MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

Important Instructions to Examiners

1) The Answer should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's Answer and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1		Attempt any TEN of the following:		(20)
	(a) Ans.	Define the ideal machine and ideal effort. Ideal Machine is the machine whose efficiency is 100% and in which friction is zero. Ideal Effort is the ratio of load lifted to velocity ratio.	1	2
	(b) Ans.	Define effort lost in friction with formula. Effort lost in friction is the difference between actual effort and ideal effort. $P_{f}=P-P_{i}=P-\left(\frac{W}{V R}\right)$	1	2
	(c) Ans.	State V.R. of differential axle and wheel. V. R. of Differential axle and wheel $\text { V. R. }=\frac{2 \times \mathrm{D}}{\mathrm{~d}_{1}-\mathrm{d}_{2}}$ Where, $\quad \mathrm{D}=$ Diameter of Effort Wheel $\mathrm{d}_{1}=$ Diameter of bigger axle $\mathrm{d}_{2}=$ Diameter of smaller axle	1 1	2
	(d) Ans.	Define statics and dynamics. Statics: It is the branch of applied mechanics which deals with forces and their action on bodies at rest. Dynamics: It is the branch of applied mechanics which deals with forces and their action on bodies in motion.	1 1	2

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2		Attempt any FOUR of the following:		(16)
	(a)	A certain machine has an efficiency of 48%. The velocity ratio of the machine is $\mathbf{2 0 0}$. Find the effort required to lift a load of $\mathbf{2} \mathbf{~ k N}$		
	Ans.	$\text { M.A. }=\frac{W}{P}=\frac{2000}{P}$	1	
		$\% \eta=\frac{\text { M.A. }}{\text { V.R. }} \times 100$	1	4
		$48=\frac{\left(\frac{2000}{\mathrm{P}}\right)}{200} \times 100$	1	
		$\mathrm{P}=20.83 \mathrm{~N}$		
	(b) Ans.	An effort of 800 N is required to lift a load of 10 kN . On this machine an effort of $\mathbf{1 4 0 0} \mathbf{N}$, lifts a load of 22 kN . Find the law of machine. Using law of machine $\mathrm{P}=\mathrm{mW}+\mathrm{C}$		
		Putting values of load and effort $\begin{aligned} 800 & =\mathrm{m}(10000)+\mathrm{C}---- \text { (i) } \\ 1400 & =\mathrm{m}(22000)+\mathrm{C}--- \text { (ii) } \end{aligned}$	1	
		Solving simultaneous equations $\mathrm{m}=0.05$	1	
		Putting value of m in eqn (i) $\begin{aligned} & 800=(0.05 \times 10000)+\mathrm{C} \\ & \mathrm{C}=300 \mathrm{~N} \end{aligned}$	1	4
		Hence, Law of machine $\mathrm{P}=(0.05) \mathrm{W}+300 \mathrm{~N}---(\mathrm{iii})$	1	
	(c) Ans.	A screw jack lifts a load of 30 kN by an effort of $\mathbf{4 0 0} \mathbf{N}$ applied at the end of lever arm of length $\mathbf{7 5 0} \mathbf{~ m m}$. If the pitch of screw is 6 mm . Calculate efficiency of the screw jack. $\begin{aligned} & \text { V.R. }=\frac{2 \times \pi \times \mathrm{L}}{\mathrm{p}} \\ & \text { V.R. }=\frac{2 \times \pi \times 750}{6} \\ & \text { V.R. }=785.4 \end{aligned}$	1	
		$\begin{aligned} & \text { М.А. }=\frac{\mathrm{W}}{\mathrm{P}}=\frac{30000}{400} \\ & \text { М.А. }=75 \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(f)	Determine the resultant moment of the forces about point ' A ' in fig. 1.		
	Ans.	Fig. 1		
