MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
Model Answer: Summer- 2019
Subject: Strength of Materials
Important Instructions to Examiners

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.	Ans. (i)	Attempt any SIX of the following: Define brittleness. Name two brittle materials. It is the property of material due to which it can be directly broken without any further deformation. OR	$\mathbf{1}$	$\mathbf{(1 2)}$
Brittleness is the lack of ductility.				
e.g. Glass, Concrete, cast iron. etc.				
(ii)	Define principal plane and principal stress. Ans. Principal Plane: A plane which carries only normal stress and no shear stress is called a principal plane. Principal Stress: The magnitude of normal stress acting on the principal plane is called principal stress. Define radius of gyration. State its S.I. units. (iii)	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$
Ans.	Radius of Gyration of a given area about any axis is that distance from the given axis at which the entire area is assumed to be concentrated without changing the M. I. about the given axis. Unit- mm, cm, m. Define the term direct stress with formula. The stresses which acts normal to the plane on which the forces acts axially are called as direct stress. Direct Stress ($\left.\sigma_{0}\right)=\frac{1}{\text { Axial Load }}$Cross Sectional Area $=\frac{P}{A}$ (iv) Ans.	$\mathbf{1}$	$\mathbf{2}$	

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answer \& Marks \& Total Marks \\
\hline Q. 1 \& \begin{tabular}{l}
a) (v) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
State the torsion equation along with meaning of each term in it. Torsional Equation is
\[
\frac{G \theta}{L}=\frac{T}{I_{p}}=\frac{\tau}{R}
\] \\
Where, \\
\(\mathrm{T}=\) Torque or Turning moment (\(\mathrm{N}-\mathrm{mm}\)) \\
\(\mathrm{I}_{\mathrm{p}}=\mathrm{I}_{\mathrm{xx}}+\mathrm{I}_{\mathrm{yy}}\) Polar momet of inertia of the shaft section \(\left(\mathrm{mm}^{4}\right)\) \\
\(\mathrm{G}=\) Modulus of rigidity of the shaft material \(\left(\mathrm{N} / \mathrm{mm}^{2}\right)\) \\
\(\theta=\) Angle through which the shaft is twisted due to torque i.e. angle of twist (radians) \\
\(\mathrm{L}=\) Lenght of the shaft (mm) \\
\(\tau=\) Maximum shear stress induced at the outermost layer of the shaft \(\left(\mathrm{N} / \mathrm{mm}^{2}\right)\) \\
\(\mathrm{R}=\) Radius of the shaft (mm)
\end{tabular} \& 1
1 \& 2 \\
\hline \& \begin{tabular}{l}
(vi) \\
Ans. \\
(vii) \\
Ans. \\
(viii) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Define factor of safety. \\
The ratio of the ultimate stress to the working stress for a material is called factor of safety. \\
Write the equation of circumferential stress in thin cylinder and explain each term.
\[
\sigma_{\mathrm{C}}=\frac{\mathrm{pd}}{2 \mathrm{t}}
\] \\
Where, \\
\(\sigma_{c}=\) Circumferential stress \(\quad p=\) Internal pressure. \\
\(d=\) Internal diameter of thin cylinder \(\quad t=\) Thickness of thin cylinder \\
Define the term core of section. \\
The centrally located portion of a section within which the load must act so as to produce only compressive stress is called a core of the section.
\end{tabular} \& \begin{tabular}{l}
2 \\
1 \\
1 \\
2
\end{tabular} \& 2

2
2 \\
\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	b)	Attempt any TWO of the following:		(08)
	(i)	A steel rod 800 mm long and $60 \mathrm{~mm} \times 20 \mathrm{~mm}$ in cross section is subjected to an axial push of 89 kN . If the modulus of elasticity is $2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Calculate the stress strain and reduction in the length of the rod.		
