

SUMMER-19 EXAMINATION Model Answer

Subject Title: Stoichiometry

Subject code :

17315

Page **1** of **24**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-19 EXAMINATION Model Answer

Subject Title: Stoichiometry

Subject code :

Page **2** of **24**

Q No.	Answer	marks
1A	Any 4	8
1A(i)	Raoult'slaw: It states that at a given temperature, the equilibrium partial	1
	pressure of a component of a solution in the vapour is equal to the product of	
	the mole fraction of the component in the liquid phase and the vapour pressure	
	of the pure component.	
	Henry's law: It states that the partial pressure of the solute gas in gas phase is	1
	directly proportional to the mole fraction of a solute gas dissolved in a liquid	
	equilibrium above the liquid surface.	
1A(ii)	Limiting reactant in a chemical reaction:	1
	It is the reactant which decides the extent of a reaction.	
	Or	
	It is the reactant which is added in limited quantity.	
	Or	
	It is the reactant which disappear first if a reaction goes to completion	
	Excess reactant: It is the reactant which is in excess of the theoretical or	1
	stoichiometric requirement.	
1A	Standard heat of formation :	1
(iii)	It is the amount of heat liberated or absorbed when one mol of a compound is	
	formed from its elements at standard conditions.	
	Standard heat of combustion:	
	It is the amount of heat liberated when one mol of a compound is combusted or	1
	burned in oxygen at standard conditions.(25 [°] C and 1atm pressure)	
1A	Recycling: It is returning back a portion of stream leaving a process unit to the	1
(iv)	entrance of the process unit for further processing.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Title: Sto	bichiometry Subject code : 17315	Page 3 of	
	Reasons for performing recycling: (any one)		
	1. Maximum utilization of the valuable reactant		
	2. Improvement of the performance of the equipment/ operation	1	
3. Utilization of the heat being lost in the exit stream.			
	4. Better operating conditions of the system		
	5. Improvement in the selectivity of a product		
	6. Enrichment of a product		
1A(v)	Partial pressure:		
	Partial pressure of a component gas is the pressure that would be exerted by	1	
	that component gas if it alone was present in the same volume and at the same		
	temperature as the gas mixture.		
	Pure component volume:		
	Pure component volume of a component gas is the volume that would be		
	occupied by that component gas if it alone was present in the same pressure and		
	at the same temperature as the gas mixture.		
1A	$CO + H_2 \rightarrow CH_3OH$		
(vi)	Note: Question is incomplete. Mark should be given for attempting the		
	question		
1-B	Any 2	12	
1-B	Basis : 500 kg phenol and 700 kg H ₂ O	1	
(i)	Phenol rich layer X kg		
	1200 kg feed Water rich layer Y kg.	1	
	Overall balance is		
	100 = X + Y(1)	1	
	Material balance for phenol is		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: Stoichiometry		Subject code :	17315	Page 4 of 24	
		500 = 0.7X + 0.09Y(2)			1
		Solving 1 and 2			
		$Y = 557.37 \text{ kg}, \ X = 642.62 \text{ kg}$			1
		Weight of Phenol rich layer = 642.62 kg			
		Weight of Water rich layer = 557.37 kg			1
1	-В	Basis: 5 kg CaC ₂			1
(i	ii)	$CaC_2 + H_2O - \rightarrow C_2H_2 + Ca(OH)_2$			1
		Kmoles of $CaC_2 = 5/64 = 0.07812$			1
		C_2H_2 produced = 0.07812 kmoles			1
		PV =nRT			
		Or $V = nRT/P$			1
		= 0.07812 * 8.314* 313 / 100			
		$= 2.03 \text{ m}^3$			1
1.	-	$\mathbf{SO}_2 + \frac{1}{2}\mathbf{O}_2 \dashrightarrow \mathbf{SO}_3$			
В	B(iii)	Basis: 1 kmol SO ₂			
		Theoretical oxygen requirement = 0.5 kmol			1
		% excess air =80%			
		$O_2 \text{ fed} = 0.5 + 0.8*0.5 = 0.9 \text{ kmole}$			1
		Fed air = 0.9 *100 /21 = 4.2857 kmoles			
		N2 from fed air = $4.2857 * 0.79 = 3.39$ kmoles			1
		Conversion = 70%			
		Reacted $SO_2 = 0.7$ kmole			1
		Reacted $O_2 = 0.5*0.7 = 0.35$ kmole			
		Unreacted $O_2 = 0.9-0.35 = 0.55$ kmole			1
		Unreacted $SO_2 = 1-0.7 = 0.3$ kmoles			
		Formed $SO_3 = 0.7$ kmoles			
		N2 = 3.39 kmoles			