		Taking moment of all forces about point A $\begin{aligned} & \mathrm{M}_{\mathrm{A}}=+[20 \times 2]-[(30 \times \sin 45) \times 2] \\ & \mathrm{M}_{\mathrm{A}}=-2.426 \mathrm{kN} . \mathrm{m} \end{aligned}$ OR $\mathrm{M}_{\mathrm{A}}=+2.426 \mathrm{kN} . \mathrm{m} \text { (Anti-clockwise) }$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	4
Q. 3	(a)	Solve any FOUR: Find the components of 60 N force acting horizontal, in two directions on either side at an angle of 30° each.		(16)
	Ans.	$\begin{aligned} \mathrm{F}_{1} & =\frac{\mathrm{F} \times \sin \beta}{\sin (\alpha+\beta)} \\ & =\frac{60 \times \sin 30}{\sin (30+30)} \end{aligned}$	1	
		$\mathrm{F}_{1}=34.64 \mathrm{~N}$	1	4
		$\begin{aligned} \mathrm{F}_{2} & =\frac{\mathrm{F} \times \sin \alpha}{\sin (\alpha+\beta)} \\ & =\frac{60 \times \sin 30}{\sin (30+30)} \end{aligned}$	1	
		$\mathrm{F}_{2}=34.64 \mathrm{~N}$	1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	(d) Ans. (e) Ans.	Solve Q. 3 (C) graphically. SPACE DIA VECTOR DIA. \& P POLAR DIAA. SCAREIN 1 cman 20 km $\begin{aligned} & \mathrm{R}=l \text { (af)xscale } \\ & \mathrm{R}=3 \mathrm{X} 20=60 \mathrm{kN} \end{aligned}$ As point ' f lies above ' a ', R acts vertically upwards. $\mathrm{x}=4 \mathrm{~m}$ from 20 kN force. Resolve each of the following forces into orthogonal components: (i) 350 N acting South - West away (ii) 200 N acting North-East away (iii) 40 N acting 40° West of South away (iv) 400 N acting due South way. (i) $\mathbf{3 5 0} \mathbf{N}$ acting South - West away	1 $1 / 2$ each	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	(e)	(ii) 200 N acting North-East away		
		$\begin{aligned} \mathrm{F}_{\mathrm{x}} & =+\mathrm{F} \times \cos \theta & \mathrm{F}_{\mathrm{y}} & =+\mathrm{F} \times \sin \theta \\ & =+200 \times \cos 45 & & =+200 \times \sin 45 \\ \mathrm{~F}_{\mathrm{x}} & =+141.42 \mathrm{~N} & & \mathrm{~F}_{\mathrm{y}} \end{aligned}=+141.42 \mathrm{~N}$	$\begin{gathered} 1 / 2 \\ \text { each } \end{gathered}$	
		(iii) 40 N acting 40° West of South away		
		$\begin{aligned} \mathrm{F}_{\mathrm{x}} & =-\mathrm{F} \times \cos \theta & \mathrm{F}_{\mathrm{y}} & =-\mathrm{F} \times \sin \theta \\ & =-40 \times \cos 60 & & =-40 \times \sin 60 \\ \mathrm{~F}_{\mathrm{x}} & =-20 \mathrm{~N} & \mathrm{~F}_{\mathrm{y}} & =-34.64 \mathrm{~N} \end{aligned}$	$\begin{gathered} 1 / 2 \\ \text { each } \end{gathered}$	4
		(iv) 400 N acting due South way $\begin{aligned} \mathrm{F}_{\mathrm{x}} & =\mathrm{F} \times \cos \theta & \mathrm{F}_{\mathrm{y}} & =\mathrm{F} \times \sin \theta \\ & =400 \times \cos 270 & & =400 \times \sin 270 \\ \mathrm{~F}_{\mathrm{x}} & =0 \mathrm{~N} & \mathrm{~F}_{\mathrm{y}} & =-400 \mathrm{~N} \end{aligned}$	$\begin{gathered} 1 / 2 \\ \text { each } \end{gathered}$	
	(f)	Explain the following: (i) Resolution of a force (ii) Composition of force		
	Ans.	(i) Resolution of a force: The way of representing a single force into number of forces without changing the effect of the force on the body is called as resolution of a force.	1	
		$F_{x}=F \cos \theta, F_{y}=F \sin \theta$	1	4
