Important Instructions to Examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	(A)	Solve any SIX of the following:		(12)
	(i)	Define Moment of Inertia. State the relation between moment of inertia and radius of gyration.		
	Ans.	Moment of Inertia:		
		It is the second moment of area which is equal to product of area of the body and square of the distance of its centroid from that axis, is called as moment of Inertia.		
		OR	1	
		Moment of inertia of a body about any axis is defined as the sum of second moment of all elementary areas about that axis. Relation between moment of inertia and radius of gyration:		
		$K=\sqrt{\frac{I}{A}}$	1	2
		$\text { Where, } \begin{aligned} \mathrm{I} & =\text { Moment of Inertia }\left(\mathrm{mm}^{4}\right) \\ \mathrm{A} & =\text { Cross Sectional Area }\left(\mathrm{mm}^{2}\right) \\ \mathrm{K} & =\text { Radius of Gyration. }(\mathrm{mm}) \end{aligned}$		
	(ii) Ans.	State perpendicular axis theorem of M.I.		
		Perpendicular Axis Theorem: It states that, if I_{XX} and I_{YY} are the moments of inertia of a plane section about the two mutually perpendicular axes meeting at O , then the moment of inertia I_{ZZ} about the third axis ZZ perpendicular to the plane and passing through the intersection of $X X$ and $Y Y$ is equal to addition of moment of inertia about $\mathrm{X}-\mathrm{X}$ and $\mathrm{Y}-\mathrm{Y}$ axes.	2	2

Model Answer: Summer-2019

Model Answer: Summer-2019

Model Answer: Summer-2019

			Marks	Total Marks

Model Answer: Summer-2019

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answer \& Marks \& Total Marks

\hline \multirow[t]{6}{*}{Q. 3} \& (a) \& $$
\begin{aligned}
& \delta \mathrm{L}=\delta \mathrm{L}_{1}+\delta \mathrm{L}_{2}+\delta \mathrm{L}_{3} \\
& \delta \mathrm{~L}=\left(\frac{\mathrm{PL}}{\mathrm{AE}}\right)_{1}-\left(\frac{\mathrm{PL}}{\mathrm{AE}}\right)_{2}+\left(\frac{\mathrm{PL}}{\mathrm{AE}}\right)_{3} \\
& \delta \mathrm{~L}=\left(\frac{10 \times 10^{3} \times 0.5 \times 10^{3}}{\frac{\pi}{4} \times 20^{2} \times 210 \times 10^{3}}\right)-\left(\frac{5 \times 10^{3} \times 0.7 \times 10^{3}}{\frac{\pi}{4} \times 25^{2} \times 210 \times 10^{3}}\right)_{2}+\left(\frac{20 \times 10^{3} \times 1 \times 10^{3}}{\frac{\pi}{4} \times 30^{2} \times 210 \times 10^{3}}\right)_{3} \\
& \delta \mathrm{~L}=+0.076-0.034+0.135
\end{aligned}
$$ \& 1
3
1
1 \& 8

\hline \& (b)

Ans. \& | A concrete column 400 mm square is reinforced with 4 bars of 16 $\mathbf{m m}$ diameter. It carries a load of $\mathbf{8 0 0} \mathbf{~ k N}$. Determine the stress induced in each material. Take $\mathrm{E}_{\mathrm{S}}=15 \mathrm{E}_{\mathrm{C}}$ |
| :--- |
| Data: $A=400 \times 400 \mathrm{~mm}^{2}, \mathrm{~d}=16 \mathrm{~mm} \Phi$ |
| No. of steel bar $=4, P=800 \mathrm{kN}, \mathrm{Es}=15 \mathrm{Ec}$ |
| Find- $\sigma_{\mathrm{c}}, \sigma_{\mathrm{s}}=$? $\mathrm{A}_{\mathrm{s}}=\mathrm{n} \times \frac{\pi}{4} \mathrm{~d}^{2}=4 \times \frac{\pi}{4} \times 16^{2}=804.25 \mathrm{~mm}^{2}$ | \& \&