ect Title: S	toichiometry		Subject code :	17315	Page 5 of
	component	kmoles	Mol%		1
	O ₂	0.55	11.13		
	SO ₂	0.3	6.07		
	SO ₃	0.7	14.17		
	N ₂	3.39	68.62		
2	Any 4				16
2-1	Basis: 50 kmoles /hr butane				
	$C_4H_{10} + 6.5 O_2 \rightarrow$	$4CO_2 + 5 H_2O$			
	100 kmol air fed = 21 kmol O_2 fed				
	2100 kmol air fed = ?				
	$O_2 \text{ fed} = 2100 * 21/100 = 441 \text{ kmoles}$			1	
	1 kmol C_4H_{10} fed = 6.	5 kmol O_2 theoretical	ly required		
	50 kmol C_4H_{10} fed = ?				
	O_2 theoretically required = 325 kmol				1
	% excess= $(O_2 \text{ fed-}O_2)$	theoretical)*100/ O_2	theoretical		1
	= (441-325)*	^{<} 100/325			
	= 35.69%				1
2-ii	Hess's law of constar	nt heat summation :	It states that the enthalp	y change	2
	i.e. heat evolved or ab	sorbed in a particular	reaction is the same whe	ether the	
	reaction takes place in one or several steps.				
	For Example : Carbon can be converted into CO ₂ by two ways				
	Path 1 : C (s) + O_2 (g)> CO_2 (g) Δ H			2	
	Path 2 : (i) C (s) $+\frac{1}{2}$ (ii) 2CO (g) $+\frac{1}{2}$	$O_2(g)> CO(g)$ 2 $O_2(g)> CO_2(g)$	Δ H1 g) Δ H2		

SUMMER-19 EXAMINATION Model Answer

Title: St	toichiometry	Subject code :	17315	Page 6 of 2
	(i) + (ii) C (s) + O_2 (g)> CO_2 (g)			
	Thus $\Delta H = \Delta H1 + \Delta H2$			
2-iii	BASIS:1000 kg of final solution.			
	A			
	10%. salt			
	Loookg			
	> 357. 5000			
	B 50 7/ Salt			
	Let kg of A=x			
	Let kg of B=y			
	Therefore overall balance			1
	X+y=1000(1)			
	Salt balance			
	0.1x+0.5y=1000*0.35			
	0.1x+0.5y=350(2)			1
	Multiplying equation (1) by 0.1			
	0.1x+0.1y=100(3)			
	From eqution (2) and (3)			
	4y=250			
	Therefore y=250/4			1
	=625kg			
	X=375kg			
	Wt of 10% solution=375 kg			

Title: St	toichiometry Subject code : 17315	Page 7 o
	Wt of 50% solution=625kg	1
2-iv	Basis: 1000 kg wet ONA	
	Water Xkg 1000 Kg feed 90% solid dryer	1
	Product Y kg	
	0.5% moisture	
	Overall balance is	
	1000 = X + Y	1
	Balance for solid	
	0.90 * 1000 = 0.995 * Y	
	Y = 904.52 kg	1
	X = 95.48kg	
	Water removed = 95.48 kg	
	Product obtained = 904.52 kg	
	% of original water removed = (Water removed/original water 0*100	1
	= (95.48/100)*100 = 95.48%	
2-v	Basis: Average molecular weight of gas mixture=22.4	
	Let X_A & X_B be the mole fractions of CH_4 & C_2H_6 respectively	1
	$M_{av} = M_A X_A + M_B X_B$	
	$22.4 = 16X_A + 30X_B$ (1)	1
	$1 = X_A + X_B \dots (2)$	1
	Solving (1) &(2) we get	

