8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous) (ISO/IEC - 27001-2005 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 1 of 24

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 2 of 24

Q No.	Answer	marks
1A	Any 4	$\mathbf{8}$
1A(i)	Raoult'slaw:It states that at a given temperature, the equilibrium partial pressure of a component of a solution in the vapour is equal to the product of the mole fraction of the component in the liquid phase and the vapour pressure of the pure component. Henry's law:It states that the partial pressure of the solute gas in gas phase is directly proportional to the mole fraction of a solute gas dissolved in a liquid equilibrium above the liquid surface.	1
1A(ii)	Limiting reactant in a chemical reaction: It is the reactant which decides the extent of a reaction. Or It is the reactant which is added in limited quantity. Or It is the reactant which disappear first if a reaction goes to completion Excess reactant: It is the reactant which is in excess of the theoretical or stoichiometric requirement.	1
1 lA	Standard heat of formation : It is the amount of heat liberated or absorbed when one mol of a compound is formed from its elements at standard conditions. Standard heat of combustion: It is the amount of heat liberated when one mol of a compound is combusted or burned in oxygen at standard conditions.(25 ${ }^{\circ}$ C and latm pressure)	1
(iv)	Recycling: It is returning back a portion of stream leaving a process unit to the entrance of the process unit for further processing.	1

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 3 of $\mathbf{2 4}$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Reasons for performing recycling: (any one) \\
1. Maximum utilization of the valuable reactant \\
2. Improvement of the performance of the equipment/ operation \\
3. Utilization of the heat being lost in the exit stream. \\
4. Better operating conditions of the system \\
5. Improvement in the selectivity of a product \\
6. Enrichment of a product
\end{tabular} \& 1 \\
\hline 1A(v) \& \begin{tabular}{l}
Partial pressure: \\
Partial pressure of a component gas is the pressure that would be exerted by that component gas if it alone was present in the same volume and at the same temperature as the gas mixture. \\
Pure component volume: \\
Pure component volume of a component gas is the volume that would be occupied by that component gas if it alone was present in the same pressure and at the same temperature as the gas mixture.
\end{tabular} \& 1

1

\hline \[
$$
\begin{aligned}
& \text { 1A } \\
& \text { (vi) }
\end{aligned}
$$

\] \& | $\mathrm{CO}+\mathrm{H}_{2} \ldots-\mathrm{CH}_{3} \mathrm{OH}$ |
| :--- |
| Note: Question is incomplete. Mark should be given for attempting the question | \& 2

\hline 1-B \& Any 2 \& 12

\hline | 1-B |
| :--- |
| (i) | \& | Basis : 500 kg phenol and $700 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$ |
| :--- |
| Phenol rich layer X kg Water rich layer Y kg. Overall balance is $\begin{equation*} 100=X+Y \tag{1} \end{equation*}$ \qquad |
| Material balance for phenol is | \& 1

