

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject Title: Mass Transfer Operation

Subject code

17648

Page **1** of **27**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-19 EXAMINATION Model Answer

Subject Title: Mass Transfer Operation

Subject code

17648 Р

Page **2** of **27**

Q No.	Answer	Marking
		scheme
1 a	Attempt any 3	12
1a-i	Equation for steady state diffusion of gas A through non diffusing gas B:	
	$N=(D_{AB} P/RTZ P_{B,M}) (P_{A1}-P_{A2})$	
	Where	
	D _{AB} -diffusion coefficient	
	P- total pressure	
	R- gas constant	1
	Z – distance in the direction of diffusion	
	$P_{B,M} - (P_{B2} - P_{B1}) / \ln(P_{B2}/P_{B1})$	
	P _{A1} - partial pressure of A at point 1	
	P _{A2} - partial pressure of A at point 2	
	Derivation:	
	$N_A = J_A + x_A (N_A + N_B)$	
	For ideal gas	1
	$c_A = P_A/RT$ $dc_A = dP_A/RT$ $c = P/RT$	1
	$N_A = -D_{AB} dc_A / dZ + c_A / c(N_A + N_B)$	
	$= -D_{AB} / RT(dP_A/dZ) + P_A/P (N_A + N_B)$	
	For steady state diffusion of A through non diffusing B	
	N_A is constant and $N_B = 0$	
	$N_A = -D_{AB} / RT(dP_A/dZ) + P_A/P \cdot N_A$	
	$N_A(P-P_A / P) = -D_{AB} / RT(dP_A/dZ)$	
	$Or N_A dZ = -D_{AB} P / RT(dP_A/P - P_A)$	
	Integrating,	1

SUMMER-19 EXAMINATION **Model Answer**

1921

ct Title: N	Mass Transfer Operation	Subject code	17648	Page 3 of 27	
	$N_{A} = D_{AB} P / RTZ \ln[(P-P_{A2}) / (P-P_{A1})]$				
	But $P-P_{A2} = P_{B2}$ and $P-P_{A1} = P_{B1}$				
	Therefore $N_A = D_{AB} P / RTZ ln[P_{B2} / P_{B1}]$				
	$N = D_{AB} P / RTZ ln[P_{B2} / P_{B1}][(P_{B2} - P_{B1}) / (P_{B2} / P_{B1})]$	P _{B1})]			
	But $(P_{B2} - P_{B1}) / \ln(P_{B2} / P_{B1}) = P_{BM}$				
	& $(P_{B2} - P_{B1}) = (P_{A1} - P_{A2})$				
	Therefore			1	
	$N_A = (D_{AB} P/RTZ P_{B,M}) (P_{A1}-P_{A2})$				
1a-ii	$v = \alpha x/1 + (\alpha - 1)x$			1	
	$\alpha = 2.1$				
	calculate y for different values of $x=0, 0.1, 0.2.$	1		2	
	x 0 0.1 0.2 0.3 0.4 0.5	0.6 0.7 0.3	8 0.9 1	3	
	y 0 0.1 0.34 0.47 0.58 0.67 9	0.76 0.83 0.8	89 0.95 1		
1a-iii	Fick Filter is the basic law of diffusion				
	Fick's law states that the flux of a diffusing c	component A in	z direction i	in a 2	
	binary mixture of A and B is proportional to the molar concentration gradient.				
	$J_{A} = -D_{AB}dC_{A}/dZ$				
	Where J_A - molar flux of A in z direction				
	C_A – concentration of A				
	dC_A/dZ – concentration gradient in z direction				
	D _{AB} – proportionality constant, diffusion c	coefficient			
	Z – distance in the direction of diffusion	n			
	Importance of diffusion in mass transfer: Diffusion is the movement of an				
	individual component through a mixture from a	region of highe	r concentratio	on 2	