Title: Stoichiometry		Subject code :	17315	Page 8 of		
	$X_A = 0.543$ and $X_B =$	0.457				
	Mole fraction of C	Mole fraction of CH ₄ =0.543& Mole fraction of C ₂ H ₄ =0.457				
2-vi	Basis : 100 kmol pro	oduct stream				
	Reaction is 2A + B	→ C				
	Kmol of inerts in pr	oduct stream $= 19.23$ k	mol			
	Kmol of A in produ	act stream $= 23.08$ km s	l (unreacted)		1	
	Kmol of B in produc	ct stream $= 11.54$ kmol	(unreacted)			
	Kmol of C in produ	tet stream $= 46.15$ kmo	l (product)			
	Kmol of A reacted (from reaction) $2 * 46.15 = 92.3$			1		
	Kmol of A fed = Kmol of A reacted + Kmol of A unreacted					
	= 92.3 + 23.08 = 115.38 kmol					
	Kmol of B reacted (from reaction) = 46.15			1		
	Kmol of B fed $=$ Km	nol of B reacted + Kmol	of B unreacted			
	= 46.	15 + 11.54 = 57.69 km	ol			
	Inerts = 19.23 kmol					
	Component	Kmol	Mole %		1	
	А	115.38	60			
	В	57.69	30			
	Inerts	19.23	10			
3	Any 2				16	
3-i	Solution :Ba	asis: 100kg of product g	ases leaving the oxidizer			
	HCI, air Oxidiser Product stream, HCI, Cl ₂ , H ₂ O, O ₂ and N ₂					
	Reaction: 4	$\mathrm{HCl} + \mathrm{O}_2 \rightarrow 2 \ \mathrm{Cl}_2 + 2 \ \mathrm{HCl}$	H ₂ O		1	
	Product gase	es contain 13.2 kg HCl, (5.3 kg O ₂ , 42.9kg N ₂ , 30	kg Cl_2 and		

SUMMER-19 EXAMINATION Model Answer

Subject Title: Stoichiom	etry	Subject code :	17315	Page 9 of 24
	7.6 kg H ₂ O.			
	Quantity of HCl unreacted = HCl in prod	luct gases = 13.2 kg		
	Cl_2 produced = Cl_2 in product gases = 30	kg		
	We have from the reaction, 4 kmolHCl = i.e., 146 kg HCl = 142 kg Cl ₂ (on weight	2 kmol Cl ₂ basis)		
	Quantity of HCl reacted to produce 30 = $\frac{146}{142} \times 30 = 30.85$ kg) kg Cl ₂		1
	Material balance of HCl: HCl charged = HCl reacted + HCl unread	ched		
	: HCl charged = $30.85 + 13.2 = 44.05$ kg	0		
	Moles of HCl Charged = $\frac{44.05}{36.5} = 1.2068$ k	kmol		1
	We have, 4 kmolHCl = 1 knol $O_2 \dots M_c$	ole basis		
	\therefore 146 kg HCl = 32 kg O ₂ Weight bas	sis		
	∴ Quantity of O2 reacted with 30.85 kg I	HCl = $\frac{32}{146} \times 30.85 = 6$	6.76 kg	
	Material balance of O_2 : O_2 charged = O_2 reacted + O_2 unreacted			
= 6.76	+ 6.3 = 13.06 kg			
	N_2 charged = N_2 in product gaes = 42.9 k	xg		
	\therefore Air charged = (O ₂ + N ₂) in air charged			
	= 13.06 + 42.9 = 55.96 kg Mol. Wt. of air = 28.84			1
	Moles of air charged or supplied = $\frac{55.96}{28.84}$ =	= 1.94 kmol		

SUMMER-19 EXAMINATION Model Answer

Subject Title: S	toichiometry		Subject code :	17315	Page 10 of 24
	Theoretical O_2 required for 1.2068 kmolHCl charged, form the reaction				
	$=\frac{1}{4} \times 1.2068 = 0.301$	7 kmol			1
	Theoretical air required = $0.3017 \times \frac{100}{21} = 1.44$ kmol				
	% excess air = $\frac{\text{airsu}}{1}$	pplied–airtheoreticallyrec airtheoreticallyrequired	uired × 100		
	$=\frac{1.94-1.44}{1.44} \times 100 = 3$	34.72	Ans. (a)		1
	Composition of Gases Entering the Reactor :				
	Component	Quantity in kg	Weight%		
	HCl	44.05	44.05		2
	O ₂	13.06	13.06		-
	<u>N2</u>	42.90	42.90		
	Total	100.00	100.00		
			•••••• 1		
3-ii	SOLUTION :				
	BASIS : 15000 mol /h of N	$I_2 - H_2$ mixture.			
	Molal flowrate of gas mixtu	are = 15 kmol /h			
	$X_{N2} = 25/100 = 0.25$				
	$X_{H2} = 75 / 100 = 0.75$				1
	$C_{p}^{o} mix = \sum C_{p}^{o} mix \cdot x_{i}$				
	$= X_{N2} C^{o}_{p N2} + X$	$_{H2} C^o_{\ p \ H2}$			1
	= 0.25 (29.5909 -	- 5.41 x 10 ⁻³ T + 13.18	29 x 10 ⁻⁶ T ² –		