\hline \& \& $$
\begin{aligned}
& \mathrm{A}_{\mathrm{c}}=\mathrm{A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{s}} \\
& \mathrm{~A}_{\mathrm{c}}=400 \times 400-804.25 \\
& \mathrm{~A}_{\mathrm{c}}=159195.75 \mathrm{~mm}^{2}
\end{aligned}
$$ \& 1 \&

\hline \& \& $$
\begin{aligned}
& \sigma_{\mathrm{s}}=\mathrm{m} \times \sigma_{\mathrm{c}} \\
& \sigma_{\mathrm{s}}=15 \sigma_{\mathrm{c}}
\end{aligned}
$$ \& 1 \&

\hline \& \& $$
\begin{aligned}
& \mathrm{P}=\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{c}} \\
& \mathrm{P}=\sigma_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}+\sigma_{\mathrm{c}} \mathrm{~A}_{\mathrm{c}} \\
& 800 \times 10^{3}=804.25 \sigma_{\mathrm{s}}+159195.75 \sigma_{\mathrm{c}} \ldots \ldots \ldots . .(1)
\end{aligned}
$$ \& 1

1 \&

\hline \& \& Strain in each material are same.

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{s}}=\mathrm{e}_{\mathrm{c}} \\
& \frac{\sigma_{\mathrm{s}}}{\mathrm{Es}}=\frac{\sigma_{\mathrm{c}}}{\mathrm{Ec}} \\
& \sigma_{\mathrm{s}}=\frac{\mathrm{Es}}{\mathrm{Ec}} \sigma_{\mathrm{c}} \\
& \sigma_{\mathrm{s}}=15 \sigma_{\mathrm{c}} \ldots \ldots . . . \text { (2) }
\end{aligned}
$$ \& 1

1 \&

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
Model Answer: Summer-2019
Subject: Mechanics of Structures
Sub. Code: 17311

Que. No.	Sub. Que.	Model Answer				Marks	Total Marks
Q. 3	(c) (ii)	With a neat sketch, state effective lengths of column for various end conditions.					
	Ans.					$\begin{gathered} 1 \\ \text { each } \end{gathered}$	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4		Attempt any TWO of the following:		(16)
	(a)	A steel bar 40 mm wide and 20 mm thick is $\mathbf{5 0 0} \mathbf{~ m m}$ long. It is subjected to axial tensile force of 80 kN . If the change in length of bar is 2 mm , calculate change in width and change in thickness of		
	Ans.	Data: $\mathrm{b}=40 \mathrm{~mm}, \mathrm{t}=20 \mathrm{~mm}, \mathrm{~L}=500 \mathrm{~mm}, \mathrm{P}=80 \mathrm{kN}, \delta \mathrm{L}=2 \mathrm{~mm}, \mu=0.30$		
		$\mu=\frac{\text { Lateral strain }}{\text { Linear strain }}=\frac{\mathrm{e}_{\mathrm{L}}}{\mathrm{e}}=\frac{\left(\frac{\delta \mathrm{t}}{\mathrm{t}}\right)}{\left(\frac{\delta \mathrm{L}}{\mathrm{~L}}\right)}$		
		$\begin{aligned} & 0.30=\frac{\left(\frac{\delta \mathrm{t}}{20}\right)}{\left(\frac{2}{500}\right)} \\ & \delta \mathrm{t}=0.024 \mathrm{~mm} \text { (Decrease) } \end{aligned}$	1	
		$\begin{aligned} & 0.30=\frac{\left(\frac{\delta \mathrm{b}}{20}\right)}{\left(\frac{2}{500}\right)} \\ & \delta \mathrm{b}=0.048 \mathrm{~mm} \text { (Decrease) } \end{aligned}$	1	
		$\begin{aligned} & \delta \mathrm{L}=\frac{\mathrm{PL}}{\mathrm{AE}} \\ & \mathrm{E}=\frac{\mathrm{P} \times \mathrm{L}}{\mathrm{~b} \times \mathrm{t} \times \delta \mathrm{L}} \\ & \mathrm{E}=\frac{80 \times 10^{3} \times 500}{40 \times 20 \times 2} \\ & \mathrm{E}=25000=0.25 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	1 1	
		$\begin{aligned} & \mathrm{E}=2 \mathrm{G}(1+\mu) \\ & 25000=2 \mathrm{G}(1+0.30) \\ & \mathrm{G}=0.9615 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	1 1	
		$\begin{aligned} & \mathrm{E}=3 \mathrm{~K}(1-2 \mu) \\ & 25000=3 \mathrm{~K}(1-2 \times 0.30) \\ & \mathrm{K}=0.20833 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	1 1	8