bject Title: M	lass Transfer Operation	Subject code	17648	Page 4 of 27		
	to a region of lower concentration at fixed te	mperature and press	ure. A mixtu	ire		
	which is non-uniform initially will be ultimative	tely brought to unifo	ormity by			
	diffusion since the concentration gradient which acts as a driving force for					
	distillation tends to move the component in s	such a direction as to	equalize the	3		
	concentrations and destroy the gradient. If w	e maintain the conce	entration			
	gradient by constantly supplying the diffusing component to the high					
	concentration end and removing it at the low	concentration end,	then the flow	7		
	of diffusing component is continuous. This movement is utilized in mass					
	transfer operations.					
1a-iv	Rayleigh equation:					
	Let F be moles of liquid mixture containing	x_F mol fraction of L	A, D kmoles	of		
	distillate and W kmoles of residual liquid in	still which are obta	ined at the e	end		
	of operation. Let y_D and x_W be the mol fr of	A in distillate and	bottom resid	ual		
	liquid.					
	Let L be kmoles of liquid in the still at any ti	ime during the cours	e of distillat	ion		
	and let x be mol fr of A in liquid.Let very sm	nall amount dD kmo	l of distillate	of 1		
	composition y in equilibrium with the liqu	id is vaporized. The	en composit	ion		
	and quantity of liquid decreases to (x-dx) and	d L to (L-dL) respec	tively.			
	Overall material balance is L=L-dL+dD					
	Or dL = dD					
	Material balance for component A is Lx=(L-	dL)(x-dx)+ydD		1		
	Lx = Lx - Ldx - xdL + dLdx + ydD					
	dLdx=0					
	0 = -Ldx - xdL + ydL					
	But dD=dL					
	i.e. 0=-Ldx-xdL+ydL					
	Ldx=(y-x)dL					

bject Title: I	Mass Transfer Operation Subject code 17648 P	age 5 of 27
	dL/L=dx/(y-x)	1
	Integrating the equation between the limits L=F, x=x _F , L=W x=x _W F xF	
	$\int dL/L = \int dx/(y-x)$	
	W xW	
	X _F	
	$Ln(F/W) = \int dx/(y-x)$	1
	X_{W}	
1b	Attempt any 1	6
1b-i	Steam distillation:	
	Steam distillation is adopted in cases where substance involved cannot	
	withstand temp of distillation and decompose. Substance of this kind can be	4
	separated by reducing the partial pressure of the volatile component. This can	
	be done by making use of inert vapour that decreases the temperature of	
	distillation. The inert vapour used should be practically immiscible with	
	components to be distilled. Steam is used for this purpose.	
	In steam distillation, steam is directly admitted into the liquid in the still. The	
	mixed vapour containing desired component is taken as overhead, condensed	
	and desired component is separated from water phase by gravity while non	
	volatile material remains behind in the still.	
	Application of Steam Distillation: (any 2)	
	1. For separating high boiling component from non volatile impurities.	1 mark
	2. For separating high boiling mixture into different fractions wherein the	each
	decomposition of material might occur if direct distillation were employed	
	3. Where vaporization temperature cannot be reached by heat.	

SUMMER-19 EXAMINATION **Model Answer**

Subject Title: Mass Transfer Operation

Boiling point diagram

G

Th

Ti

OV Benung

Builing

Temptistais AT T_2

Tarr

20

7.8

point

1b-ii

Subject code

16-1-0

Sense)

Ton 7. beinzens

17648

Page 6 of 27

3

Consider the process of boiling a binary mixture consisting of benzene (mvc) and toluene. The composition of the mixture is plotted on x-axis in terms of mvc and temperature of the mixture is plotted on y-axis.

diastan

917

The mixture represented by point A is at a temperature of T1 and contains 50% benzene. When we heat the mixture it will boil at a temperature T2, vapours will contain more of mvc. The vapoursat C is in equilibrium with liquid at B and thus BC is known as the tie line. If we reheat the condensate obtained at this stage, it will boil at T3 and the vapours issuing will contain more of mvc, thus enrichment of benzene takes place.

In the process of boiling, the mixture boils over a temperature range, so the term used is bubble point. The liquid represented by any point on the lower curve is at its bubble point and the lower curve is called bubble point temperature curve.