Subject Title: Stoichiometry	Subject code :	17315	Page 11 of 24
$4.968 \ge 10^{-9} \text{ T}^3) + 0.75 \ (28.6103)$	5 + 1.0194 x 10 ⁻³ T –		
$-0.1476 \times 10^{-6} T^2 + 0.769 \times 10^{-6} T^2$	$-9 T^{3}$)		
			1
$= 28.8556 - 0.588 \times 10^{-3} \mathrm{T} + 3.1$	$85 \ge 10^{-6} T^2 - 0.6652 x$		
10^{-9} T^3			
Q = Heat transferred			
T2			1
$= n T_1 \int C_p^o C_{p mix}^o. dT$			
Т2			
$= n_{T1} \int (28.8556 - 0.588 \times 10^{-3})^{-3}$	$\Gamma + 3.185 \text{ x } 10^{-6} \text{ T}^2 -$		
$0.6652 \ge 10^{-9} T^3) dT$			1
$= n \left[28.8556 \left(T_2 - T_1 \right) - 0.588/2 \right]$	$x \ 10^{-3} \ (T_2^2 - T_1^2)$		
$+3.185 \text{ x}10^{-6}/3 (\text{T}_{2}^{3} - \text{T}_{1}^{3}) -0.66$	$52 \times 10^{-9}/4$ (T ⁴ ₂ – T	⁴ 1)]	
	_		1
Where $n = 15 \text{ kmol} / \text{h}$, $T_1 = 298 \text{ K}$, $T_2 =$	473 K.		
Q = 15 [28.8556 (473 - 298) - 0.100]	$5207/2 \times 10^{-3} (473^2 - 298)$	3 ²)	
			1
$+ \underline{3.185 \text{ x}} 10^{-6} (473^3 - 298^3) \underline{-0.66}$	$552 \ge 10^{-9}$		
3	4		
$(473^4 - 298^4)]$			
= 15 (5049 73 - 35 13 +84 25 -	7.01)		

ect Title: St	oichiometry Subject code : 1731	L5 Page 12 of 2
	= 76377.6 kJ/h = 21.21 kJ/s = 21.21 kWAns	1
3-iii	Basis: 26.6 lit NO ₂	
	PV=nRT	1
	n = PV/RT	
	$= 80 * 0.0266 / 8.314 * 298 = 8.6 * 10^{-4} \text{ kmol} = 0.86 \text{ mol}$	1
	$2NO_2 - \rightarrow N_2O_4$	1
	Let x moles of N_2O_4 in final mixture	
	NO_2 reacted = $2x$	
	NO ₂ remaining = $(0.86 - 2x)$.	1
	Total moles = $x + 0.86 - 2x$	
	= 0.86 - x	1
	$\mathbf{P}_1/\mathbf{P}_2 = n_1/n_2$	
	80/66.662 = 0.86/(0.86-x)	1
	Solving, $x = 0.1434$ mol	
	Final moles = $0.86 - 0.1434 = 0.7166$ mol	
	Mol fraction of $N_2O_4 = 0.1434/0.7166 = 0.2$	1
	Partial pressure of $N_2O_4 = 0.2 * 66.662 = 13.33 \text{ kPa}$	1
4	Any 2	16
4-i	SOLUTION :	
	BASIS : 1000 kg of desired mixed acid.	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: Stoichiometry	Subject code :	17315	Page 13 of 24
Waste acid, 30 % H ₂ SO ₄ ,35% HNO ₃			
Con.nitric acid	Desired mixed acid		1
Blending	→ [°]		
72% HNO ₃	39% H ₂ SO ₄ , 42% HNO ₃		
98% H ₂ SO ₄			
Block diagram for fortifying w	aste acid with concentrated	acids	
Let x, y and z be the kg of waste aci	d, concentrated sulphuric acid	1 and	1
concentrated nitric acid required to ma	ke 1000 kg desired acid.		
Overall material Balance:			
x + y + z	= 1000(i)		
			1
Material Balance of H ₂ SO ₄ :			
0.3 x + 0.98 y =	0.39 x 1000(ii)		
0.3 x + 0.98 y = 390			
Y	f = (390 - 0.3 x) / 0.98		
Y	= 397.96 – 0.306 x(iii)		1
Material Balance of HNO₃ :			
0.35 x + 0.72 z = 0.4	2 x 1000		
0.35 x + 0.72 z = 420	(iv)		
z = (4	20 – 0.35 x)/ 0.72		
	= 583.3 - 0.486 x(v)		
Put values of y and z from equations (i	ii) and (v) in eqn (i) and solve	for x.	
\therefore x + (397.96 - 0.306 x) + (583.3 - 0	(.486 x) = 1000		