	Ans.	$\begin{aligned} & \text { Data: } \mathrm{b}=60 \mathrm{~mm}, \mathrm{~d}=20 \mathrm{~mm}, \mathrm{~L}=800 \mathrm{~mm}, \mathrm{P}=89 \mathrm{kNE}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { Find }=\sigma, \mathrm{e}, \delta \mathrm{~L} \\ & \sigma=\frac{\mathrm{P}}{\mathrm{~A}}=\frac{89 \times 10^{3}}{60 \times 20}=74.17 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	1	
		$\begin{aligned} & \mathrm{e}=\frac{\sigma}{\mathrm{E}}=\frac{74.17}{2.1 \times 10^{5}}=3.53 \times 10^{-4} \\ & \delta \mathrm{~L}=\frac{\mathrm{PL}}{\mathrm{AE}}=\frac{89 \times 10^{3} \times 800}{60 \times 20 \times 2.1 \times 10^{5}}=0.2825 \mathrm{~mm} \end{aligned}$	1 2	4
	(ii)	A simply supported beam of span 7 m carries a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ over 4 m length from the left support and a point load of 5 kN at 2 m from the right support. Draw SF and BM diagram.		
	Ans.	I. Support Reactions: $\begin{aligned} \sum \mathrm{M}_{\mathrm{A}}= & 0 \\ & 2 \times 4 \times 2+5 \times 5-\mathrm{R}_{\mathrm{B}} \times 7=0 \end{aligned}$		
		$\begin{aligned} & 7 \times \mathrm{R}_{\mathrm{B}}=41 \\ & \mathrm{R}_{\mathrm{B}}=8.86 \mathrm{kN} \end{aligned}$	1	
		$\begin{aligned} \sum \mathrm{F}_{\mathrm{y}}= & 0 \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}-2 \times 4+5=0 \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=13 \\ & \mathrm{R}_{\mathrm{A}}=7.14 \mathrm{kN} \end{aligned}$		
		SF Calculations: SF at $\begin{aligned} & \mathrm{t} \mathrm{~A}=+7.14 \mathrm{kN} \\ & \mathrm{D}=+7.14-8=-0.86 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{L}}=-0.86 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{R}}=-0.8655=-5.86 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{L}}=-5.86 \mathrm{kN} \\ & \mathrm{~B}=-5.86+5.86=0 \mathrm{kN} \end{aligned}$	1	
		B.M. calculation: B. M at A and $B=0 \quad$ Since support A and B are simple. B. M at $\mathrm{D}=(5.86 \times 3)-(5 \times 1)=12.56 \mathrm{kN}-\mathrm{m}$ B. M at $\mathrm{C}=5.86 \times 2=11.72 \mathrm{kN}-\mathrm{m}$	1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	d) Ans.	A concrete column $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ is reinforced with 4 bars of 20 mm diameter and carries a compressive load of 400 kN . The modular ratio is 15 . Calculate the stresses in steel and concrete. Also calculate the load shared by each material. Data: $\quad A=300 \times 300 \mathrm{~mm}^{2}, \mathrm{~d}=20 \mathrm{~mm} \phi$ No. of steel bar $=4, \mathrm{P}=400 \mathrm{kN}, \mathrm{m}=15$ Find: $\sigma_{c}, \sigma_{s}, P_{c}, P_{s}$ $\begin{aligned} & \mathrm{A}_{\mathrm{s}}=\mathrm{n} \times \frac{\pi \mathrm{d}^{2}}{4}=4 \times \frac{\pi \times 20^{2}}{4}=1256.637 \mathrm{~mm}^{2} \\ & \mathrm{~A}_{\mathrm{c}}=\mathrm{A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{s}} \\ & \mathrm{~A}_{\mathrm{c}}=300 \times 300-1256.637 \\ & \mathrm{~A}_{\mathrm{c}}=88743.363 \mathrm{~mm}^{2} \\ & \sigma_{\mathrm{s}}=\mathrm{m} \times \sigma_{\mathrm{c}} \\ & \sigma_{\mathrm{s}}=15 \sigma_{\mathrm{c}} \\ & \mathrm{P}=\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{c}} \\ & \mathrm{P}=\sigma_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}+\sigma_{\mathrm{c}} \mathrm{~A}_{\mathrm{c}} \\ & 400 \times 10^{3}=\left(15 \sigma_{\mathrm{c}}\right) \times 1256.637+\sigma_{\mathrm{c}} \times 88743.363 \\ & 400 \times 10^{3}=(18849.556+88743.363) \sigma_{\mathrm{c}} \\ & \sigma_{\mathrm{c}}=3.717 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ $\begin{aligned} & \sigma_{\mathrm{s}}=15 \sigma_{\mathrm{c}} \\ & \sigma_{\mathrm{s}}=15 \times 3.717 \\ & \sigma_{\mathrm{s}}=55.755 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ $\begin{aligned} & P_{s}=\sigma_{s} A_{s} \\ & P_{s}=55.755 \times 1256.637 \\ & P_{s}=70063.795 \mathrm{~N} \\ & P_{\mathrm{s}}=70.0637 \mathrm{kN} \end{aligned}$ $\begin{aligned} & \mathrm{P}_{\mathrm{c}}=\sigma_{\mathrm{c}} \mathrm{~A}_{\mathrm{c}} \\ & \mathrm{P}_{\mathrm{c}}=3.717 \times 88743.363 \\ & \mathrm{P}_{\mathrm{c}}=329859.080 \mathrm{~N} \\ & \mathrm{P}_{\mathrm{c}}=329.859 \mathrm{kN} \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	a)	Attempt any FOUR of the following:		(16)
		Draw S.F. and B.M. diagram for simply supported beam of span ' L ' carrying a central point load ' W '. Find the S.F. and maximum B.M.		