When a mixture of vapours is cooled, at a point condensation starts. The first drop of liquid will have composition represented by point K. While cooling the 3

t Title:	Mass Transfer Operation	Subject code	17648	Page 7 of 27		
	vapour becomes richer in mvc than liqu	id. The condensation sta	arts at any po	vint		
	on the upper curve. The upper curve is the	on the upper curve. The upper curve is the dew point temperature curve.				
2	Attempt any 4			16		
2-a	Selection criteria for solvent in gas ab	sorption :		1 mark		
	While selecting a particular solvent for	absorption operation, th	e following	each for		
	properties of the solvent are considered.			any 4		
	1) Gas solubility : the solubility of sol	ute gas in a solvent shou	ld be high . t	he points		
	solvent selected should have a high	solubility for the solute t	to be absorbe	d		
	2) Volatility : As the gas leaving an ab	sorption unit is generally	v saturated w	ith		
	the solvent, there will be a loss of th	e solvent with the gas le	aving the uni	it		
	operation, hence to minimize the sol	lvent loss , the solvent sł	nould be less			
	volatile.					
	3) Corrosive nature : the solvent should	d not be corrosive toward	ds common			
	materials of construction so that the	construction material fo	r an absorptio	on		
	equipment will not be too expensive	<u>.</u>				
	4) Viscosity : the solvent should have a	a low viscosity for rapid	absorption			
	rates, low pumping cost and better h	neat transfer. The solvent	should be no	on		
	viscous.					
	5) Cost and availability : the solvent sh	nould be cheap and readi	ly available			
	6) Miscellaneous : the solvent should b	be non-toxic, non-flamm	able, non-			
	foaming, and chemically stable from	n a handling and storage	point of view	V.		
2-b	Differentiate between distillation and	extraction: (Any 4)		1 mark		
	Distillation	Extraction		each		
	Constituents of liquid mixture are	Constituents of liquid	l mixture a	re		
	separated by using thermal energy	separated by using in	soluble liqu	id		
		solvent				

bject Title:	Mass Transfer Operation	Subject code 17648	Page 8 of 27		
	It utilizes the difference in vapour	It utilizes the difference	in	Τ	
	pressure of the components to effect	solubilities of the component	ts to		
	separation	effect separation			
	Relative volatility is used as a	Selectivity is used as a measure	re of		
	measure of degree of separation	degree of separation			
	A new phase is created by addition of	A new insoluble liquid phase	se is		
	heat	created by addition of solvent to	feed		
	Gives almost pure product	Doesn't give pure product			
	Requires thermal energy	Requires mechanical energy	for		
		mixing and separation			
	Needs heating and cooling provisions	Doesn't need heating and co	oling		
		provisions			
	Primary choice for separation	secondary choice for separation			
2-c	Time of drying under constant drying conditions:				
	Consider that the wet solids are to be dri	ed by passing the hot air over ther	n		
	under constant drying conditions. The ti	me of drying required to dry the			
	material from initial moisture to the fina	l moisture content of solids, is the	sum		
	of the time required during the falling ra	te period.			
	Constant rate period :				
	Let X1 be the initial moisture content of	the wet solids and X_2 be the final			
	moisture content of the wet solids during	g the constant rate period. Let X_C	be the 1	_	
	critical moisture content of the wet solid	S.			
	The rate of drying is given by				
	$\mathbf{R} = -\frac{\mathbf{R}}{\mathbf{R}} \times \frac{\mathbf{R}}{\mathbf{R}}$	••••••••••••••••••••••••••••••••••••••	1		
	$R = R_C = r$	ate during constant rate period			
	$R_{\rm C} = -\frac{100}{100} \times \frac{100}{100}$	(2	2)		