ject Title: Stoichiometry		bject code :	17315	Page 14 of
	$\therefore x = 90.1 \text{ kg}$			
We have ,	y = 397.96 – 0.306 x			
	= 397.96 - 0.30 x 90.1			
	\therefore y = 370.4 kg			1
We have ,	z = 583.3 - 0.486 x			
	= 583.3 - 0.486 x 90.1			
	\therefore z = 539.5 kg			2
Amount of waste aci	d required = 90.1 kg			
Amount of concentra	ted sulphuric acid required = 370.	4 kg		
Amount of concentra	ted nitric acid require = 539.5 kg	Ans		
4-ii Basis : 100 Kmol of	feed			
Feed contains 60 km	ol A , 30 kmol B and 10 kmol iner	ts		
Let X be the kmol of	A reacted by reaction :			1
2A + B	C			
From reaction 2 km	ol A = 1 kmol B = 1 kmol C			
B rea	cted = $(1/2)^* X = 0.5 X$ kmol			1
C for	$med = (1/2)^* X = 0.5 X kmol$			
Material Balance of	A give			
A unrea	cted = (60 - X) kmol			1
Material Balance o	f Inerts :			
Inerts in fe	ed = Inert in product = 10 kmol			1
C formed =	$(1/2)^* X = 0.5 X$ kmol			
B unreacted	l = (30 - 0.5 X) kmol			
Total moles of produ	ct stream = $(60-X) + (30-0.5X) + 1$	10=0.5X		1
	= 100 - X Kmol			
Mole % of A in prod	uct stream = 2%			

Subject Title: Stoichiometry	Subject code :	17315	Page 15 of 24
Kmol A in product stream	n		1
Mole % of A =	* 100		
Total kmol of product strea	ım		
60 - X			
2 = * 100			
100 – X			
X = 59.184 kmol = amount of	A reacted		1
Kmol A reacted			
Conversion of A =	* 100		
Total kmol of A feed	l		
59.184			1
Conversion of A = $* 100 = 98.64$	4 % Ans		
60			
4-iii Basis: 10000 kg/hr of feed			1
$\begin{array}{c} 10000 \text{ kg/hr solution} \\ 20 \% \text{ methanol} \end{array} \xrightarrow{\text{distillation}} \end{array}$	→ Distillate X kg/hr 98% methamol Waste solution Y kg/h	ır	1
	\rightarrow 1% methanol		
Overall balance is			1
$10000 = X + Y \dots (1)$			
$\begin{bmatrix} \text{Individual balance for CH}_3\text{OH 1S} \\ 0.2*10000 = 0.02\text{V} + 0.01*\text{V} \\ (2) \end{bmatrix}$	A A A A A A A A A A A A A A A A A A A		
$0.2 \cdot 10000 = 0.98 \times 0.01 \cdot 1 \dots (2)$)		1

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

ıbject Title: S	toichiometry Subject code : 17315	Page 16 of 2
	Solving the equations	
	X= 1958.76 Kg/hr	
	Y= 8041.24 kg/hr	1
	Mass flow rate of distillate = 1958.76 Kg/hr	
	Mass flow rate of bottom product = 8041.24 kg/hr	1
	Methanol in Waste solution = 0.01 * 8041 = 80.41 Kg/hr	
	Methanol in feed $= 0.2 * 10000 = 2000 \text{ Kg/hr}$	
	Methanol in Waste Solution % loss of Methanol = * 100 Methanol in Waste Solution	1
	% loss of Methanol = $\frac{80.41}{2000}$ * 100 % loss of Methanol = 4.02 % ans. (b)	1
5	Any 2	16
5-i	Basis : 5000 kg of slurry to be handled	
	Slurry 25% solids, 5000 kg Centrifuge 25% solids, 5000 kg Centrifuge 200 ppm solids	1
	Let X be the kg of wet solids(desired product) and Y be the kg of filtrate per batch	
		1
	X + Y = 5000 - (1)	
	Solids Balance:	