	Ans.	Support Reactions:		
		Due to symmetrical Loading		
		$\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=\frac{\mathrm{W}}{2}$		
		SF Calculations:		
		SF at $A=+\frac{W}{2}$		
		$\mathrm{C}_{\mathrm{L}}=+\frac{\mathrm{W}}{2}$	1	
		$\mathrm{C}_{\mathrm{R}}=+\frac{\mathrm{W}}{2}-\mathrm{W}=-\frac{\mathrm{W}}{2}$		
		$B_{L}=-\frac{W}{?}$		
		$\mathrm{B}=-\frac{\mathrm{W}}{2}+\frac{\mathrm{W}}{2}=0(\therefore \mathrm{OK})$		
		BM Calculations:		
		BM at A and $\mathrm{B}=0$ Support A and B is simple		
		$B M$ at $C=+\frac{W}{2} \times \frac{L}{2}=+\frac{W L}{4}$	1	
		$\text { Max. S. F }=\frac{W}{2} \quad \text { Max. B. } \mathrm{M}=\frac{W L}{4}$		

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	a) b) (i) Ans.	(ii) SFD (iii) вмD Enlist various types of beam. Draw neat sketch. a) Simply Supported Beam b) Cantilever Beam Simply Supported Beam Cantilever Beam c) Overhang Beam d) Fixed Beam e) Continuous Beam	1 2	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	c)	II SF Calculation: SF at $\mathrm{A}=+5.6 \mathrm{kN}$ $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=+5.6 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{R}}=5.6-5=0.6 \mathrm{kN} \\ & \mathrm{D}_{\mathrm{L}}=+0.6 \mathrm{kN} \\ & \mathrm{D}_{\mathrm{R}}=+0.6-7=-6.4 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{L}}=-6.4 \mathrm{kN} \\ & \mathrm{~B}=+6.4-6.4=0 \mathrm{kN}(\therefore \mathrm{ok}) \end{aligned}$ III. B.M. calculation: B. M at A and $B=0 \quad$ Since support A and B are simple. B. M at $\mathrm{C}=5.6 \times 1.5=8.4 \mathrm{kN}-\mathrm{m}$ B. M at $\mathrm{D}=6.4 \times 1.5=9.6 \mathrm{kN}-\mathrm{m}$ A cantilever beam of span 2.5 m carries three point loads of 1 kN , 2 kN , and 3 kN at $1 \mathrm{~m}, 1.5 \mathrm{~m}$, and 2.5 m from the fixed end. Draw S.F.D. and B.M.D. I. Support reaction: $\begin{aligned} & \Sigma \mathrm{Fy}=0 \\ & \mathrm{R}_{\mathrm{A}}-1-2-3=0 \\ & \mathrm{R}_{\mathrm{A}}=6 \mathrm{kN} \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	d) e) Ans.	II. SF calculation: SF at $\mathrm{A}=+6 \mathrm{kN}$ $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=+6 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{R}}=+6-1=5 \mathrm{kN} \\ & \mathrm{D}_{\mathrm{L}}=+5 \mathrm{kN} \\ & \mathrm{D}_{\mathrm{R}}=+5-2=3 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{L}}=+3 \mathrm{kN} \\ & \mathrm{~B}=+3-3=0(\therefore \mathrm{ok}) \end{aligned}$ III. BM calculation: BM at $\mathrm{B}=0 \quad \because \mathrm{~B}$ is free end. $\begin{aligned} & \mathrm{D}=-3 \times 1=-3 \mathrm{kN}-\mathrm{m} \\ & \mathrm{C}=-3 \times 1.5-2 \times 0.5=-5.5 \mathrm{kN}-\mathrm{m} \\ & \mathrm{~A}=-3 \times 2.5-2 \times 1.5-1 \times 1=-11.5 \mathrm{kN}-\mathrm{m} \end{aligned}$ Draw bending moment and shear force diagram of a cantilever beam $A B 4 \mathrm{~m}$ long having its fixed end at A and loaded with a uniformly distributed load $1 \mathrm{kN} / \mathrm{m}$ up to 2 m from B and with a concentrated load of 2 kN at 1 m from A. I. Support reaction: $\mathrm{RA}=2+(1 \times 2)=4 \mathrm{kN}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4		Attempt any FOUR of the following:		(16)
	a)	State parallel axis theorem and perpendicular axis theorem of MI along with sketches.		