ct Title:	Mass Transfer Operation	Subject code	17648	Page 9 of 27
	Where			
	W' = mass of dry	solids in kg		
	A = area of dryi	ing surface in m ²		
	$R_C = \text{rate in kg/(n)}$	m ² .h)		
	t = time in hour	rs (h)		
	Rearranging Equation (2), we get, the set of the set	DEDECENER EDEC EDECENECED COF CHOBERTON OT CENERED		
	$dt = \frac{dt}{dt} dX$		(3)	
	Integrating Equation (3) between the limit	ts :		
	$t = 0, X = X_1$			1
	and $t = t$, $X = X_{2}$, we get	et		
			-(4)	
	$t = -\frac{1}{1000} [X_2 -$	X ₁]	(5)	
	$t = \frac{1}{10000000000000000000000000000000000$	K ₂]	(6)	
	equation (6) gives the time required for dry	ing the material from	X_1 to X_2 in t	he
	constant rate period.			1
	If the material is to be dried to the moisture	e content of X_C , then t	he time	
	required during the entire constant rate peri	od is given by		
	$t_{\rm C} = \frac{1}{1000} [X_1 - 1]$	- X _C]	(7	7)
2-d	Hydrodynamics / pressure drop characte	eristics in packed co	lumn:	
	In a packed column there are two flows flow	wing in counter curre	nt direction.	
	Liquid fed at the top of column flows down	the column through	the void space	ces

t Title:	Mass Transfer Operation	Subject code	17648	Page 12 of 27		
	Working: The solution from crystalli	izing chamber is pump b	y a circulati	ing		
	pump on the suction side of which the	feed solution forming a si	mall part of	the 1		
	total circulating liquid is introduced in	to a heater. Where it is he	eated by mea	ans		
	of condensing steam and then fed to	a vap head where some	of the soluti	ion		
	flashes into vap resulting into so	me degree of super s	aturation. T	`he		
	supersaturated solution is returned to	the bottom of the crystal	lizing cham	ber		
	through a central duct into a crystallizin	ng chamber.				
	Nucleation takes place in the crystal b	blade which is maintained	l In a fluidiz	zed		
	state by means of upward flowing stea	am. Then the nuclei conv	erted to crys	tal		
	of required size and withdrawn as produced	uct from the bottom.				
3	Attempt any 2			16		
3-a	Rotary drum Dryer:					
	Construction: It consists of a drum rot	ating in a tub of liquid to	be filtered. T	The		
	technique is well suited to slurries, and	l liquids with a high solid	content, wh	ich		
	could clog other forms of filter. The	e drum is pre-coated wi	th a filter a	id,		
	typically of diatomaceous earth (DE) or	r Perlite. After pre-coat ha	as been appli	ed,		
	the liquid to be filtered is sent to the	tub below the drum. Th	e drum rota	tes		
	through the liquid and the vacuum suc	eks liquid and solids onto	the drum p	re-		
	coat surface, the liquid portion is "su	cked" by the vacuum the	rough the fil	ter		
	media to the internal portion of the du	media to the internal portion of the drum, and the filtrate pumped away. The				
	solids adhere to the outside of the drun	m, which then passes a kr	nife, cutting	off		
	the solids and a small portion of the fil	ter media to reveal a fresh	n media surfa	ace		
	that will enter the liquid as the drum re	otates. The knife advance	s automatica	lly		
	as the surface is removed.					
	A rotary vacuum filter consists of a lar	ge rotating drum covered	by a cloth. T	The		
	drum is suspended on an axial over a tr	ough containing liquid/so	lids slurry w	ith		

oject Title:	ect Title: Mass Transfer Operation		17648	Page 13 of 27
	approximately 50-80% of the screen area	a immersed in the slurry.		
	Working: As the drum rotates into and	out of the trough, the s	slurry is such	ked
	on the surface of the cloth and rotated of	out of the liquid/solids	suspension a	us a 2
	cake. When the cake is rotating out, it is	dewatered in the dying	zone. The ca	ake
	is dry because the vacuum drum is contin	nuously sucking the cake	e and taking	the
	water out of it. At the final step of the	e separation, the cake is	s discharged	as
	solids products and the drum rotates cont	tinuously to another sepa	aration cycle	
	Moisture out			
	Vapor hood			
				3
	Internally steam heated drum Knife Trough Agitator, Drain			
3-b	Triangular diagram:			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION **Model Answer**