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Title: Stoichiometry		Subject code :	17315	Page 17 of 24
	Solids in slurry = Solids in product + Solids in filtrat	e		1
	$0.25 \text{ x } 5000 = 0.92 \text{ X} + (200/10^6) \text{ Y} ($	2)		
	From equation (1) $Y = 5000- X$			
	Equation (2), we get,			
	$0.25 \text{ x } 5000 = 0.92 \text{ X} + (200/10^6) (5000 \text{- X})$			
	By solving we get,			
	X = 1358 kg			2
	Y = 5000 - 1358 = 3642 kg			2
	100 kg desired product takes one hour of operation			1
	Time required to process complete batch = (1358/1	00) x 1 = 13.58 hr		
	Solid in filtrate = Solid loss per batch			1
	$= (200/10^6) \times 3642 = 0.73 \text{ kg}$			
				1
	Solid loss per batch = 0.73 kg			
5-ii	Basis : 1 katom of sulphur burnt			
	Reactions : $S + O_2 - \rightarrow SO_2$ $S + (3/2) O_2 \rightarrow SO_3$ From the reaction -2 : 1katom S = 1.5 kmol O_2			1
	Stoichiometric requirement of O_2 by reaction $2 = 0$ Stoichiometric air requirement = 1.5 x (100/21) =	(1.5/1) x 1 = 1.5 k 7.14 kmol	mol	
	Air supplied to burner = $7.14 \text{ x} [1 + (20/100)] = 8$ O ₂ in supplied air = $8.57 \text{ x} 0.21 = 1.8$ kmol N ₂ in supplied air = $8.57 \text{ x} 0.79 = 6.77$ kmol	3.57 kmol		1
	30% of sulphur fed to burner is oxidized to SO_3 by	y reaction -2 and 7	0 % of	1
	sulphur fed to burner is oxidized to SO ₂ by reaction	on 1		1
	Sulphur burnt by reaction $1 = 0.7 \text{ x } 1 = 0.7 \text{ katom}$	1		
	Sulphur burnt by reaction $2 = 0.3 \times 1 = 0.3$ katom			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

ct Title: St	toichiometry		Subject code :	17315	Page 18 of
	O ₂ reacted by reaction	$1 = (1/1) \ge 0.7 = 0.7 \text{ km}$	ol		
	O ₂ reacted by reaction	$n 2 = (1.5/1) \times 0.3 = 0.45$	kmol		
	O_2 reacted totally = 0.	7 + 0.45 = 1.15 kmol			1
	O_2 unreacted = O_2 fe	ed - O ₂ reacted			
	- 1.9	1.15 - 0.65 kmol			
	- 1.0 -	1.13 - 0.03 KIII01			
	N_2 in supplied air = N_2	$_2$ in gas leaving the burne	r		
	= ().77 kmol			
	SO ₂ produced by reac SO ₃ produced by reac Composition of gas I	tion $1 = (1/1) \ge 0.7 = 0.7$ tion $2 = (1/1) \ge 0.3 = 0.3$ Leaving the Burner :	kmol kmol		1
	Component	Quantity in kmol	Mole %		
	O ₂	0.65	7.72		
	N ₂	6.77	80.40		1
	SO ₂	0.7	8.31		
	SO ₃	0.3	3.57		
	Total	8.42	100		
	SO ₂ in gas leaving but SO ₂ in gas leaving but O ₂ in gas leaving but N ₂ in gas leaving but Weight of gas leaving 279.16 kg of gas is pro Weight of gas per kg	rner = $0.7 \times 64 = 44.8 \text{ kg}$ rner = $0.3 \times 80 = 24 \text{ kg}$ ler = $0.65 \times 32 = 20.8 \text{ kg}$ ler = $0.77 \times 28 = 189.56 \text{ H}$ g burner = $4.8+24+20.8 + 100000000000000000000000000000000000$	^{kg} 189.56 = 279.16 kg S or 32 kg of S 79.16/32) x 1 2 kg		2
5-iii	Basis: 32 kg of Oxyg	en gas			
	Q= Heat added				