1
1
1

\hline
\end{tabular}

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 4 of 24

	$\begin{equation*} 500=0.7 \mathrm{X}+0.09 \mathrm{Y} \tag{2} \end{equation*}$ Solving 1 and 2 $\mathrm{Y}=557.37 \mathrm{~kg}, \mathrm{X}=642.62 \mathrm{~kg}$ Weight of Phenol rich layer $=\mathbf{6 4 2 . 6 2} \mathbf{~ k g}$ Weight of Water rich layer $=\mathbf{5 5 7 . 3 7} \mathbf{~ k g}$	1 1 1
1-B (ii)	$\begin{aligned} & \text { Basis: } 5 \mathrm{~kg} \mathrm{CaC} 2 \\ & \mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow-\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \\ & \mathrm{Kmoles}^{2} \mathrm{CaC}_{2}=5 / 64=0.07812 \\ & \mathrm{C}_{2} \mathrm{H}_{2} \text { produced }=0.07812 \mathrm{kmoles} \\ & \mathrm{PV}=\mathrm{nRT} \\ & \begin{aligned} & \text { Or } \mathrm{V}=\mathrm{nRT} / \mathrm{P} \\ & \quad=0.07812 * 8.314 * 313 / 100 \\ & \quad= \mathbf{2 . 0 3} \mathbf{m}^{\mathbf{3}} \end{aligned} \end{aligned}$	1 1 1 1 1
$\begin{aligned} & 1- \\ & \mathrm{B}(\mathrm{iii}) \end{aligned}$	$\mathbf{S O}_{\mathbf{2}}+1 / 2 \mathbf{O}_{\mathbf{2}} \boldsymbol{-} \mathbf{S O}_{3}$ Basis: $1 \mathrm{kmol} \mathrm{SO}_{2}$ Theoretical oxygen requirement $=0.5 \mathrm{kmol}$ $\%$ excess air $=80 \%$ O_{2} fed $=0.5+0.8 * 0.5=0.9$ kmole Fed air $=0.9 * 100 / 21=4.2857$ kmoles N 2 from fed air $=4.2857 * 0.79=3.39$ kmoles Conversion $=70 \%$ Reacted $\mathrm{SO}_{2}=0.7$ kmole Reacted $\mathrm{O}_{2}=0.5 * 0.7=0.35$ kmole Unreacted $\mathrm{O}_{2}=0.9-0.35=0.55 \mathrm{kmole}$ Unreacted $\mathrm{SO}_{2}=1-0.7=0.3 \mathrm{kmoles}$ Formed $\mathrm{SO}_{3}=0.7$ kmoles $\mathrm{N} 2=3.39 \text { kmoles }$	1 1 1 1 1

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry \quad Subject code : 17315 Page $\mathbf{5}$ of $\mathbf{2 4}$

	component	kmoles	Mol\%	1
	O_{2}	0.55	11.13	
	SO_{2}	0.3	6.07	
	SO_{3}	0.7	14.17	
	N_{2}	3.39	68.62	
2	Any 4			16
2-i	Basis: 50 km $\mathrm{C}_{4} \mathrm{H}_{10}+6.5$ 100 kmol air 2100 kmol a $\mathrm{O}_{2} \mathrm{fed}=210$ $1 \mathrm{kmol} \mathrm{C}_{4} \mathrm{H}_{1}$ $50 \mathrm{kmol} \mathrm{C}_{4} \mathrm{H}$ O_{2} theoreticall $\%$ excess $=$ $=$ $=3$	e $\mathrm{O}_{2}+5 \mathrm{H}_{2} \mathrm{O}$ O_{2} fed 1 kmoles $\mathrm{ol} \mathrm{O}_{2}$ theoretically 325 kmol retical)*100/ O_{2} the /325		1 1 1 1
2-ii	Hess's law of i.e. heat evol reaction take For Example Path 1 : C (s) Path 2 : (i) C (ii) 2	at summation : It s ed in a particular rea or several steps. be converted into $--->\mathrm{CO}_{2}(\mathrm{~g})$ g) ------> CO (g) (g) ------> $\mathrm{CO}_{2}(\mathrm{~g})$	hat the enthalpy change is the same whether the two ways $\Delta \mathrm{H} 1$ $\Delta \mathrm{H} 2$	2

Model Answer

Subject Title: Stoichiometry \quad Subject code : 17315 Page $\mathbf{6}$ of $\mathbf{2 4}$

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page $\mathbf{7}$ of $\mathbf{2 4}$

2-iv	Wt of 50\% solution=625kg	

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry Subject code : 17315

	$X_{A}=0.543 \text { and } X_{B}=0.457$ Mole fraction of $\mathrm{CH}_{\mathbf{4}}=\mathbf{0} .543 \&$ Mole fraction of $\mathrm{C}_{2} \mathrm{H}_{4}=\mathbf{0 . 4 5 7}$	1
2-vi	Basis : 100 kmol product stream Reaction is $2 \mathrm{~A}+\mathrm{B} \rightarrow---\mathrm{C}$ Kmol of inerts in product stream $=19.23 \mathrm{kmol}$ Kmol of A in product stream $=23.08 \mathrm{kmol}$ (unreacted) Kmol of B in product stream $=11.54 \mathrm{kmol}$ (unreacted) Kmol of C in product stream $=46.15 \mathrm{kmol}$ (product) Kmol of A reacted (from reaction) $2 * 46.15=92.3$ Kmol of A fed $=\mathrm{Kmol}$ of A reacted +Kmol of A unreacted $=92.3+23.08=115.38 \mathrm{kmol}$ Kmol of B reacted $($ from reaction $)=46.15$ Kmol of B fed $=\mathrm{Kmol}$ of B reacted +Kmol of B unreacted $=46.15+11.54=57.69 \mathrm{kmol}$ Inerts $=19.23 \mathrm{kmol}$	1 1 1 1 1 1
3	Any 2	16
3-i	Solution :Basis: 100kg of product gases leaving the oxidizer Reaction: $4 \mathrm{HCl}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Product gases contain $13.2 \mathrm{~kg} \mathrm{HCl}, 6.3 \mathrm{~kg} \mathrm{O}_{2}, 42.9 \mathrm{~kg} \mathrm{~N}_{2}, 30 \mathrm{~kg} \mathrm{Cl}_{2}$ and	1