Subject Title: Mass Transfer Operation

se: In liquid - liquid extraction, when iginal solvent, the solubility and equangular diagram. The composition of bint lying inside an equilateral triangle. itial moisture content $X_1=0.35/(10.35)$: nal moisture content $X_2=0.1/(1-0.1)=0.1$ quilibrium moisture content $X^*=0.04/(10.14)$ = W'/ARc { $(X_1-X_c) + (X_c - X^*)\ln[(X_c - W'/ARc { (0.5385-0.1628) + (0.16280417)]}'/Arc= 11.28$	solvent is partially m uilibrium relations ar ternary systems can = 0.5385 111 - 0.04)= 0.0417)= 0.1628 - X^*)/($X_2 - X^*$)]} - 0.0417)ln[($0.1628-0$	iscible with the shown on be shown by	he a a
iginal solvent, the solubility and equangular diagram. The composition of bint lying inside an equilateral triangle. itial moisture content $X_1=0.35/(10.35)$: nal moisture content $X_2=0.1/(1-0.1)=0.1$ quilibrium moisture content $X^*=0.04/(10.14)$ = W'/ARc { (X_1-X_c) + (X_c-X^*)ln[(X_c-X^*)ln]] = W'/ARc { (0.5385-0.1628) + (0.16280417)]} ''/Arc= 11.28	uilibrium relations ar ternary systems can =0.5385 111 -0.04)=0.0417)=0.1628 - X^* /($X_2 - X^*$)]} - 0.0417)ln[(0.1628–0	e shown on be shown by).0417)/(0.111	a a
angular diagram. The composition of int lying inside an equilateral triangle. itial moisture content $X_1=0.35/(10.35)$ nal moisture content $X_2=0.1/(1-0.1)=0.1$ quilibrium moisture content $X^*=0.04/(1-$ tritical moisture content $X_c=0.14/(1-0.14)$ = W'/ARc { (X ₁ -X _c) + (X _c - X [*])ln[(X _c - W'/ARc { (0.5385-0.1628) + (0.1628 - 0417)]} ''/Arc= 11.28	ternary systems can =0.5385 111 -0.04)=0.0417)=0.1628 - X^*)/($X_2 - X^*$)]} - 0.0417)ln[(0.1628–0	be shown by	a
tial moisture content $X_1=0.35/(10.35)$ nal moisture content $X_2=0.1/(1-0.1)=0.1$ quilibrium moisture content $X^*=0.04/(10.14)$ = W'/ARc { (X_1-X_c) + (X_c-X^*)ln[(X_c- = W'/ARc { (0.5385-0.1628) + (0.16280417)]} ''/Arc= 11.28	$=0.5385$ 111 -0.04)=0.0417)=0.1628 -X [*])/(X ₂ - X [*])]} - 0.0417)ln[(0.1628-0)).0417)/(0.111	_
itial moisture content $X_1=0.35/(10.35)$ nal moisture content $X_2=0.1/(1-0.1)=0.1$ quilibrium moisture content $X^*=0.04/(114)$ = W'/ARc { (X_1-X_c) + (X_c-X^*)ln[(X_c-X^*)ln]]} = W'/ARc { (0.5385-0.1628) + (0.16280417)]}	$=0.5385$ 111 -0.04)=0.0417 -)=0.1628 -X [*])/(X ₂ - X [*])]} - 0.0417)ln[(0.1628-0)).0417)/(0.111	_
nal moisture content $X_2=0.1/(1-0.1)=0.1$ quilibrium moisture content $X^*=0.04/(1-0.14)$ = W'/ARc { (X ₁ -X _c) + (X _c - X [*])ln[(X _c - = W'/ARc { (0.5385-0.1628) + (0.1628 - 0417)]} '/Arc= 11.28	111 $-0.04)=0.0417$ -0.1628 $-X^*)/(X_2 - X^*)]$ $- 0.0417)\ln[(0.1628 - 0.0417)]$).0417)/(0.111	_
quilibrium moisture content $X^*=0.04/(1-$ titical moisture content $X_c=0.14/(1-0.14)$ = W'/ARc { $(X_1-X_c) + (X_c - X^*)\ln[(X_c - X^*)]$ = W'/ARc { $(0.5385-0.1628) + (0.1628 - 10.0417)]$ } tr/Arc= 11.28	(-0.04)=0.0417 $(-0.1628)=-X^*)/(X_2 - X^*)]$ $(-0.0417)\ln[(0.1628-0)]$).0417)/(0.111	_
titical moisture content $X_c=0.14/(1-0.14)$ = W'/ARc { (X ₁ -X _c) + (X _c - X [*])ln[(X _c - = W'/ARc { (0.5385-0.1628) + (0.1628 - 0417)]} '/Arc= 11.28)=0.1628 -X [*])/(X ₂ - X [*])]} - 0.0417)ln[(0.1628-0).0417)/(0.111	_
$= W'/ARc \{ (X_1-X_c) + (X_c - X^*)ln[(X_c - X^*)/ARc \} (0.5385-0.1628) + (0.1628 - 0.0417)] \}$ = W'/ARc = 11.28	-X [*])/(X ₂ - X [*])]} - 0.0417)ln[(0.1628-0).0417)/(0.111	_
W'/ARc { (0.5385-0.1628) + (0.1628 - 0417)]} '/Arc= 11.28	– 0.0417)ln[(0.1628–0).0417)/(0.111	-
(0417)]			
'/Arc = 11.28			
$\mathbf{v} = 0.0000000000000000000000000000000000$			
or second case $X_2 = 0.06/(1-0.06)=0.063$	38		
11.28 { (0.5385-0.1628) + (0.1628 - 0	0.0417)ln[(0.1628–0.0	0417)/(0.0638	-
0417)]}			
= 6.56 hr.			
ttempt any 3			12
ectification on ideal plate:			
	ectification on ideal plate:	ectification on ideal plate:	ectification on ideal plate:

SUMMER-19 EXAMINATION Model Answer

17648 Subject Title: Mass Transfer Operation Subject code Page 16 of 27 2 Vn-i plate n-Vn plate In 1+2 2 The plates are numbered serially from top to bottom. On every plate two different fluid streams not at equilibrium are brought into intimate contact, mass transfer takes place, phases are separated, and finally two fluid streams leave the plate in equilibrium with each other. When vapour from plate n+1 is brought into intimate contact on plate n with

When vapour from plate n+1 is brought into intimate contact on plate n with liquid from plate n-1, their composition change to attain equilibrium values. During the interchange process, some of more volatile component is vaporized from liquid L_{n-1} , decreasing the liquid concentration from x _{n-1} to x_n and some of the less volatile component is condensed from the vapour V_{n+1}, increasing the vapour concentration from y_{n+1} to y_n. In the column, the heat to vaporize more volatile component from liquid is supplied by the heat released in the condensation of less volatile component from vapour. The more volatile

et Title: N	Mass Transfer Operation Subject	ct code	17648	Page 17 of 27	
	component is transferred to the vapour rising up from	n the liquid	running do	wn	
	the column , while the less volatile component is	transferred	to the liq	uid	
	running down from the vapour rising up the column. T	The tempera	ature decrea	ses	
	along the column height.				
4a-ii	Factors on which the rate of drying depends:			1 mark	
	1) Gas Velocity: When the velocity of the gas	or air is hi	igh the rate	of each	
	drying will also be high.				
	2) Humidity of gas : Lesser the relative humid	dity, the mo	ore will be	the	
	rate of drying.				
	3) Area of drying surface: If the area of the w	vet surface of	exposed to	the	
	gas or air is more, the rate of drying will also b	e more.			
	4) Temperature: If the temperature of the gas is increased' it's relative				
	humidity decreases (i.e gas becomes more unsaturated) and thus				
	increase a driving force (i.e the concentratio	on differenc	e of moist	ure	
	between the solid and gas) and so the rate of dr	rying increa	ses.		
4a-iii	Caking of crystals:				
	Caking of crystalline material is caused by	y to a sma	all amount	of	
	dissolution occurring at the surface of crys	stals and s	subsequent	re- 2	
	evaporation of the solvent. Due to caking the	e crystals c	can get tigh	tly	
	bonded together.				
	Effect of impurities on crystal formation:				
	i) Soluble impurities may get adsorbed or	n the surfac	e of the nuc	elei 2	
	or crystals nucleation sites and retard t	the rate of r	nucleation a	ind	
	crystal growth.				
	ii) The shape of crystal may get mo	dified as	adsorption	of	
	impurities may occur preferentially on a	a particular	face,		
	iii) The impurities may decrease the rate o	of crystal gr	owth. In so	me	

