SUMMER-19 EXAMINATION

Subject Name:
Model Answer
Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
1. a)	Ans.	Attempt any SIX Main principles of surveying are: 1) To work from whole to part. 2) To locate a point at least by two independent processes	12Marks
	(i)	State the principles of surveying.	(01 Mark)
(ii)	Enlist uses of survey. Ases of surveys. 1. To record relative positions of various points on the surface of earth. 2. Prepare plans and maps required for various works. 3. Layout of various engineering works. 4. Compute areas and volumes using survey data required for various purposes. 5. To prepare a topographic map 6. To prepare military map 7. To prepare archeological map	(01 Mark)	

SUMMER - 19 EXAMINATION

Subject Name:
Model Answer Subject Code: 17310

Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q.N. } \end{aligned}$	Answer	Marking Scheme
1.a)	(iii) Ans.	Define 1)Ranging 2)Chaining 1) Ranging The method of establishing intermediate points on a straight line between the two fixed points is known as ranging. 2)Chaining The method of measuring the distance with the chain or tape is called as Chaining.	(01 Mark) (01 Mark)
	(iv) Ans.	State the principle of compass survey. The principle of compass survey is traversing, which involves a series of connected survey lines (may be open or closed) whose lengths and bearing are measured by linear and angular measuring instruments.	(02 Marks)
	(v) Ans.	State the function of reflecting mirror in prismatic compass. Function of reflecting mirror is to get image of an object located above or below the instrument level while bisection.	(02 Marks)
	(vi) Ans.	State the suitability of plane table survey The plane tabling is generally suitable for surveys in which high precision is not required. It is mainly employed for small-scale or medium size mapping.	(02 Marks)
	(vii) Ans.	Define leveling. Levelling is an 'art of determining relative heights or elevations of different points on the earth's surface so that the same may be represented on a plan or map'. It is essentially a process dealing with the measurements in vertical plane.	(02 Marks)
	(viii) Ans.	Define : 1) Change point 2) Height of instrument. 1) Change point It is point on which fore and back sights are taken. 2) Height of instrument. It is the reduced level of line of collimation when the leveling instrument is properly leveled. It is obtained by adding the BS reading to RL of bench mark or change point on which the staff reading was taken.	(01 Mark) (01 Mark)

	Fort	
(iii) Ans.	Enlist method of ranging and explain any one in brief. Ranging The method of establishing intermediate points on a straight line between the two fixed points is known as ranging. It is done before chaining started. It may be done by eye or by using some instruments such as line ranger or theodolite. Ranging may be a) Direct Ranging b) Indirect Ranging Direct Ranging Let A and B are the two ends of line $A B$ as shown fig and they are intervisible. On this line let three intermediate points P, Q and R are to be established. To perform ranging for establishing the points P, Q, and R , the surveyor stands at a point S , close to the end A on line BA produced. The assistant holds a ranging rod vertically, approximately near to line $A B$. By eye judgment the surveyor directs the assistant to move the ranging rod so that A, P and B appear to be in one line. Similarly the other points Q and R also fixed.	(01 Mark) (03 Marks) For any one method

		Direct Ranging Indirect Ranging Let A and B be two survey stations. They are not mutually visible due to high ground between them. Let two assistant stands at M1 and N1 as shown in fig. The assistant at M1 can see both the ranging rods at N1 and B, and assistant at N1 can see the ranging rod M 1 and A . Now assistant at M1 direct N1 in line BM1, N2 be the new position of N1 on line M1B. The assistant on N2 direct the M1 on line N2A and M2 be the new position of M1.M2 and N2 be the new position of M1 and N1 which are nearer to line AB. Repeat same process until points M and N are established. (a) Sectional view Indirect Ranging	
2.		Attempt any FOUR of the following	16 Marks
	a) Ans.	Describe in brief process of chaining on sloping ground. In direct method which is also known as stepping method horizontal distance is directly measured as shown in fig.	(01 Mark)