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry Subject code : 17315

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 10 of 24

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 11 of 24

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 12 of $\mathbf{2 4}$

	$=76377.6 \mathrm{~kJ} / \mathrm{h}=\mathbf{2 1 . 2 1} \mathbf{~ k J} / \mathbf{s}=\mathbf{2 1 . 2 1} \mathbf{~ k W} \quad \ldots . . \mathrm{Ans}$	1
3-iii	$\begin{aligned} & \text { Basis: } 26.6 \text { lit } \mathrm{NO}_{2} \\ & \mathrm{PV}=\mathrm{nRT} \\ & \mathrm{n}=\mathrm{PV} / \mathrm{RT} \\ & =80 * 0.0266 / 8.314 * 298=8.6^{*} 10^{-4} \mathrm{kmol}=0.86 \mathrm{~mol} \\ & 2 \mathrm{NO}_{2}---\rightarrow \mathrm{N}_{2} \mathrm{O}_{4} \end{aligned}$ Let x moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ in final mixture $\begin{aligned} & \mathrm{NO}_{2} \text { reacted }=2 \mathrm{x} \\ & \mathrm{NO}_{2} \text { remaining }=(0.86-2 \mathrm{x}) . \\ & \text { Total moles }=\mathrm{x}+0.86-2 \mathrm{x} \\ & \quad=0.86-\mathrm{x} \end{aligned} \quad \begin{aligned} & \mathrm{P}_{1} / \mathrm{P}_{2}=\mathrm{n}_{1} / \mathrm{n}_{2} \end{aligned} \quad \begin{aligned} & 80 / 66.662=0.86 /(0.86-\mathrm{x}) \end{aligned}$ Solving, $x=0.1434 \mathrm{~mol}$ Final moles $=0.86-0.1434=0.7166 \mathrm{~mol}$ Mol fraction of $\mathrm{N}_{2} \mathrm{O}_{4}=0.1434 / 0.7166=0.2$ Partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}=0.2 * 66.662=\mathbf{1 3 . 3 3} \mathbf{~ k P a}$	1 1 1 1 1 1 1 1 1 1
4	Any 2	16
4-i	SOLUTION : BASIS : 1000 kg of desired mixed acid.	1

Model Answer

Subject Title: Stoichiometry \quad Subject code : 17315 Page $\mathbf{1 3}$ of $\mathbf{2 4}$