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(b) Ans.	A cube of 100 mm side is subjected to stresses along three directions such that $\sigma x=80 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) $\sigma y=60 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive) and $\sigma \mathrm{z}=0$. Calculate strains in all three directions. Also calculate change in volume of cube. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, $\mu=\mathbf{0 . 2 5}$. Data: $1=\mathrm{b}=\mathrm{t}=100 \mathrm{~mm}, \sigma_{\mathrm{x}}=80 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{~T}), \sigma_{\mathrm{y}}=60 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{C})$, $\sigma_{\mathrm{z}}=0, \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mu=0.25$ Find: ev, δv Original volume $V=L \times b \times t$ $\mathrm{V}=100 \times 100 \times 100$ $\mathrm{V}=1 \times 10^{6} \mathrm{~mm}^{3}$ $\begin{aligned} & \mathrm{e}_{\mathrm{x}}=\frac{\sigma_{\mathrm{x}}}{\mathrm{E}}-\frac{\mu \sigma_{\mathrm{y}}}{\mathrm{E}}-\frac{\mu \sigma_{\mathrm{z}}}{\mathrm{E}} \\ & \mathrm{e}_{\mathrm{x}}=\frac{80}{2 \times 10^{5}}-\frac{0.25 \times(-60)}{2 \times 10^{5}}-\frac{0.25 \times 0}{2 \times 10^{5}} \\ & \mathrm{e}_{\mathrm{x}}=0.000475 \end{aligned}$ $\mathrm{e}_{\mathrm{y}}=\frac{\sigma_{\mathrm{y}}}{\mathrm{E}}-\frac{\mu \sigma_{z}}{\mathrm{E}}-\frac{\mu \sigma_{x}}{\mathrm{E}}$ $e_{y}=\frac{-60}{2 \times 10^{5}}-\frac{0.25 \times 0}{2 \times 10^{5}}-\frac{0.25 \times 80}{2 \times 10^{5}}$ $e_{y}=-0.0004$ $\mathrm{e}_{\mathrm{z}}=\frac{\sigma_{\mathrm{z}}}{\mathrm{E}}-\frac{\mu \sigma_{\mathrm{x}}}{\mathrm{E}}-\frac{\mu \sigma_{\mathrm{y}}}{\mathrm{E}}$ $e_{z}=\frac{0}{2 \times 10^{5}}-\frac{0.25 \times 80}{2 \times 10^{5}}-\frac{0.25 \times(-60)}{2 \times 10^{5}}$ $\mathrm{e}_{\mathrm{z}}=-0.000025$ $\mathrm{e}_{\mathrm{v}}=\mathrm{e}_{\mathrm{x}}+\mathrm{e}_{\mathrm{y}}+\mathrm{e}_{\mathrm{z}}$ $e_{v}=0.000475-0.0004-0.000025$ $e_{v}=5 \times 10^{-5}$ $\mathrm{e}_{\mathrm{v}}=\frac{\delta \mathrm{v}}{\mathrm{v}}$ $\delta v=e_{v} \times v$ $\delta \mathrm{v}=5 \times 10^{-5} \times 1 \times 10^{6}$ $\delta \mathrm{v}=50 \mathrm{~mm}^{3}$ (Increase)	1 1 1 1 1 1 1	8

