode operates in the reverse breakdown Working : condition. The unregulated input voltage Vi is applied to the Zener diode. 2M From fig, output voltage is equal to zener voltage and load voltage. Suppose this input voltage exceeds the Zener voltage. This voltage operates the Zener diode in reverse breakdown region and maintains a constant voltage, i.e. Vz = Vo ----- (1) The input current is given by, $I_s = (Vi - Vz) / Rs$ ------ (2) We know that the input current I_S the sum of Zener current Iz and load current IL. Therefore, $I_{S} = I_{Z} + I_{L}$ ------ (3) or |z = |s - h|As input voltage Vi increases, then input current Is increases from equation no. (2), then Iz current increases from equation no. (3), hence zener voltage remains Vz constant (according to reverse bias of zener diode characteristics). • Since zener voltage is equal to output voltage from equation no. (1). Therefore output voltage Vo remains constant. Thus, a Zener diode acts as a voltage regulator and the fixed voltage is maintained across the load resistor RL.

Q. No.	Sub Q. N.	Answers	Marking Scheme
4		Attempt any FOUR:	12- Total Marks
	(a)	Draw the drain characteristics of p-channel FET and explain.	4M
	Ans:	Drain characteristics:-	Characeristics- 2M

30ARD OF TECHNICAL EDUCATION MAHARAS HTR 100.80 0

Subject Name: Electronic Devices & Circuits

(Autonomous) rtified) (ISO/IEC - 2700)

SUMMER-19 EXAMINATION

Model Answer

Subject Code:

MAHARASHTR (Autonomous) (ISO/IEC - 2700) OARD OF TECHNICAL EDUCATION rtified)

Subject Name: Electronic Devices & Circuits

SUMMER- 19 EXAMINATION

Model Answer

_Subject Code:

17319 Subject Code: Subject Name: Electronic Devices & Circuits Model Answer The gate to source voltage is set to zero volts by the direct connection from one terminal to the other & voltage V_{DS} is applied across the drain to source terminals. This Working result the flow of current is positively charged holes. Principle-2M When gate is negative with respect to source then the electrons present under the oxide layer are pushed downward into the substrate with a repulsive force and draws additional holes from the N type substrate. Thus drain current (I_D) increases as increase in negative value. For positive voltage at gate, the gate will tend to repel holes towards N type substrate and attract electrons from the substrate toward insulated layer. Recombination occurs between electron & holes that will reduce the number of free carriers in the channel for conduction. So drain current reduces. The value of voltage of VGS at which drain current nearly becomes zero is called cut off voltage. (d) Draw the circuit diagram of complementary symmetry Class B push-pull amplifier and 4M describe its working. Diagram of complementary symmetry Class B push-pull amplifier: Ans: Diagram-2M Vcc Positive R₁ NPN half-cycle C₁ Input R_{B1} Signal Rι Resistor Biasing R_{B2} TR₂ C_2 Negative half-cycle R_2 PNP Working: Working-2M The above circuit employs a NPN transistor and a PNP transistor connected in push pull configuration. When the input signal is applied, during the positive half cycle of the input signal, the NPN transistor conducts and the PNP transistor cuts off. During the negative half cycle, the NPN transistor cuts off and the PNP transistor conducts.

MAHARAS HTR (Autonomous) (IS O/IEC - 2700) SOARD OF TECHNICAL EDUCATION rtified)

SUMMER- 19 EXAMINATION

Subject Name: Electronic Devices & CircuitsModel AnswerSubject Code:17319

	In this w	av. the NPN transi	stor amplifies during	positive half cycle of t	the input, while	
		cictor amplifica du	ring nogative half are	lo of the input Ac the	transistors are	
		isistor amplifies du		the of the input. As the	transistors are	
	both con	nplement to each o	other, act symmetrical	ly while being connect	ed in push pull	
	configura	ation of class B, th	is circuit is termed as	s Complementary sym	metry push pull	
	class B a	amplifier.				
(e)	Compare	between class A a	ind class B amplifier or	the basis of		4M
(0)	(i)					
	(i)	Efficiency				
	(11)	Power Position of O- no	vint			
	(iv)	O/P distortion				
Ans:						4M(1N
						for each
		Parameter	Class A	Class B]	point)
		Efficiency	lowest efficiency	Above 78.5%	-	
			25% to 50%			
		Power	less			
				More than class A		
		Position of Q	Q point is at the		-	
		point	centre of load	On X axis		
			line.			
		O/D disartian			_	
			NO distortion	Iviore than class A		
(f)	Draw the	circuit diagram of	Bootstrap's time base	e generator and explain	n its working.	4M
Anci		iagram				Diagram
AIIS:		lagidiii				
	1					1

MAHARASHTR (Autonomous) (IS O/IEC - 2700) SOARD OF TECHNICAL EDUCATION rtified)

Subject Name: Electronic Devices & Circuits Model Answer Subject Code:

17319

that the output voltage is coupled through the capacitor (C_1) to the diode.