	Ans.	Parallel axis theorem: It states that the M. I. of a plane section about any axis parallel to the centroidal axis is equal to the M. I. of the section about the centroidal axis plus the product of the area of the section and the square of the distance between the two axes. $\mathrm{I}_{\mathrm{PQ}}=\mathrm{I}_{\mathrm{G}}+\mathrm{Ah}^{2}$	1	
			1	
		Perpendicular axis theorem: It state, if $\mathrm{I}_{X X}$ and $\mathrm{I}_{Y Y}$ are the moments inertia of a plane section about the two mutually perpendicular axes meeting at O , then the moment of inertia about the third axis $\mathrm{Z}-\mathrm{Z}$ i.e. Izz is equal to addition of moment of inertia about $\mathrm{X}-\mathrm{X}$ and $\mathrm{Y}-\mathrm{Y}$ axes. $\mathrm{I}_{Z Z}=\mathrm{I}_{\mathrm{XX}}+\mathrm{I}_{\mathrm{YY}}$	1	
			1	4
	b)	Calculate MI of a T-section about the centroidal axis XX. Top flange is $1200 \times 200 \mathrm{~mm}$ and web is $1800 \times 200 \mathrm{~mm}$. Total height is 2000 mm .		
	Ans.			

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	b) c) Ans.	$\begin{aligned} & \sigma_{b}=\frac{M}{Z_{Y Y}}=\frac{P \times e}{\left(\frac{d b^{2}}{6}\right)}=\frac{95 \times 10^{3} \times 65 \times 6}{200 \times 200^{2}}=4.63 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{\max }=\sigma_{o}+\sigma_{b}=2.375+4.63=7.005 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{C}) \\ & \sigma_{\min }=\sigma_{o}-\sigma_{\mathrm{b}}=2.375-4.63=-2.255 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{~T}) \end{aligned}$ A masonary wall 6 m high, 2 m thick and 1 m wide is subjected to a horizontal wind pressure of $5 \mathrm{kN} / \mathrm{m}^{2}$ on 1 m face. Find the values of resultant stresses at base of the wall masonary weights 20 $\mathrm{kN} / \mathrm{m}^{3}$. Data: $\mathrm{H}=6 \mathrm{~m}, \mathrm{t}=2 \mathrm{~m}, \mathrm{~b}=1 \mathrm{~m}, \mathrm{P}=5 \mathrm{kN} / \mathrm{mm}^{2}, \rho=20 \mathrm{kN} / \mathrm{m}^{3}$ Find: $\sigma_{\text {max }}, \sigma_{\text {min }}$ Area of the section: $\mathrm{A}=2 \times 1=2 \mathrm{~m}^{2}$ Weight of wall: $\begin{aligned} \mathrm{W} & =\rho \times \mathrm{A} \times \mathrm{H} \\ & =20 \times 10^{3} \times 2 \times 6 \\ & =240 \times 10^{3} \mathrm{~N} \end{aligned}$ Total wind load: $\mathrm{P}=\mathrm{p} \times$ projected area $\begin{aligned} & =\mathrm{p} \times(\mathrm{b} \times \mathrm{H}) \\ & =\left(5 \times 10^{3}\right) \times(1 \times 6) \\ & =30 \times 10^{3} \mathrm{~N} \end{aligned}$	1 1 1 1	4

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answer \& Marks \& Total Marks \\
\hline \multirow[t]{9}{*}{Q. 5} \& e) \& Calculate the limit of eccentricity for a circular section having diameter 50 mm . \& \& \\
\hline \& Ans. \& \begin{tabular}{l}
Data: \(\mathrm{d}=50 \mathrm{~mm}\) \\
Find: e
\end{tabular} \& \& \\
\hline \& \& For no tension condition, \(\mathrm{e} \leq \frac{Z}{A}\) \& 1 \& \\