		(ii) Composition of force: The process of finding out the resultant force of a given force system is called as composition of forces. $\mathrm{R}=\sqrt{ } \sum(\mathrm{Fx})^{2}+\sum\left(\mathrm{F}_{\mathrm{y}}\right)^{2} \quad \theta=\tan ^{-1}\left(\mathrm{~F}_{\mathrm{y}} / \mathrm{Fx}\right)$	1 1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(b) Ans.	A sphere of weight 450 kN rests in a groove of smooth inclined surfaces which are making 60° and 30° inclination with horizontal. Find the reactions at the contact surfaces. FBD Using Lami's Theorem, $\frac{450}{\sin 90}=\frac{\mathrm{R}_{\mathrm{A}}}{\sin 150}=\frac{\mathrm{R}_{\mathrm{B}}}{\sin 120}$ (1) (2) (3) Using term (1) and (2) $\begin{aligned} & \frac{450}{\sin 90}=\frac{\mathrm{R}_{\mathrm{A}}}{\sin 150} \\ & \mathrm{R}_{\mathrm{A}}=\frac{450 \times \sin 150}{\sin 90} \\ & \mathrm{R}_{\mathrm{A}}=225 \mathrm{~N} \end{aligned}$ Using term (1) and (3) $\begin{aligned} & \frac{450}{\sin 90}=\frac{R_{B}}{\sin 120} \\ & R_{B}=\frac{450 \times \sin 120}{\sin 90} \\ & R_{B}=389.71 \mathrm{~N} \end{aligned}$ OR	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(b)	Using conditions of equlibrium for concurrent force system and resolving all forces. $\begin{aligned} & \sum \mathrm{F}_{\mathrm{x}}=0 \\ & +\left(\mathrm{R}_{\mathrm{A}} \times \cos 30\right)-\left(\mathrm{R}_{\mathrm{B}} \times \cos 60\right)=0 \\ & +\left(\mathrm{R}_{\mathrm{A}} \times 0.866\right)-\left(\mathrm{R}_{\mathrm{B}} \times 0.5\right)=0---(1) \\ & \sum \mathrm{F}_{\mathrm{y}}=0 \\ & +\left(\mathrm{R}_{\mathrm{A}} \times \sin 30\right)+\left(\mathrm{R}_{\mathrm{B}} \times \sin 60\right)-450=0 \\ & +\left(\mathrm{R}_{\mathrm{A}} \times 0.5\right)+\left(\mathrm{R}_{\mathrm{B}} \times 0.866\right)=450----(2) \end{aligned}$ Solving equation (1) and (2) $\frac{\mathrm{R}_{\mathrm{A}}=225 \mathrm{~N}}{\mathrm{R}_{\mathrm{B}}=389.71 \mathrm{~N}}$ A beam of span 4 m is simply supported at its end. It carries a concentrated load of 40 kN and 20 kN at 1 m and 2 m from left hand support respectively. It carries a udl of $10 \mathrm{kN} / \mathrm{m}$ for 2 m from the right end. Determine the reactions at supports. $\begin{aligned} & \sum \mathrm{F}_{\mathrm{y}}=0 \\ & +\mathrm{R}_{\mathrm{A}}-40-20-(10 \times 2)+\mathrm{R}_{\mathrm{B}}=0 \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=80---(1) \\ & \sum_{\mathrm{A}}=0 \\ & +(40 \times 1)+(20 \times 2)+(10 \times 2 \times[2+1])-\left(\mathrm{R}_{\mathrm{B}} \times 4\right)=0 \\ & \mathrm{R}_{\mathrm{B}}=35 \mathrm{kN} \end{aligned}$ Putting value of R_{B} inequation(1) $\begin{aligned} & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=80 \\ & \mathrm{R}_{\mathrm{A}}+35=80 \\ & \mathrm{R}_{\mathrm{A}}=45 \mathrm{kN} \end{aligned}$	1 1 1 1 1 1 1 1 1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(d)	(Note: 2 Marks for sketch, 1 Mark for showing Active forces and 1 Mark for showing Reactive forces.) State the procedure to draw funicular polygon with resultant of concurrent and parallel force system. Procedure to draw funicular polygon with resultant for concurrent force system: 1) Draw a given concurrent force system by taking given angles accurately using protractor. 2) Use Bow's notation to represent the force system. 3) Give name to the diagram as 'Space diagram'. 4) Space diagram is used to draw 'Vector diagram'. 5) For drawing vector diagram, use suitable scale to represent the given forces. According to the force direction and scale draw parallel lines to each force as per Bow's notation. 