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 14 of $\mathbf{2 4}$

	$\therefore \mathrm{x}=90.1 \mathrm{~kg}$$\mathrm{y}=397.96-0.306 \mathrm{x}$$=397.96-0.30 \mathrm{x} 90.1$$\therefore \mathrm{y}=370.4 \mathrm{~kg}$We have, \quadz $=583.3-0.486 \mathrm{x}$ $=583.3-0.486 \mathrm{x} 90.1$$\therefore \mathrm{z}=539.5 \mathrm{~kg}$Amount of waste acid required $=\mathbf{9 0 . 1} \mathbf{~ k g}$Amount of concentrated sulphuric acid required $=\mathbf{3 7 0 . 4} \mathbf{~ k g ~}$Amount of concentrated nitric acid require $=\mathbf{5 3 9 . 5} \mathbf{~ k g ~} \quad \ldots .$. Ans	2
4-ii	Basis : 100 Kmol of feed Feed contains $60 \mathrm{kmol} \mathrm{A}, 30 \mathrm{kmol} \mathrm{B}$ and 10 kmol inerts Let X be the kmol of A reacted by reaction : $2 \mathrm{~A}+\mathrm{B}----\mathrm{C}$ From reaction $2 \mathrm{kmol} \mathrm{A}=1 \mathrm{kmol} \mathrm{B}=1 \mathrm{kmol} \mathrm{C}$ B reacted $=(1 / 2)^{*} \mathrm{X}=0.5 \mathrm{X}$ kmol C formed $=(1 / 2)^{*} \mathrm{X}=0.5 \mathrm{X} \mathrm{kmol}$ Material Balance of A give $\text { A unreacted }=(60-X) \mathrm{kmol}$ Material Balance of Inerts : Inerts in feed $=$ Inert in product $=10 \mathrm{kmol}$ C formed $=(1 / 2) * \mathrm{X}=0.5 \mathrm{X} \mathrm{kmol}$ B unreacted $=(30-0.5 \mathrm{X}) \mathrm{kmol}$ Total moles of product stream $=(60-X)+(30-0.5 \mathrm{X})+10=0.5 \mathrm{X}$ $=100-\mathrm{X} \mathrm{Kmol}$ Mole $\%$ of A in product stream $=2 \%$	1 1 1 1 1 1

Model Answer

Subject Title: Stoichiometry \quad Subject code : 17315 Page $\mathbf{1 5}$ of 24

	Kmol A in product stream Mole \% of A = -- * 100 Total kmol of product stream	1
4-iii	Overall balance is $\begin{equation*} 10000=X+Y \tag{1} \end{equation*}$ Individual balance for $\mathrm{CH}_{3} \mathrm{OH}$ is $\begin{equation*} 0.2 * 10000=0.98 \mathrm{X}+0.01 * \mathrm{Y} \tag{2} \end{equation*}$	1 1 1

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 16 of $\mathbf{2 4}$

	Solving the equations $\begin{aligned} & X=1958.76 \mathrm{Kg} / \mathrm{hr} \\ & \mathrm{Y}=\mathbf{8 0 4 1 . 2 4} \mathbf{~ k g} / \mathrm{hr} \end{aligned}$ Mass flow rate of distillate $=1958.76 \mathrm{Kg} / \mathrm{hr}$ Mass flow rate of bottom product $=\mathbf{8 0 4 1 . 2 4} \mathbf{~ k g} / \mathbf{h r}$ Methanol in Waste solution $=0.01 * 8041=\mathbf{8 0 . 4 1} \mathbf{~ K g} / \mathbf{h r}$ Methanol in feed $=0.2 * 10000=\mathbf{2 0 0 0} \mathbf{~ K g} / \mathbf{h r}$ $\% \text { loss of Methanol }=\underset{\substack{\text { Methanol in Waste Solution } \\ \\ \\ \text { Methanol in Waste Solution }}}{ } \quad * 100$ $\% \text { loss of Methanol }=\quad \begin{gathered} 80.41 \\ ----------- \\ 2000 \end{gathered} * 100$ \% loss of Methanol $=4.02$ \% ------- ans. (b)	11
5	Any 2	16
5-i	Basis : 5000 kg of slurry to be handled Let X be the kg of wet solids(desired product) and Y be the kg of filtrate per batch Overall Material balance $\begin{equation*} X+Y=5000 \tag{1} \end{equation*}$ Solids Balance:	11