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answer \& Marks \& \begin{tabular}{l}
Total \\
Marks
\end{tabular} \\
\hline Q. 4 \& \begin{tabular}{l}
(c) \\
(i) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Define shear force and bending moment. Also state relation between Bending Moment, Shear force and rate of loading. \\
Shear force: Shear force at any cross section of the beam is the algebraic sum of vertical forces on the beam acting on right side or left side of the section is called as shear force. \\
OR \\
A shear force is the resultant vertical force acting on the either side of a section of a beam. \\
Unit :- kN or N \\
Bending Moment: Bending moment at any section at any cross section is the algebraic sum of the moment of all forces acting on the right or left side of section is called as bending moment. \\
Unit: - \(\mathrm{kN}-\mathrm{m}\) or \(\mathrm{N}-\mathrm{m}\) \\
Relation between rate of loading and shear force
\[
\frac{\mathrm{dF}}{\mathrm{dx}}=\mathrm{W}
\] \\
The rate of change of shear force with respect to the distance is equal to the intensity of loading. \\
Relation between shear force and bending moment.
\[
\frac{\mathrm{dM}}{\mathrm{dx}}=\mathrm{F}
\] \\
The rate of change of bending moment at any section is equal to the shear force at that section with respect to the distance. \\
Where, \\
W - Intensity if loading \\
F - Shear force \\
M - bending moment \\
x - distance
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1 \\
1
\end{tabular} \& (16)

4

\hline
\end{tabular}

			Marks	Total Marks

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(b)	Draw SFD and BMD for a overhanging beam as shown in Fig. No.4. Determine maximum B.M. and also locate point of contraflexure. Fig. No. 4 1. Support Reactions: $\begin{aligned} & \sum M_{\mathrm{A}}=0 \\ & 3 \times R_{\mathrm{B}}=6 \times 4+(10 \times 3) \times 1.5 \\ & R_{\mathrm{B}}=23 \mathrm{kN} \\ & \sum F_{\mathrm{y}}=0 \\ & R_{\mathrm{A}}+R_{\mathrm{B}}=(10 \times 3)+6 \\ & R_{\mathrm{A}}+23=36 \\ & R_{\mathrm{A}}=13 \mathrm{kN} \end{aligned}$ 2. SF Calculations: SF at $\mathrm{A}=+13 \mathrm{kN}$ $\begin{aligned} & \mathrm{B}_{\mathrm{L}}=+13-(10 \times 3)=-17 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{R}}=-17+23=+6 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{L}}=+6 \mathrm{kN} \\ & \mathrm{C}=+6-6=0 \mathrm{kN}(\therefore \mathrm{ok}) \end{aligned}$ 3. BM Calculations: BM at $\mathrm{A}=0$ (Support A is simple) $\mathrm{C}=0(\mathrm{C}$ is free end $)$ $\mathrm{B}=-6 \times 1=-6 \mathrm{kN} . \mathrm{m}$ 4. Maximum BM Calculations: Let $\mathrm{AD}=x$ SF at $\mathrm{D}=0$ $13-10 x=0$ $x=1.3 \mathrm{~m}$ from support A $\mathrm{BM} \text { at } \mathrm{D}=+13 \times 1.3-10 \times \frac{(1.3)^{2}}{2}=+8.45 \mathrm{kN} . \mathrm{m}$ 5. Location of point of contra flexure: Let, E be point of contra-flexure $(\mathrm{AE}=\mathrm{y})$ $B M$ at $E=0$	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
Model Answer: Summer-2019
Subject: Mechanics of Structures
Sub. Code: 17311