	Stepping Method Horizontal distance between A and B is required to be measured. Procedure: i) A portion of tape say 2 to 4 m is stretched horizontally with one end resting on ground and other end held horizontally at convenient height. ii) The point vertically below the other end transferred on the ground with the help of plumb bob (Say C). iii) The next step start from the C and the method is continued till point B reached.	(03 Marks)
b) Ans.	Enlist the sources of error in chaining and state the precautions to be taken against error. In general, the distance measurement obtained in the field will be in error. Errors in the distance measurement can arise from a number of sources: 1. Instrument errors: A chain may be faulty due to a defect in its manufacturing. 2. Natural errors. The actual horizontal distance between the ends of the chain can vary due to the effects of - temperature, - elongation due to tension - sagging. 3. Personal errors. Errors will arise from carelessness by the survey crew: 1. poor alignment 2. faulty reading on the chain Precautions: Displacement of arrows: When the arrow is displaced, it may not be replaced accurately. To guard against this mistake, the end of each chain length should be marked both by the arrow and by a cross (+) scratched on the ground. Failure to observe the position of the zero point of the tape: The chainmen should see whether it is at the end of the ring or on the tape. Adding or omitting a full chain length (due to wrong counting or loss of arrows): This is the most serious mistake and should be guarded against. This is not likely to occur, if the leader has the full number (ten) of arrows at the commencement of chaining and both the leader and follower count them at each transfer. A whole chain length may be dropped, if the follower fails to pick up the arrow at the point of beginning. Reading from the wrong end of the chain: e.g. reading 10 m for 20 m in a 30 m chain, or reading in the wrong direction from a tally, e.g. reading 9.6 m for 10.4 m . The common mistake in reading a chain is to confuse 10 m tag with 20 m tag. It should be avoided by noticing the 15 m tag.	(02 Marks) (02 Marks) For any four

	e) Ans.	Describe in brief with neat sketch: i) Base line ii) Check line i) Base line: Base line is generally the longest line running roughly through the middle of the area. It is laid on a level ground as far as possible. The whole frame work is built upon this line. ii) Check line It is a line joining apex of triangle to some fixed point on the opposite side or a line joining some fixed point on any two sides of the triangle.	(01 Mark) (01 Mark) (02 Marks)
	f) Ans.	Describe in brief obstacles in chaining. There are 3 types of obstacles 1. Obstacle to ranging 2. Obstacle to chaining 3. Obstacle to both ranging \& chaining. 1) Obstacle to Ranging: The type of obstacle in which the ends are not inter visible is quite common except in flat country. These may be two cases. i) Both end of the line may be visible form intermediate points on the line ii) Both ends of the line may not be visible from intermediate points on the line 2) Obstacle to chaining but not ranging: There may be two cases of this obstacle i) When it is possible to chain round the obstacle ex: a pond ii) When it is not possible to chain round the obstacle ex: a river 3) Obstacles to both chaining \& ranging A building is the typical example of this type of obstacle the problem lies in prolonging the line beyond the obstacle \& determining the distance across it.	(01 Mark) (01 Mark) (01 Mark) (01 Mark)
3.		Attempt any FOUR of the following	16 Marks

a) Ans.	Draw sketch of optical square and state its principle. The optical square is an instrument used to set perpendicular offset on the chain line. The optical square works on the principle of optics. Principle of optical square: The angle between the incident ray and reflected ray is twice the angle between mirrors.	(02 Marks) (02 Marks)
b) Ans.	Draw labeled sketch of prismatic compass.	(03 Marks) fig (01 Mark) labeling
c) Ans.	Describe in brief errors in compass survey. Errors in Compass Surveying. The errors are classified as: 1. Instrumental errors. 2. Personal or Observational errors. 3. Errors due to External Influences (Natural errors etc.).	(01 Mark)

	f)	State the causes of local attraction.	
Ans.	Causes of Local Attraction (1) Electric wire,poles. (2) Steel tape. (3) Chain, arrows, ranging rod. (4) Bunches of key. (5) Area affected by magnetic field	Any four 01 Mark for each	