\hline \& \& \[
\mathrm{Z}=\frac{I}{Y}=\left(\frac{\frac{\pi d^{4}}{64}}{\frac{d}{2}}\right)=\frac{\pi}{32} \times d^{3}=\frac{\pi}{32} \times 50^{3}=12.27 \times 10^{3} \mathrm{~mm}^{3}
\] \& 1 \& \\
\hline \& \& \[
\begin{aligned}
\& \mathrm{A}=\frac{\pi}{4} \times d^{2}=\frac{\pi}{4} \times 50^{2}=1.96 \times 10^{3} \mathrm{~mm}^{2} \\
\& \mathrm{e}=\frac{Z}{A}=\frac{12.27 \times 10^{3}}{1.96 \times 10^{3}}=6.25 \mathrm{~mm}
\end{aligned}
\] \& 1
1 \& 4 \\
\hline \& f)

Ans. \& | Calculate the power transmitted by a shaft of 300 mm , with a speed of 200 rpm . If permissible shear stress is $120 \mathrm{~N} / \mathrm{mm}^{2}$. Take maximum torque as $\mathbf{3 0 \%}$ more than average torque. |
| :--- |
| Data: $\mathrm{d}=300 \mathrm{~mm}, \mathrm{~N}=200 \mathrm{rpm}, \tau=120 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~T}_{\max }=1.3 \mathrm{~T}_{\text {arg }}$. |
| Find: P | \& \& \\

\hline \& \& $$
\begin{aligned}
\frac{T_{\max }}{J} & =\frac{\tau}{R} \\
T_{\max } & =\frac{\pi}{16} \times \tau \times d^{3}=\frac{\pi}{16} \times 120 \times 300^{3}=636.173 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\
\mathrm{~T}_{\max } & =636.173 \times 10^{3} \mathrm{~N}-\mathrm{m} .
\end{aligned}
$$ \& 1 \& \\

\hline \& \& $$
\begin{aligned}
& 636.173 \times 10^{3}=1.3 \mathrm{~T}_{\text {avg. }} \\
& \mathrm{T}_{\text {avg. } .} \frac{636.173 \times 10^{3}}{1.3}=489.36 \times 10^{3} \mathrm{~N}-\mathrm{m} \\
& \mathrm{P}=\frac{2 \pi \times N \times T_{\text {avg. }}}{60}=\frac{2 \pi \times 200 \times 489.36 \times 10^{3}}{60}=10.249 \times 10^{6} \mathrm{~W}
\end{aligned}
$$ \& 1 \& 4 \\

\hline \& \& $$
\mathrm{P}=10.249 \times 103 \mathrm{~kW}
$$ \& \& \\

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q 6.	a)	Attempt any FOUR of the following:	$\begin{gathered} 1 \\ \text { (each } \\ \text { any } \\ \text { four) } \end{gathered}$	(16)
		State the assumptions (any four) made in theory of pure torsion.		
	Ans.	Assumptions in theory of pure torsion:		
		1. The shaft is homogeneous and isotropic. 2. The shaft is straight having uniform circular cross-section.		
		3. Twist along the shaft is uniform. 4. Circular sections remain circular even after twisting. 5. Stresses do not exceed the proportional limit. 6. Plain section before twisting remain plain after twisting and do not twist or wrap. 7. Shaft is loaded by twisting couples in the planes are perpendicular to the axis of the shaft.		4
	b)	A solid circular shaft of $\mathbf{1 2 0} \mathbf{~ m m}$ diameter is transmitting power of 100 kW at 150 rpm . Find the intensity of the shear stress induced in the shaft. Take $T_{\text {max. }}=1.4 \mathrm{~T}_{\text {avg. }}$.		
	Ans.	Data: $\mathrm{d}=120 \mathrm{~mm}, \mathrm{P}=100 \mathrm{~kW}, \mathrm{~N}=150 \mathrm{rpm} ., \mathrm{T}_{\text {max. }}=1.4 \mathrm{~T}_{\text {avg. }}$.		