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page $\mathbf{1 7}$ of $\mathbf{2 4}$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Solids in slurry \(=\) Solids in product + Solids in filtrate
\[
\begin{equation*}
0.25 \times 5000=0.92 \mathrm{X}+\left(200 / 10^{6}\right) \mathrm{Y} \tag{2}
\end{equation*}
\] \\
From equation (1) \(\quad \mathrm{Y}=5000-\mathrm{X}\) \\
Equation (2), we get,
\[
0.25 \times 5000=0.92 \mathrm{X}+\left(200 / 10^{6}\right)(5000-\mathrm{X})
\] \\
By solving we get,
\[
\begin{aligned}
\& X=1358 \mathrm{~kg} \\
\& Y=5000-1358=3642 \mathrm{~kg}
\end{aligned}
\] \\
100 kg desired product takes one hour of operation \\
Time required to process complete batch \(=(1358 / 100) \times 1=13.58 \mathbf{h r}\) \\
Solid in filtrate \(=\) Solid loss per batch
\[
=\left(200 / 10^{6}\right) \times 3642=0.73 \mathrm{~kg}
\] \\
Solid loss per batch \(=0.73 \mathbf{~ k g}\)
\end{tabular} \& 11 \\
\hline 5-ii \& \begin{tabular}{l}
Basis : 1 katom of sulphur burnt \\
Reactions:
\[
\begin{aligned}
\& \mathrm{S}+\mathrm{O}_{2}--\rightarrow \mathrm{SO}_{2} \\
\& \mathrm{~S}+(3 / 2) \mathrm{O}_{2} \rightarrow--\rightarrow \mathrm{SO}_{3}
\end{aligned}
\] \\
From the reaction \(-2: 1\) katom \(\mathrm{S}=1.5 \mathrm{kmol} \mathrm{O}_{2}\) \\
Stoichiometric requirement of \(\mathrm{O}_{2}\) by reaction \(2=(1.5 / 1) \times 1=1.5 \mathrm{kmol}\) \\
Stoichiometric air requirement \(=1.5 \times(100 / 21)=7.14 \mathrm{kmol}\) \\
Air supplied to burner \(=7.14 \times[1+(20 / 100)]=8.57 \mathrm{kmol}\) \\
\(\mathrm{O}_{2}\) in supplied air \(=8.57 \times 0.21=1.8 \mathrm{kmol}\) \\
\(\mathrm{N}_{2}\) in supplied air \(=8.57 \times 0.79=6.77 \mathrm{kmol}\) \\
\(30 \%\) of sulphur fed to burner is oxidized to \(\mathrm{SO}_{3}\) by reaction -2 and \(70 \%\) of sulphur fed to burner is oxidized to \(\mathrm{SO}_{2}\) by reaction 1 \\
Sulphur burnt by reaction \(1=0.7 \times 1=0.7\) katom \\
Sulphur burnt by reaction \(2=0.3 \times 1=0.3\) katom
\end{tabular} \& 1

1
1
1

\hline
\end{tabular}

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 18 of 24

	O_{2} reacted by re O_{2} reacted by O_{2} reacted totally O_{2} unreacted $=$ N_{2} in supplied SO_{2} produced SO_{3} produced Composition of Component O_{2} $\mathrm{~N}_{2}$ SO_{2} SO_{3} Total^{2} SO_{2} in gas leav SO_{2} in gas leav O_{2} in gas leavi N_{2} in gas leavi Weight of gas 279.16 kg of g Weight of gas	$\begin{aligned} & =(1 / 1) \times 0.7=0 . \\ & 2=(1.5 / 1) \times 0.3= \\ & +0.45=1.15 \mathrm{kmo} \\ & d-O_{2} \text { reacted } \\ & 15=0.65 \mathrm{kmol} \end{aligned}$ in gas leaving the 77 kmol n $1=(1 / 1) \times 0.7=$ $\text { on } 2=(1 / 1) \times 0.3=$ aving the Burner $\begin{aligned} & \text { er }=0.7 \times 64=44 \\ & \text { er }=0.3 \times 80=24 \\ & r=0.65 \times 32=20 . \\ & r=0.77 \times 28=189 \\ & \text { ourner }=4.8+24+2 \end{aligned}$ uced from 01 kato	Mole \% 7.72 80.40 8.31 3.57 100$56=279.16 \mathrm{~kg}$ 32 kg of S 32) $\times 1$	1
5-iii	Basis: 32 kg of $\mathrm{Q}=$ Heat added			

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 19 of $\mathbf{2 4}$

		1 1 1 2 2 2 2
6	Any 4	16
6-i	Basis: 1 mol of ethylene gas $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+1 / 2 \mathrm{O}_{2} \cdots \cdots-\cdots \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{~g})$ $\Delta \mathrm{H}^{\mathrm{o}}=$ Standard heat of reaction $\begin{aligned} & =\left[\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\right]_{\text {product }}-\left[\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\right]_{\text {reactant }} \\ & =\left[\left(1 \mathrm{x} \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\right)_{\mathrm{C} 2 \mathrm{H} 4 \mathrm{O}(\mathrm{~g})}\right]-\left[\left(1 \mathrm{x} \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\right)_{\mathrm{C} 2 \mathrm{H} 4(\mathrm{~g})}+\left(1 / 2 \times \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\right)_{\mathrm{O} 2}\right] \\ & =[1 \mathrm{x}(-52.63)]-[1 \times(52.50)+1 / 2 \times(0.0)] \end{aligned}$	1 1