t Title: I	Aass Transfer Operation	Subject code	17648	Page 18 of 27
	cases, it is desirable .			
	iv) Addition of a small quar	ntity of glue or tannir	n to boiler f	eed
	water prevents nucleation	and growth of carbon	ate crystals	and
	thus reduces scaling.			
4a-iv	Different types of packings are :			¹ / ₂ mar
	1) Raschig rings.			each fo
	2) Pall rings.			any
	3) Hy-pak.			
	4) Berl saddles.			
	5) Intalox saddles.			
	6) Super intalox saddles			
	7) Lessing ring			
	Characteristics of a tower packing :			1/2 mar
	1) It should provide a large interfacia	al area for phase contac	ting	each fo
	2) It should possess good wetting cha	aracteristics.		any
	3) It should have a high corrosive res	sistance.		
	4) It should be relatively cheap.			
	5) It should possess enough structura	al strength.		
	6) It should be chemically inert to the f	luids handled in the tow	ver.	
4b	Attempt any 1			
4b-i	q-line: The 'q' is a measure of the therm	al condition of the feed	l and is defin	ed
	as the number of moles of saturated liquid	d resulting in the stripp	ing section fo	or
	each mole of feed introduced. Thus for a	feed we get,		
	L' = L + qf			
	$\mathbf{V} = \mathbf{V'} + (1 - q)\mathbf{F}$			
	Derivation of q-line :			,

Subject Title: Mass Transfer (Dperation	Subject code	17648	Page 19 of 27
The liqu	id flow in the stripping section	ı is		
	L' = L + qf			
5 <u>4</u>	L' - L = qf		(1)	
Similarly, the	e vapour flow in the rectifying	section is		
	V = V' + (1 - q) F		(2)	
54	V - V' = (1 - q)F		(3))
Overall mate	rial balance in the upper sectio	n of coloumn :		
	V = L + D		(4)	
Material bala	nce of A in the upper section :			
	$V_y = Lx + D x_D$		(5))
Overall mate	rial balance in the lower sectio	n :		
	V' = L' - W		(6)	
Material bala	nce of A in the lower section :			
	$V'y = L'x - W x_w$		(7))
Subtracting E	Equation (7) from Equation (5)			
	y(V-V') = x(L-L')	$) + D x_{D} + W x_{w}$	(8	5)
Overall mate	erial balance of A over the colo	oum as a whole :		
	$x_f. F = D x_D + W x_w$			
L	Equation (8) becomes			
	y(V-V') = x(L-L')	$() + x_{F}.F$	(1	0)
Substitutin	σ the values of V - V' and I'	– L. from Equation (3) and (1) int	
Fauation (10)	β and γ and L	E nom Equation (.	<i>5)</i> und (1 <i>)</i> int	
	$v(1 - a)F = x(-aF) + x_{F}$	F		
	$J \left(\begin{array}{c} \mathbf{Y} \end{array} \right) \left(\begin{array}{c} $	-		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