SUMMER-19 EXAMINATION <u>Model Answer</u>

Subject Title: Stoichiometry Subject code : 17315 Page **19** of **24** T_2 1 $= n \int Cp dT$ T_1 T_2 $= n \int [26.0257 + 11.7551 \times 10^{-3} \text{T} - 2.3426 \times 10^{-6} \text{T}^{2} +$ 1 $0.5623 \times 10^{-9} \text{ T}^3$] dT T_1 = n $[26.0257 (T_2 - T_1) + (11.7551 \times 10^{-3} / 2)(T_2^2 - T_1^2)]$ 2 $-(2.3426 \times 10^{-6} /3) (T^{3}_{2} - T^{3}_{1}) - (0.5623 \times 10^{-9} / 4)$ $(T_{2}^{4} - T_{1}^{4})$] Where n = 32/32 = 1 kmol, $T_2 = 488 \text{ K}$, T₁=313 K $= 1 [26.0257 (488 - 313) + (11.7551 \times 10^{-3} / 2)(488^{2} -$ 2 313²) -(2.3426 x 10⁻⁶ /3) (488³ -313³) -(0.5623 x $10^{-9}/4$) (488⁴ – 313⁴)] = 1 [(-4554.5) + (-823.89) + 66.80 + 6.62]2 Q = - 5304.97 KJ (heat removed) ----- Ans. 6 Any 4 16 **Basis:** 1 mol of ethylene gas 6-i $C_2H_4(g) + \frac{1}{2}O_2 \longrightarrow C_2H_4O(g)$ ΔH^{o}_{R} = Standard heat of reaction = $\left[\Sigma \Delta H^{o}_{f} \right]_{product}$ - $\left[\Sigma \Delta H^{o}_{f} \right]_{reactant}$ 1 = [(1 x $\Delta H^{o}_{f})_{C2H4O(g)}$] - [(1 x $\Delta H^{o}_{f})_{C2H4(g)}$ + (1/2 x $\Delta H^{o}_{f})_{O2}$] $= [1 \times (-52.63)] - [1 \times (52.50) + 1/2 \times (0.0)]$ 1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

ct Title: Stoichiometry	Subject code :	17315	Page 20 of 2
= - 105.13 KJ per mol $C_2H_4O(g)$ pr	oduced.		1
Change in the enthalpy for 5 mol C_2H	I ₄ O(g) produced		
= -105.13 X 5 = -	525.65 KJAns		1
6-ii Basis : 100 kmol of natural gas	x %		
Mole % of CH4 = 82, Mole % of C_2H	$I_6 = 12$, Mole % of $N_2 = 6$		1
Mole Mole Fraction of CH4 = X CH4 =	e % of CH4 82 = = 0.82 100 100		
Mole Mole Fraction of $C_2H_6 = X_{C2H6} =$	$^{\circ}$ % of C ₂ H ₆ 12 = = 0.12		
Mole Mole Fraction of $N_2 = X_{N2} =$	$\frac{6\% \text{ of } N_2}{100} = \frac{6}{100} = 0.06$		
Mavg = Average molecular we	ight of gas		
$= M_{CH4} * X_{CH4} + M_{C2H6}$ $= (16*0.82) + (44*0.12)$	$_{5} * X_{C2H6} + M_{N2} * X_{N2}$ +(0.06*17) = 18.4		
Mavg = 18.4 P May	vg		1
Density of gas mixture = ρ = R T			
T = 101.525 KPa T = 288 K , Mavg = 18.4 , R= 8.31451 m ³ .Kpa/(kmol.K)			1
$\rho = \frac{(101.325 * 18.4)}{=}$	0.78 kg/m ³		
(8.31451 * 288)			1
Density of gas mixture = ρ = 0.78	kg/m ³ ans.(b)		