Q. 4		Attempt any FOUR of the following:	(16)
	a) ANS:	```Find the back bearing of following fore bearing. \\ i. \(\quad A B N 26^{\circ} 14^{\prime} E\) \\ ii. \(\quad \mathrm{BC} \mathrm{S} 78^{0} 18^{\prime} \mathrm{E}\) \\ iii. CD S \(69^{\circ} 09^{\prime} \mathrm{N}\) \\ iv. DE N \(32^{\circ} 15^{\prime} \mathrm{W}\) \\ i. \(\quad F B\) OF AB \(=N 26^{\circ} 14^{\prime} E\) \(B B O F A B=S 26^{\circ} 14^{\prime} \mathbf{~ W}\) \\ ii. \(\quad \mathrm{FBOFBC}=\mathrm{S} 78^{\circ} 18^{\prime} \mathrm{E}\) \\ \(B B O F B C=N 78^{0} 18^{\prime} \mathbf{W}\) \\ iii. \(\mathrm{FB} O F C D=S 69^{\circ} 09^{\prime} \mathrm{N}\) \\ BB OF CD \(=\) If student assume \(S 69^{\circ} 09^{\prime} \mathrm{E}\), Then \(\mathrm{BB}=\mathrm{N} 69^{\circ} 09^{\prime} \mathrm{W}\) \\ \(B B O F C D=\) If student assume \(S 69^{\circ} 09^{\prime} \mathrm{W}\), Then \(\mathrm{BB}=\mathrm{N} 69^{\circ} 09^{\prime} \mathrm{E}\)``` NOTE: Appropriate marks should be given for any of this assumption. $\text { iv. } \quad F B O F D E=N 32^{\circ}, 15^{\prime} \mathrm{W}$ $B B O F D E=S 32^{\circ} 15^{\prime} E$	4M (1 Mark for each)
	b) ANS:	Enlist different accessories of plane table survey with their use. i) The plane table: It is used for fixing a drawing sheet over it. To locate the position of the objects on the sheet by drawing rays and plotting to suitable scale. ii) The Alidade (plain Alidade, Telescopic Alidade): It is used to sight the objects. To draw rays along the fiducial edge. iii) The spirit level: It is used for levelling the plane table. iv) The compass: (Trough Compass, Circular compass): It is used for marking the North direction on the map. To orient the plane table. v) U-Fork or Plumbing fork with plumb bob: It is used for centering the table over the station.	4M (1 Mark for each) (Any four)
Q. 4	c)	Describe in brief resection method of plane table surveying.	4M

$\left.\begin{array}{|l|l|l|l|}\hline \text { Ans: } & & \begin{array}{l}\text { (1 Mark } \\ \text { for } \\ \text { diagram \& } \\ \text { 3 Marks } \\ \text { for }\end{array} \\ \text { descriptio } \\ \text { n.) }\end{array}\right]$

	ANS:	1) It is not suitable for work in wet climate 2) Several accessories are required to be carried hence possibility lost. 3) Replotting of survey work to different scale is difficult in absence of field notes. 4) It is heavy and difficult to carry. 5) It is not intended for accurate work. 6) The plane table is essentially a tropical instrument.	(1 Mark for each)
Q. 4	(e) ANS:	Describe in brief errors in plane table survey. 1) The board not being horizontal. 2) The table not being accurately centered. 3) The table not being Correctly oriented. 4) The objects not being sited accurately. 5) The alidade not being correctly centered on the station point on the paper. 6) The rays not being accurately drawn through the station point. 7) Inaccuracy in plotting. 8) The expansion and contraction of the paper.	4M (1 Mark for each)
Q. 4	(f) ANS:	Enlist the advantages of Auto level. Following are the advantages of auto level: 1) Operational Comfort: Use of Auto level is free of fatigue, does not cause strain on eyes, nerves etc. 2) High precision : Precision of auto level is about $\pm 0.5 \mathrm{~mm}$ to 0.8 mm for one km 3) High speed: Time required for leveling is about half of that required with ordinary level. 4) Freedom from errors: Bubble usually remain in center and image of staff is erect, easy to read 5) Freedom from external influences: No influence of cloud, rain, magnetic field, vibrations, etc. on the levelling work with Auto level. 6) Range of application: Auto can be used for medium and large size project. To establish bench marks accurately.	4M (Any four one mark each.)
Q. 5		Attempt any FOUR of the following:	16 M
	(a) Ans:	Define bench mark and enlist the types of bench mark. It is fixed reference point of known or assumed elevation. It is used either as a starting point for levelling or as a check while closing. - There are four kinds of bench marks. i. Great Trigonometrically Survey (G.T.S) bench mark. ii. Permanent bench mark. iii. Arbitrary bench mark. iv. Temporary bench mark.	4M 2M(def) 2M (half mark for each type)