6) Join first point and last point. Consider the direction from first point to last point which indicates direction of resultant. 7) Draw line parallel to first and last point from origin in Space diagram which will give position of resultant. 8) Measure angle of resultant from ' x ' axis to get its position. Procedure to draw funicular polygon with resultant for parallel force system: 1) By taking suitable scale for distances between forces, draw given parallel force system. 2) Use Bow's notation to represent the force system. 3) Give name to the diagram as 'Space diagram and funicular polygon'.	4	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(b) Ans.	Find the position of centroid of an unequal angle section with dimensions $200 \mathrm{~mm} \times 150 \mathrm{~mm} \times 10 \mathrm{~mm}$. Longer leg is vertical. (1) Area calculation $\begin{aligned} & a_{1}=200 \times 10=2000 \mathrm{~mm}^{2} \\ & a_{2}=140 \times 10=1400 \mathrm{~mm}^{2} \\ & a=a_{1}+a_{2}=3400 \mathrm{~mm}^{2} \end{aligned}$ (2) \bar{x} calculation $\mathrm{x}_{1}=\frac{10}{2}=5 \mathrm{~mm}$ $x_{2}=10+\left(\frac{140}{2}\right)=80 \mathrm{~mm}$ $\bar{x}=\frac{\left(\mathrm{a}_{1} \mathrm{x}_{1}\right)+\left(\mathrm{a}_{2} \mathrm{x}_{2}\right)}{\mathrm{a}}=\frac{(2000 \times 5)+(1400 \times 80)}{3400}$ $\overline{\mathrm{x}}=35.88 \mathrm{~mm} \text { from y axis }$ (3) \bar{y} calculation $\begin{aligned} & \mathrm{y}_{1}=\frac{200}{2}=100 \mathrm{~mm} \\ & \mathrm{y}_{2}=\frac{10}{2}=5 \mathrm{~mm} \\ & \overline{\mathrm{y}}=\frac{\left(\mathrm{a}_{1} \mathrm{y}_{1}\right)+\left(\mathrm{a}_{2} \mathrm{y}_{2}\right)}{\mathrm{a}}=\frac{(2000 \times 100)+(1400 \times 5)}{3400} \\ & \overline{\mathrm{y}}=60.88 \mathrm{~mm} \text { fromx axis. } \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(c) Ans.	A solid forming a cone of base 100 mm and height 200 mm joins to base with cylinder of base 100 mm and height $\mathbf{2 0 0} \mathbf{~ m m}$. Compute the position of C.G. Let, Fig. $1=$ Cylinder and Fig. $2=$ Cone (1) Volume Calculation $\begin{aligned} \mathrm{v}_{1} & =\pi \times \mathrm{r}^{2} \times \mathrm{h}_{1}=\pi \times 50^{2} \times 200 \\ & =(500000 \times \pi) \mathrm{mm}^{3} \\ \mathrm{v}_{2} & =\frac{1}{3} \times \pi \times \mathrm{r}^{2} \times \mathrm{h}_{2}=\frac{1}{3} \times \pi \times 50^{2} \times 200 \\ & =(166666.67 \times \pi) \mathrm{mm}^{3} \\ \mathrm{~V} & =\mathrm{v}_{1_{1}}+\mathrm{v}_{2}=(666666.67 \times \pi) \mathrm{mm}^{3} \end{aligned}$ (2) $\overline{\mathrm{X}}$ calculation As figure is symmetric about y axis, $\overline{\mathrm{x}}=\mathrm{r}=50 \mathrm{~mm} \text { form } \mathrm{y} \text { axis }$ (3) \bar{y} calculation $\begin{aligned} & \mathrm{y}_{1}=\left(\frac{\mathrm{h}}{2}\right)=\left(\frac{200}{2}\right)=100 \mathrm{~mm} \\ & \mathrm{y}_{2}=\mathrm{h}_{1}+\left(\frac{\mathrm{h}_{2}}{4}\right)=200+\left(\frac{200}{4}\right)=250 \mathrm{~mm} \\ & \overline{\mathrm{y}}=\frac{\mathrm{v}_{1} \mathrm{y}_{1}+\mathrm{v}_{2} \mathrm{y}_{2}}{\mathrm{~V}}=\frac{[(500000 \times \pi) \times 100]+[(166666.67 \times \pi) \times 250]}{(666666.67 \times \pi)} \\ & \overline{\mathrm{y}}=137.5 \mathrm{~mm} \text { form } \mathrm{x} \mathrm{axis} \end{aligned}$	1	4