Since the value of capacitor (C_1) is much larger than that of capacitor (C), the voltage across capacitor (C_1) practically remains constant.

Thus voltage drop across resistor (R) and hence current (I_R) remains constant, means capacitor C is charged with constant current.

SUMMER-19 EXAMINATION Subject Name: Electronic Devices & Circuits

____Subject Code:

17319

	This causes voltage across capacitor C (and hence the output voltage) to increase linearly with time	
	The circuit pulls itself up by its own bootstrap and hence it is known as bootstrap	
	sweep circuit.	

Model Answer

Q. No.	Sub Q. N.	Answers	Marking Scheme
5		Attempt any FOUR:	16- Total Marks
	(a)	Draw the input and output characteristics of CE configuration.	4M
	Ans:	Input characteristics of CE configuration: $I_{B} = V_{CE1} = V_{CE2} = V_{CE1}$ $V_{CE2} > V_{CE1} = V_{CE2} = V_{CE1}$	input characteristics- 2M
		Output characteristics of CE configuration:	output characteristics- 2M

BOARD OF TECHNICAL EDUCATION MAHARAS HTR (Autonomous) (IS O/IEC - 2700) rtified)

SUMMER-19 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer Subject Code:

Subject Name: Electronic Devices & Circuits

SUMMER- 19 EXAMINATION

Model Answer

_Subject Code:

Subject Name: Electronic Devices & Circuits Model Answer Subject Code:

^{ode:} 17319

Ans: Note: Any other configuration explanation also can be considered. Diagram-1.5M R. С, Working principle-1.5M **Operation of FET amplifier:** When small a.c. signal is applied to the gate, it produces variation in the gate to source voltage. This results in variation in the drain current. As the gate to source voltage increases, the drain current also increases. As the result of this, the voltage drop across resistor (RD) also increases. This causes the drain voltage to decrease. It means positive half cycle of the input voltage produces the negative half cycle of the output voltage. (ie.) the output voltage is 180° out of phase with the input voltage. Application-Application: 1M(Any two) Buffer amplifier Low noise amplifier Cascade amplifier Chopper amplifier State the basic principle of piezoelectric crystal and draw the circuit diagram of crystal 4M (e) oscillator. **Basic Principle:** Ans: Basic principle-2M

Subject Name: Electronic Devices & Circuits

SUMMER- 19 EXAMINATION

Model Answer

__Subject Code:

Subject Name: Electronic Devices & Circuits

Model Answer

_Subject Code:

MAHARASHTR (Autonomous) (ISO/IEC - 2700) OARD OF TECHNICAL EDUCATION rtified)

SUMMER- 19 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer

___Subject Code:

Subject Name: Electronic Devices & Circuits Model Answer Subject Code:

Note: Other method for regulator also can be consider.	

Q. No.	Sub Q. N.	Answers	Marking Scheme
6		Attempt any FOUR:	16- Total Ma
	(a)	Draw the circuit of voltage divider for BJT & explain its working.	4M
	Ans:	$(I+I_0) \downarrow I_0 I_0 I_0 I_0 I_0 I_0 I_0 I_0 I_0 I_0$	Circuit diagra : 2M Working: 2M

MAHARASHTR (Autonomous) (ISO/IEC - 2700) SOARD OF TECHNICAL EDUCATION rtified)

SUMMER- 19 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer Subject Code:

		$V_{TH} = (R_2 - R_1 + R_2) \cdot V_{CC}$ And the equivalent resistance. $R_{TH} = R_1 ll R_2 = (R_1 - R_2) - (R_1 + R_2)$ Applying KVL to the base emitter loop of this circuit, $V_{TH} = I_B R_{TH} + V_{BE} + I_E R_E$ $I_B = (V_{TH} - V_{BE}) (I_E = (\beta + 1) I_B) - (R_{TH} + (\beta + 1) R_E)$ $I_B = (V_{TH} - (V_{TH} >> V_{BE}, (\beta + 1) = \beta) - (R_{TH} + \beta_{RE})$ $I_C = \beta I_B$ $I_C = V_{TH} - (R_E >> R_{TH} / \beta)$ $I_C = V_{TH} / R_E - (R_E >> R_{TH} / \beta)$ Applying KVL to the output section, we get $V_{CC} = I_C R_C + V_{CE} + I_E R_E$	
()	b)	$v_{CE} - v_{CC} - i_C (K_C + K_E)$	454
()	0)	Draw the transistorized series voltage regulator circuit and explain its working.	4101
A	Ans:	Unregulated voltage	Diagram : 2M
		 Explanation : In this circuit transistor acts as a control element. This transistor is connected in series with the load hence the circuit is called as Series Voltage Regulator. Other components in the circuit are Zener diode (Vz), and resistor R. 	Explanation : 2M