Q. 5		Explain reciprocal levelling with neat sketch. Reciprocal levelling is adopted i) To find the difference in level accurately Between the two points considerably apart. ii) When it is not possible to set up the level in between the two points due to river or pond etc. In this error due to curvature and refraction, collimation errors, error in instrument adjustment are eliminated. Procedure: Let A and B be the two points on opposite banks of the river. Let it is required to find out the level difference between A and B Step 1) Case I:Set up the level very near to A and with bubble in centre take the readings on the staff held at A and B Let these reading are a1 and b1 2) Case II: Shift the level and set up very near to B and with bubble in center take the readings on the staff held at A and B, these reading are a 2 and b 3) Let d=true difference of level between A and B Let $\mathrm{e}=$ Total error (error due to curvature and refraction , imperfect adjustment) In Case I, The correct reading on B $=\mathrm{b} 1-\mathrm{e}$ In case II, the correct reading on $A=a 2-e$ From A, the true difference of level between A and B, d=(b1-e)-a1 Or d= (bl-a1)-e equation 1 From B, the true difference of level between A and B , d= b2-(a2-e) $=(\mathrm{b} 2-\mathrm{a} 2)+\mathrm{e}$ equation 2 To eliminate total error e adding equation 1 and 2 $\begin{aligned} & 2 \mathrm{~d}=(\mathrm{b} 1-\mathrm{a} 1)-\mathrm{e}+(\mathrm{b} 2-\mathrm{a} 2)+\mathrm{e} \\ & \mathrm{~d}=((\mathrm{b} 1-\mathrm{a} 1)+(\mathrm{b} 2-\mathrm{a} 2)) / 2 \end{aligned}$ The error is eliminated and the true difference is equal to the mean of the two apparent differences of level between A and B	4M 1M (Procedure 02 mark and sketch 01 mark)

Ans:	1	3.250					249.260	B.M	
	2	1.755	1	?		0.750		C.P	
	3		1.950						
	4	?		1.920				C.P	
	5		2.340		1.500				
	6		?		1.000				
	7	1.850		2.185				C.P	
	8		1.575						
	9		?						
	10	?		1.895	1.650			C.P	
	11			1.350	0.750				
	The fore s Difference station 2 is Hence, mi R.L at station Fall at statio = 1.755 The rise of Similarly, The RLs of available. Hence mis Fall of stat Rise at sta The RLs of Hence IS Similarly, B.S at station The RLs of Thus, all th The result The readi	of stat station gher than g readin $2=249$ 3 is mis $0=0.1$ tion $4=$ B.S read tion 1 to IS of s $7=1.3$ $8=1.8$ tion 6 t ation 9 at statio no. 10 tion 9 t missing enter which w	0.2 is m 2. ation 2 station -0.750 It is th - 1.9 of statio $340+1$. an now n $6=2$. $2.185=$ 1.575 an now $95+1$. $=1.575$ $50+0.7$ can now ings are the fol missing	g. .750 $250+0$ 48.51 ference 0.030 is found $=3.84$ worked -1.000 45 75 worked $=3.545$ $545=1$ 2.100 worke ked ou ng table bold :	$=4.000$ taff rea m the ris as all th 340 simila RLs are	on statia f statio adings culated	2 and sta station	n 3 re	1M
	Station	BS	IS	FS	Rise	Fall	R.L	Remark	

				$(+)$	$(-)$		
1	3.250					249.260	B.M
2	1.755		4.000		0.750	$\mathbf{2 4 8 . 5 1 0}$	C.P
3		1.950			$\mathbf{0 . 1 9 5}$	$\mathbf{2 4 8 . 3 1 5}$	
4	3.840		1.920	$\mathbf{0 . 0 3 0}$		$\mathbf{2 4 8 . 3 4 5}$	C.P
5		2.340		1.500		$\mathbf{2 4 9 . 8 4 5}$	
6		$\mathbf{1 . 3 4 0}$		1.000		$\mathbf{2 5 0 . 8 4 5}$	
7	1.850		2.185		$\mathbf{0 . 8 4 5}$	$\mathbf{2 5 0 . 0 0 0}$	C.P
8		1.575		$\mathbf{0 . 2 7 5}$		$\mathbf{2 5 0 . 2 7 5}$	
9		$\mathbf{3 . 5 4 5}$			$\mathbf{1 . 9 7 0}$	$\mathbf{2 4 8 . 3 0 5}$	
10	$\mathbf{2 . 1 0 0}$		1.895	1.650		$\mathbf{2 4 9 . 9 5 5}$	C.P
11			1.350	0.750		$\mathbf{2 5 0 . 7 0 5}$	

Arithmetic Check:
Σ BS $-\Sigma$ FS $=\Sigma$ Rise $-\Sigma$ Fall $=$ Last R.L. - First R.L.
Therefore, $\quad 12.795-11.350=5.205-3.760=250.705-249.260$

$$
1.445=1.445=1.445
$$

OK

NOTE: If students attempted to solve with assuming appropriate data in above table, give appropriate marks accordingly.