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answer \& Marks \& Total Marks

\hline Q. 6 \& (d)

Ans. \& | A hemisphere of diameter 100 mm is placed on the top of cylinder whose diameter is also $\mathbf{1 0 0} \mathbf{m m}$. If the C.G. of the composite solid is 77.22 mm from the bottom of the cylinder. Find the height of the cylinder. |
| :--- |
| Let, Fig. $1=$ Cylinder and Fig. $2=$ Hemisphere |
| (1) Volume Calculation $\begin{aligned} \mathrm{V}_{1} & =\pi \times \mathrm{r}^{2} \times \mathrm{h}=\pi \times 50^{2} \times \mathrm{h} \\ & =(7853.981634 \times \mathrm{h}) \mathrm{mm}^{3} \\ \mathrm{~V}_{2} & =\frac{2}{3} \times \pi \times \mathrm{r}^{3}=\frac{2}{3} \times \pi \times 50^{3} \\ & =(261799.3878) \mathrm{mm}^{3} \\ \mathrm{~V} & =\mathrm{V}_{1}+\mathrm{V}_{2}=[(7853.981634 \times \mathrm{h})+(261799.3878)] \mathrm{mm}^{3} \end{aligned}$ |
| (2) Calculation of height of cylinder $\begin{aligned} & \mathrm{y}_{1}=\left(\frac{\mathrm{h}}{2}\right)=(0.5 \times \mathrm{h}) \\ & \mathrm{y}_{2}=\mathrm{h}+\left(\frac{3 \times \mathrm{r}}{8}\right)=\mathrm{h}+\left(\frac{3 \times 50}{8}\right)=(\mathrm{h}+18.75) \\ & \overline{\mathrm{y}}=\frac{\mathrm{V}_{1} \mathrm{y}_{1}+\mathrm{V}_{2} \mathrm{y}_{2}}{\mathrm{~V}}=\frac{[(7853.981634 \times \mathrm{h}) \times(0.5 \times \mathrm{h})]+[(261799.3878) \times(\mathrm{h}+18.75)]}{[(7853.981634 \times \mathrm{h})+(261799.3878)]} \end{aligned}$ $77.22 \times[(7853.981634 \times \mathrm{h})+(261799.3878)]=$ $[(7853.981634 \times \mathrm{h}) \times(0.5 \times \mathrm{h})]+[(261799.3878) \times(\mathrm{h}+18.75)]$ $0=\left(3926.990817 \times h^{2}\right)-(344685.074 \times \mathrm{h})-(15307410.21)$ |
| Solving quadratic equation, $\mathrm{h}=120.20 \mathrm{~mm}$ | \& 1

1
1

1
1
1 \& 4

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(e) Ans.	Define centroid. Show on sketch the C.G. of a semicircle of diameter 200 mm . Centroid: It is defined as the point through which the entire area of a plane figure is assumed to act, for all positions of the lamina. e. g. Triangle, Square	1	
			$11 / 2$	4
		$\begin{aligned} & \bar{X}=r \\ & \bar{X}=100 \mathrm{~mm} \\ & \overline{\bar{y}=\frac{4 \times r}{3 \times \pi}=\frac{4 \times 100}{3 \times \pi}} \\ & \overline{\mathrm{y}}=42.44 \mathrm{~mm} \end{aligned}$	$1 / 2$ 1	
	(f)	The frustum of a cone has top diameter 40 cm and bottom diameter 60 cm with height 18 cm . Calculate it's depth.		
	Ans.		1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(f)	Let $\mathrm{h}=$ height of fullcone, $h_{1}=$ height of frustum of cone $=18 \mathrm{~cm}$ $\mathrm{h}_{2}=$ height of cutcone Asthe triangles $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CDE}$ are symmetrical, $\begin{aligned} & \frac{\mathrm{h}}{60}=\frac{\mathrm{h}_{2}}{40} \\ & \mathrm{~h}=\frac{60}{40} \times \mathrm{h}_{2} \\ & \mathrm{~h}=1.5 \times \mathrm{h}_{2} \end{aligned}$ Now, $h_{1}+h_{2}=h$ $\mathrm{h}_{1}+\mathrm{h}_{2}=\left(1.5 \times \mathrm{h}_{2}\right)$ $h_{1}=(1.5-1) h_{2}$ $h_{1}=(0.5) h_{2}$ $\mathrm{h}_{2}=\frac{\mathrm{h}_{1}}{0.5}=\frac{18}{0.5}$ $\mathrm{h}_{2}=36 \mathrm{~cm}$ $\mathrm{h}=\mathrm{h}_{1}+\mathrm{h}_{2}$ Total depth $(\mathrm{h})=18+36=54 \mathrm{~cm}$		4