		$\mathrm{P}=\frac{2 \pi \times N \times T_{\text {avg. }}}{60}$	1	
		$100 \times 10^{3}=\frac{2 \pi \times 150 \times T_{\text {avg. }}}{60}$		
		$\begin{aligned} & \mathrm{T}_{\text {avg. }}=\frac{100 \times 10^{3} \times 60}{2 \pi \times 150}=6.37 \times 10^{3} \mathrm{~N}-\mathrm{m} \\ & \mathrm{~T}_{\text {avg. }}=6.37 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\ & \mathrm{~T}_{\text {max. }}=1.4 \mathrm{~T}_{\text {avg. }}=1.4 \times 6.37 \times 10^{6}=8.91 \times 10^{6} \mathrm{~N}-\mathrm{mm} \end{aligned}$	1	
		$\begin{aligned} & \frac{T_{\text {max. }}}{J}=\frac{\tau}{R} \\ & \tau=\frac{T_{\text {max. }}}{J} \times R=\frac{T_{\text {max. }}}{\frac{\pi}{32} \times d^{4}} \times\left(\frac{d}{2}\right)=\frac{8.91 \times 10^{6}}{\frac{\pi}{32} \times 120^{4}} \times\left(\frac{120}{2}\right)=26.268 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	1	
		$\tau=26.268 \mathrm{~N} / \mathrm{mm}^{2}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	c) Ans.	A hollow circular shaft has internal diameter $3 / 4^{\text {th }}$ of the external diameter and transmits 500 kW at $\mathbf{1 2 0} \mathbf{~ r p m}$. If the shear stress is limited to $80 \mathrm{~N} / \mathrm{mm}^{2}$ and the angle of twist is not to exceed 1.4° in 3 m length. Calculate the external and internal diameter take $\mathrm{C}=\mathbf{8 4}$ $\mathrm{kN} / \mathrm{mm}^{2}$. Data: $\mathrm{d}=\frac{3}{4} D, \mathrm{P}=500 \mathrm{~kW}, \mathrm{~N}=120 \mathrm{rpm}, \tau=80 \mathrm{~N} / \mathrm{mm}^{2}, \theta=1.4^{\circ}$, $\mathrm{L}=3 \mathrm{~m}, \mathrm{C}=84 \mathrm{kN} / \mathrm{mm}^{2} .$ Find: d and D $\begin{aligned} & \mathrm{P}=\frac{2 \pi \times N \times T_{\text {avg. }}}{60} \\ & 500 \times 10^{3}=\frac{2 \pi \times 120 \times T_{\text {avg. }}}{60} \\ & \mathrm{~T}_{\text {avg. }}=39.79 \times 10^{3} \mathrm{~N}-\mathrm{m} \\ & \mathrm{~T}_{\text {avg. }}=39.79 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\ & \mathrm{~T}_{\text {max. }}=\mathrm{T}_{\text {avg. }}=39.79 \times 10^{6} \mathrm{~N}-\mathrm{mm} \end{aligned}$ Case - I Diameters of hollow shaft based on Shear Strength Criteria: $\begin{aligned} & \frac{T_{\max .}}{J}=\frac{\tau}{R} \\ & \frac{T_{\max .}}{J}=\frac{\tau}{R} \\ & \mathrm{~J}=\frac{\pi}{32}\left(D^{4}-d^{4}\right)=0.098 \times\left(D^{4}-0.316 D^{4}\right)=0.067 D^{4} \\ & \mathrm{R}=\frac{D}{2}=0.5 D \\ & \frac{39.79 \times 10^{6}}{0.067 D^{4}}=\frac{80}{0.5 D} \\ & \mathrm{D}^{3}=3.71 \times 10^{6} \\ & \mathrm{D}=\mathbf{1 5 4 . 8 4} \mathbf{~ m m} \\ & \mathrm{d}=\frac{3}{4} \times D=\frac{3}{4} \times 154.84 \\ & \mathbf{d}=\mathbf{1 1 6 . 1 3 ~ \mathbf { ~ m m }} \end{aligned}$	1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	c)	Case - II		
		Diameters of hollow shaft based on Rigidity (Stiffness) Criteria: $\frac{T_{\max .}}{J}=\frac{C \theta}{L}$		
		$\begin{aligned} & \frac{39.79 \times 10^{6}}{0.067 D^{4}}=\frac{84 \times 10^{3} \times\left(1.4 \times \frac{\pi}{180}\right)}{3 \times 10^{3}} \\ & \mathrm{D}^{4}=868.032 \times 10^{6} \end{aligned}$	1	
		$\begin{aligned} & \mathbf{D}=\mathbf{1 7 1 . 6 4} \mathbf{~ m m} \\ & \mathrm{d}=\frac{3}{4} \times D=\frac{3}{4} \times 171.64 \\ & \mathbf{d}=\mathbf{1 2 8 . 7 3} \mathbf{~ m m} \end{aligned}$	1	4
		Suitable diameters for hollow shaft to transmit the specified power is External diameter (D) = $\mathbf{1 7 2} \mathbf{~ m m}$ Internal diameter $(\mathbf{d})=\mathbf{1 2 9} \mathbf{~ m m}$		
	d)	Find the power that can be transmitted by a shaft 40 mm diameter rotating at $\mathbf{2 0 0} \mathbf{~ r p m}$, if the maximum permissible shear stress is $\mathbf{8 5} \mathbf{~ M P a}$.		