MAHARAS HTR (Autonomous) (IS O/IEC - 2700) SOARD OF TECHNICAL EDUCATION rtified)

SUMMER- 19 EXAMINATION

bject Nam	ne: Electronic Devices & Circuits	Model Answer	Subject Code:	17319	
	 Zener diode V_Z is operat V_Z. As V_Z & V_{BE} of the transi constant. To find output 	ed in breakdown reg stor are constant, ou voltage Vo.	ion and provides cor tput voltage across	nstant voltage R _L will also be	
	Applying KVL to o/p loop $V_{BE} + I_LR_L - V_Z =$ Therefore, $V_O = I_LR_L = V_Z$ $V_O = V_Z - V_{BE}$ If output voltage increa decreases and I _C decreas across the transistor and $V_O=Vin - V_{CE}$ If the output voltage decr the output voltage is reg	of the circuit 0 $-V_{BE}$ ses then V_{BE} decrea ses. This will increas V_0 will be regulated reases, then exactly of ulated.	ases. Due to reduct se the collector to en this is because opposite action will t	ion in V _{BE} , I _B mitter voltage ake place and	
(c)	State and explain Barkhausen's o	criteria of oscillators			4M
Ans:	 Statement of Barkhause To produce sustained ose Av β ≥ 1 Phase shift between the 	en's criteria: cillations, an oscillat input and output sig	or circuit must satist nals must be equal t	fy to 360° or 0°	Statement
	$V_{i} \downarrow \downarrow$	 Heredback Vo Feedback Vo Heredback β Heredback β 	vot		
	 In oscillator positive feed Voltage gain of feedback 	lback is used. k amplifier is,			Explanatio (diagram optional)

MAHARASHTR (Autonomous) 30ARD OF TECHNICAL EDUCATION

(Autonomous) (IS O/IEC - 2700) rtified)

SUMMER-19 EXAMINATION

Subject Name: Electronic Devices & Circuits Model Answer Subject Code:

	$Avf = \frac{Av}{1 - Av\beta}$ Where, Av = open loop gain β = feedback factor If Av β = 1 Then 1- Av β = 0 And will increase to infinity but in actual practice output of feedback amplifier cannot be infinite, therefore 1-Av β =0 represents, output voltage whose frequency is completely different from the input signal. • The amplifier reverses the phase of an input signal at its output (means it gives 180° phase shift) in order to provide positive feedback, the feedback network must provide a phase shift of 180°. So that total phase shift of 360° or 0° at the amplifier input. • The above two condition for positive feedback i.e. Av β =1 and net phase shift around loop equal to 360° or 0° are called Barkhausen Criterion of Oscillation.	
(d)	Draw the circuit of single tuned amplifier and state its operating principle.	4M
Ans:	Va C Va C	Any Circuit diagram : 2M
	Operating Principle:	Operating Principle : 2N

Subject Name: Electronic Devices & CircuitsModel AnswerSubject Code:17319

		1
	The working of tuned voltage amplifier may be understood by considering a radio frequency signal, to be amplified applied at the input of the amplifier. The resonant frequency of the tuned circuit is made equal to the frequency of the input signal by changing the value of capacitor (C) and inductor (L). When the frequency of the tuned circuit becomes equal to that of the input signal a large signal appears across the output terminals.	
	If the input signal is a complex wave (i.e. it contains many frequency components.) in that case the frequency with input frequency equal to the resonant frequency will be amplified. And all the other frequencies will be rejected by the tuned circuit.	
(e)	Draw the labeled circuit of RC phase shift oscillator. State the formula for frequency of oscillator.	4M
Ans:	Frequency of oscillation is given by, $f = \frac{1}{2\pi(\sqrt{6})CR}$	Circuit diagra : 3M Formula :1M
(f)	Draw the characteristics of UJT and state its working principle.	4M

SUMMER-19 EXAMINATION Subject Name: Electronic Devices & Circuits

_Subject Code:

17319

Model Answer