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

ct Title: St	oichiometry Subject code : 17315	Page 21 of
6-iii	Basis: 1 kg of air in gas inlet to absorption system.	
	0.20 kg NH ₃ per kg air Inlet gas $0.004 \text{ kg NH}_3 \text{ per kg air}$	1
	Ammonia in inlet gas to absorption system = $(0.2/1) \times 1 = 0.2 \text{ kg}$	
	Air is inert as far as absorption operation is concerned	
	Air in gas leaving the system = Air in inlet $gas = 01 \text{ kg}$	1
	NH ₃ in gas leaving the system $= (0.004/1) \times 1 = 0.004 \text{ kg}$	1
	Material Balance of NH ₃	
	NH_3 in gas entering = NH_3 in gas leaving + NH_3 absorbed	
	$0.2 = 0.004 + NH_3$ absorbed	1
	NH_3 absorbed = 0.2 - 0.004 = 0.196 kg	1
	NH_3 absorbed	
	$\frac{1}{100}$ NH ₃ in Inlet gas	
	0.196	
	% recovery of $NH_3 = x \ 100$	
	0.2	
	% recovery of NH ₃ = 98 % ans.	1
6-iv	Basis : 100 Kmol of ethylene fed to a reactor.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject Title: Stoi	chiometry	Subject code :	17315	Page 22 of 24
	Ethylene, $O_2 \longrightarrow Reactor \longrightarrow Product$ $C_2H_4O, C_2H_4, CO, etc.$			1
	Reaction 1 : $C_2H_4 + \frac{1}{2}O_2> C_2H_4O$			
	Reaction $2: C_2H_4 + 3O_2> 2CO_2 + 2H_2O$			
	Amount of C ₂ H ₄ O produced = 80 Kmol			
	Amount of CO ₂ produced = 10 Kmol			
	C ₂ H ₄ reacted to produce C ₂ H ₄ O by Reaction 1			
	$1 = - * 80 = 80 \text{ Kmol}$ 1 From Reaction 2, $1 \text{ Kmol C}_{2}\text{H}_{4} \equiv 2 \text{ Kmol CO}_{2}$			1
	C ₂ H ₄ reacted to produce 10 Kmol CO ₂ by reaction $= \frac{1}{2} = 5 \text{ Kmol}$	n 2		
	Cally totally reported - Cally reported by reportion 1			
	C_2H_4 totally reacted = C_2H_4 reacted by reaction 1.	+		
	= 80+5 = 85 Kmol	reaction2		
	% conversion of $C_2H_4 = \frac{C_2H_4 \text{ totally reacted}}{C_2H_4 \text{ totally feed}}$	- * 100		1
	85 = * 100 = 85 %			
	% conversion of C ₂ H ₄ = 85 % ans.	(a)		

ject Title: S	toichiometry	Subject code :	17315	Page 23 of 2
	Kmol C2H4 reacted to Produce C2H4O % yield of C2H4O =	- * 100		
	$= \frac{80}{} * 100 = 94.12$	2 %		1
	% yield of C ₂ H ₄ O = 94.12% ans. (b)			
6-v	Basis: 100 kmol of ethanol fed to reactor.			
	Reaction : $C_2H_5OH> CH_3CHO +H_2$ Amount of CH ₃ CHO produced is 45 kmol.	2		1
	From the reaction,			
	$1 \text{ Kmol CH}_3 \text{CHO} = 1 \text{ Kmol C}_2 \text{H}_5 \text{OH}$			
	1 Kmol CH ₃ CHO = $(1/1) * 45$ Kmol C ₂	H ₅ OH		1
	$= 45 \text{ Kmol } \text{C}_2\text{H}_5\text{OH}$			
	Moles of C_2H_5OH reacted = 45 Kmol			
	% conversion of $C_2H_5OH =$	reacted * 100 I charged		1
	% conversion of $C_2H_5OH = \frac{45}{100} * 100$			1
	% conversion of $C_2H_5OH = 45$ % and	•		
6-vi	Basis : 1 hr of operation			

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject Title: Stoichiometry Subject code :	17315	Page 24 of 24
Quantity of wet lumber handled = $(2000/1) \ge 1 = 2000 \ge 1000 \ge 10000 \ge 100000000$		1
Dried lumber = $[100/(100-1)] \times 100 = 1919.2 \text{ kg}$ Let X be the kg of dry air in air entering dryer Air entering dryer = $(100/99.5) \times 1.005 \times 1000 \times 1000 \text{ kg}$		1
Water balance . Water in wet lumber – Water in dried lumber = Water added in air $0.05 \ge 2000 - 0.01(1919.2) = [(0.02/0.98) \ge 1 - [(0.005/0.995) \ge 1]$ By solving we get.		1
X = 5254 kg Air required = 1.005 (5254) = 5280.3 kg Air required to be fed to dryer = 5280.3 Kg ans.		1