	Ans.	Data: $\mathrm{d}=40 \mathrm{~mm}, \mathrm{~N}=200 \mathrm{rpm}, \tau=85 \mathrm{MPa}$. Find: P		
		$\frac{T}{J}=\frac{\tau}{R}$		
		$\begin{aligned} & \mathrm{J}=\frac{\pi}{32} \times d^{4}=0.098 \times 40^{4}=250.88 \times 10^{3} \mathrm{~mm}^{4} \\ & \mathrm{R}=\frac{40}{2}=20 \mathrm{~mm} \\ & \frac{\mathrm{~T}}{250.88 \times 10^{3}}=\frac{85}{20} \end{aligned}$	1	
		$\begin{aligned} & \mathrm{T}=1066.24 \times 10^{3} \mathrm{~N}-\mathrm{mm} \\ & \mathrm{~T}=1066.24 \mathrm{~N}-\mathrm{m} \end{aligned}$	1	
		$\mathrm{P}=\frac{2 \pi \times N \times T}{60}=\frac{2 \pi \times 200 \times 1066.24}{60}=22.33 \times 10^{3} \mathrm{~W}$	1	
		$\mathrm{P}=22.33 \mathrm{~kW}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6		A hollow shaft is required to transmit a torque of $24 \mathrm{kN}-\mathrm{m}$. The inside diameter is 0.6 times the external diameter. Calculate both the diameters if the allowable shear stress is $\mathbf{8 0} \mathbf{~ M P a}$. Data: $\mathrm{T}=24 \mathrm{kN}-\mathrm{m}, \mathrm{d}=0.6 \mathrm{D}, \tau=80 \mathrm{MPa}$. Find: D and d $\begin{aligned} & \frac{T}{J}=\frac{\tau}{R} \\ & \mathrm{~J}=\frac{\pi}{32}\left(D^{4}-d^{4}\right)=0.098 \times\left(D^{4}-0.129 D^{4}\right)=0.0853 D^{4} \\ & \mathrm{R}=\frac{D}{2}=0.5 D \\ & \frac{24 \times 10^{6}}{0.0853 D^{4}}=\frac{80}{0.5 D} \\ & \mathrm{D}^{3}=1.757 \times 10^{6} \\ & \mathrm{D}=\mathbf{1 2 0 . 6 7} \mathbf{~ m m} \\ & \mathrm{d}=0.6 \mathrm{D}=0.6 \times 120.67 \\ & \mathbf{d}=\mathbf{7 2 . 4 0 ~ m m} \end{aligned}$ Suitable diameters for hollow shaft to transmit the specified Torque is External diameter (D) $=\mathbf{1 2 1} \mathbf{~ m m}$ Internal diameter $(\mathbf{d})=\mathbf{7 3} \mathbf{~ m m}$ i) Define neutral axis. ii) Define the term 'torsional rigidity. i) Neutral axis: When the beam is subjected to pure bending there will always be one layer which will not be subjected to either compression or tension. This layer is called as neutral layer and axis of this layer is called Neutral Axis. ii) Torsional rigidity: The torque, which produces a twist of one radian in a shaft of unit length is called as 'torsional rigidity'. OR It is defined as the product of modulus of rigidity and polar moment of inertia when length of shaft and angle of twist is unity.	1 1 1 1 1 1 1	4