SUMMER-19 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 20 of $\mathbf{2 4}$

	$=-105.13 \mathrm{KJ}$ per $\mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g})$ produced. Change in the enthalpy for $5 \mathrm{~mol}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g})$ produced $=-105.13 \text { X } 5=\mathbf{- 5 2 5 . 6 5} \text { KJ ------Ans }$	1 1
6-ii	Density of gas mixture $=\rho=0.78 \mathrm{~kg} / \mathrm{m}^{3} \ldots-\ldots$ ans.(b)	1

SUMMER-19 EXAMINATION

Model Answer

6-iii	Basis: 1 kg of air in gas inlet to absorption system. Ammonia in inlet gas to absorption system $=(0.2 / 1) \times 1=0.2 \mathrm{~kg}$ Air is inert as far as absorption operation is concerned Air in gas leaving the system $=$ Air in inlet gas $=01 \mathrm{~kg}$ NH_{3} in gas leaving the system $=(0.004 / 1) \times 1=0.004 \mathrm{~kg}$ Material Balance of $\mathbf{N H}_{3}$ $\begin{array}{rlr} \mathrm{NH}_{3} \text { in gas entering } & =\mathrm{NH}_{3} \text { in gas leaving }+\mathrm{NH}_{3} \text { absorbed } \\ 0.2 & =0.004 & +\mathrm{NH}_{3} \text { absorbed } \end{array}$ NH_{3} absorbed $=0.2-0.004=0.196 \mathrm{~kg}$ \% recovery of $\mathrm{NH}_{3}=\frac{\mathrm{NH}_{3} \text { absorbed }}{\mathrm{NH}_{3} \text { in Inlet gas }}$ $\%$ recovery of $\mathrm{NH}_{3}=-------------$ x 100 \% recovery of $\mathrm{NH}_{3}=98$ \% --------------- ans.	1
6-iv	Basis : 100 Kmol of ethylene fed to a reactor.	

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page $\mathbf{2 2}$ of $\mathbf{2 4}$

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page $\mathbf{2 3}$ of $\mathbf{2 4}$

		1
6-v	Basis: 100 kmol of ethanol fed to reactor. Reaction : $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}--------->\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2}$ Amount of $\mathrm{CH}_{3} \mathrm{CHO}$ produced is 45 kmol . From the reaction, $\begin{aligned} 1 \mathrm{Kmol} \mathrm{CH}_{3} \mathrm{CHO} & =1 \mathrm{Kmol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\ 1 \mathrm{Kmol} \mathrm{CH}_{3} \mathrm{CHO} & =(1 / 1) * 45 \mathrm{Kmol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\ & =45 \mathrm{Kmol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \end{aligned}$ Moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ reacted $=45 \mathrm{Kmol}$	1
6-vi	Basis : 1 hr of operation	

Quantity of wet lumber handled $=(2000 / 1) \times 1=2000 \mathrm{~kg}$
Dried material in lumber $=(1-0.05) \times 2000=1900 \mathrm{~kg}$
Dried material in dried lumber $=1900 \mathrm{~kg}$
Dried lumber contain 1% water
Dried lumber $=[100 /(100-1)] \times 100=1919.2 \mathrm{~kg}$
Let X be the kg of dry air in air entering dryer
Air entering dryer $=(100 / 99.5) \mathrm{X}=1.005 \mathrm{X} \mathrm{kg}$
Water balance :
Water in wet lumber - Water in dried lumber $=$ Water added in air
$0.05 \times 2000-0.01(1919.2)=[(0.02 / 0.98) \mathrm{X}]-[(0.005 / 0.995) \mathrm{X}]$
By solving we get,

$$
\mathrm{X}=5254 \mathrm{~kg}
$$

Air required $=1.005(5254)=5280.3 \mathrm{~kg}$
Air required to be fed to dryer $=5280.3 \mathrm{Kg}$ ans.