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6		Attempt any TWO of the following:		(16)
	(a)	A beam has hollow rectangular section with external $100 \mathrm{~mm} \mathbf{x}$ 200 mm and uniform thickness of 10 mm . Draw shear stress distribution diagram. If section is subjected to the shear force of 100 kN . Also determine ratio of maximum shear stress and average shear stress.		
	Ans.	Data: $\mathrm{B}=100 \mathrm{~mm}, \mathrm{D}=200 \mathrm{~mm}, \mathrm{~S}=100 \mathrm{kN}$		
		$\begin{aligned} & \mathrm{b}=(100-2 \mathrm{t})=(100-2 \times 10)=80 \mathrm{~mm} \\ & \mathrm{~d}=(200-2 \mathrm{t})=(200-2 \times 10)=180 \mathrm{~mm} \\ & \mathrm{~A}=(\mathrm{BD}-\mathrm{bd})=(100 \times 200-80 \times 180)=5600 \mathrm{~mm}^{2} \end{aligned}$	1/2	
		$\mathrm{I}_{\mathrm{NA}}=\frac{1}{12}\left(\mathrm{BD}^{3}-\mathrm{bd}^{3}\right)=\frac{1}{12}\left(100 \times 200^{3}-80 \times 180^{3}\right)=27786666.67 \mathrm{~mm}^{4}$	1	
		$\mathrm{q}_{\text {avg }}=\frac{\mathrm{S}}{\mathrm{~A}}=\frac{100 \times 10^{3}}{5600}=17.857 \mathrm{~N} / \mathrm{mm}^{2}$	1	
		$\mathrm{q}_{0}=0$ At top and bottom of section. $\mathrm{q}_{1}=\frac{\mathrm{SA} \dot{\mathrm{Y}}}{\mathrm{bI}}=\frac{100 \times 10^{3} \times(100 \times 10) \times\left(\frac{180}{2}+\frac{10}{2}\right)}{100 \times 27786666.67}=3.42 \mathrm{~N} / \mathrm{mm}^{2}$	1	
		$\mathrm{q}_{2}=\frac{\text { SA } \overline{\mathrm{Y}}}{\mathrm{bI}}=\frac{100 \times 10^{3} \times(100 \times 10) \times\left(\frac{180}{2}+\frac{10}{2}\right)}{20 \times 27786666.67}=17.10 \mathrm{~N} / \mathrm{mm}^{2}$	1	
		$\mathrm{q}_{\mathrm{NA}}=\mathrm{q}_{\max }=\frac{\mathrm{SA} \overline{\mathrm{Y}}}{\mathrm{bI}}=\frac{100 \times 10^{3} \times(100 \times 10 \times 95+2 \times 10 \times 90 \times 45)}{2 \times 10 \times 27786666.67}=31.70 \mathrm{~N} / \mathrm{mm}^{2}$	1	
		$\text { Ratio }=\frac{\mathrm{q}_{\max }}{\mathrm{q}_{\text {avg }}}=\frac{31.70}{17.857}=1.774$	1/2	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(a)			
		(a) Cross-section (b) Shear stress distribution ($\mathrm{N} / \mathrm{mm}^{2}$)	2	8

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(b) Ans.	Calculate slenderness ratio for which Euler's crippling load and Rankine's failure load is of same magnitude. Take $E=200 \mathrm{GPa}$, $\alpha=1 / 7500, \sigma_{c}=300 \mathrm{MPa}$ Data: $\mathrm{E}=200 \mathrm{GPa}, \alpha=1 / 7500, \sigma_{\mathrm{c}}=300 \mathrm{MPa}$ Calculate: λ $\begin{aligned} & P_{E}=P_{R} \\ & \frac{\pi^{2} E \mathrm{I}_{\mathrm{m} i n}}{(L e)^{2}}=\frac{\sigma_{c} A}{1+\alpha\left(\frac{L e}{K}\right)^{2}} \\ & \frac{\pi^{2} E A K^{2}}{(L e)^{2}}=\frac{\sigma_{c} A}{1+\alpha\left(\frac{L e}{K}\right)^{2}} \end{aligned}$ $\frac{\pi^{2} E}{\left(\frac{L e}{K}\right)^{2}}=\frac{\sigma_{c}}{1+\alpha\left(\frac{L e}{K}\right)^{2}}$ $\frac{\pi^{2} E}{(\lambda)^{2}}=\frac{\sigma_{c}}{1+\alpha(\lambda)^{2}}$ $\pi^{2} E\left(1+\alpha(\lambda)^{2}\right)=\sigma_{c}(\lambda)^{2}$ $\pi^{2} E+\pi^{2} E \alpha(\lambda)^{2}=\sigma_{c}(\lambda)^{2}$ $\pi^{2} E=\sigma_{c}(\lambda)^{2}-\pi^{2} E \alpha(\lambda)^{2}$ $\pi^{2} E=\lambda^{2}\left(\sigma_{c}-\pi^{2} E \alpha\right)$ $\lambda^{2}=\frac{\pi^{2} E}{\sigma_{c}-\pi^{2} E \alpha}$ $\lambda=\sqrt{\frac{\pi^{2} E}{\sigma_{c}-\pi^{2} E \alpha}}$ $\lambda=\sqrt{\frac{\pi^{2} \times 200 \times 10^{3}}{300-\pi^{2} \times 200 \times 10^{3} \times \frac{1}{7500}}}$ $\lambda=\sqrt{53623.78225}$ $\lambda=231.568$	1 1	8

Model Answer: Summer-2019