t Title:	Mass Transfer Operation	Subject code	17648	Page 21 of 27	
	3. Distribution coefficient: Higher	values are desirable	as less solv	ent	
	will then be required for given extr	action duty.			
	4. Density: The difference in densities of saturated liquid phases should be				
	larger for physical separation.				
	5. Insolubility of solvent: The solvent insoluble in original liquid solvent				
	should be preferred and it should	have high solubility	for solute to	be	
	extracted, then small amounts of sc	olvent are required.			
	6. Chemical Stability: The solvent s	should be stable chem	ically and ir	nert	
	towards other components and sho	uld not be corrosive.			
	7. Cost: The solvent should be cheap				
	8. The solvent should be non toxic, non flammable.				
	9. Solvent should have low viscosity, freezing point, vapor pressure for				
	ease in handling and storage.				
	10. Interfacial tension: It should be high for coalescence of emulsions to				
	occur more readily, as the same is	of greater importance t	han dispersi	on.	
5	Attempt any4			16	
5-a	HETP(Height Equivalent to a Theoretic	al Plate): It is the height	ght of a section	on 2	
	of packing that will give the same separation	on as that achieved wi	th one		
	theoretical plate				
	Height of packed column = NTU*HTU				
	Where,				
	NTU = Number of transfer units				
	HTU = Height of transfer units				
	Channeling: The tendency of liquid to se	gregate towards the w	alls and to fl	ow 2	
	along to walls (region of greatest void sp	pace) is termed as ch	anneling wh	ich	
	lead to low mass transfer efficiencies.				
	It can be prevented by:				

ubject Title:	Mass Transfer Operation	Subject code	17648	Page 22 of 27	
	1. Providing tower diameter to packi	ng size ratio greater that	ın 8		
	2. Providing good liquid distribution	system.			
	Channeling leads to flooding and loading	ng: When channeling o	ccurs, liquid		
	flows along the walls and liquid hold up i	n the column starts to in	ncrease. This	is	
	loading. When the gas velocity increases	further, entrainment of	liquid by the	;	
	gas leaving the top of the tower increases	and flooding of tower	takes place.		
5-b					
	According to Mier's theory there is a defi	nite relationship betwee	en the conc a	and 3	
	temp at which crystals will spontaneously	formed in a pure solut	ion. This		
	relationship is represented by the super se	olubility curve which is	approximat	ely	
	parallel tp the solubility curve. The curve AB is the solubility curve and curve				
	PQ is the super solubility curve. The curve AB represents maximium conc of solution which can be achieved by bringing solid-solute into eqm with liquid solvent. If a solution having the composition and temp indicated by point C is cooled in the direction shown by the arrow it first crosses the solubility curve				
	AB and it is expected to start of crystalliz	ation. Actually if the pr	ocess started	L	
	with initially unseeded solution crystal fo	rmation will not begin	until the		
	solution is super cooled considerably passed the curve AB. According to Mier's				
	theory, crystallization will start in the neighbourhood of the point D and the				
	concentration of the solution then follows	roughly along the curv	ve DE.For an		
	initially unseeded solution, the curve PQ	represents the limit at v	which		
	spontaneous nuclei formation begin and	consequently, crystalliz	ation can sta	rt.	

SUMMER-19 EXAMINATION **Model Answer**

ركل

ct Title: N	Mass Transfer Operation	Subject code	17648	Page 23 of 27
	contin 1 B E Sterrp			1
5-c	Basis : 1000m ³ /hr of gas mixture to absorp	tion tower.		1
	n = PV / RT			
	= 106.6*1000 / 8.314*300 = 42.76 kmol	/h		
	Solute in the gas entering = $0.1*42.76 = 4.2$	276 kmol/h		
	Inert gas at the inlet = $42.76 - 4.276 = 38.48$	34 kmol/h		
	Solute absorbed = $0.9*4.276 = 3.848$ kmol	/h		1
	X_1 = solute composition at bottom = 0.05.	(1-0.05) = 0.0526	5	
	X_2 = solute composition at top = 0			
	Y_1 = solute composition in inlet gas to tow	ver = 0.1/(1-0.1) =	= 0.111	
	Y_2 = solute composition in outlet gas from	tower = $0.428/3$	8.484 = 0.01	1 1
	L' = mass flowrate of solute free solvent i	n kg/hr		
	V'= mass flowrate of solute free gas or air	r in kg/hr		
	$V'(Y_1-Y_2) = L'(X_1-X_2)$			
	38.484 (0.111 - 0.011) = L' (0.526 - 0)			
	L' = 73.09 kmol/hr			1
	Molar flow rate of water = 73.09 kg/hr			

t Title:	Mass Transfer Operation	Subject code	17648	Page 24 of 27
5-d				
	wet solids dryer	Moisture evaporate	d	1
	r ⊢ →	product		
	Basis: 100 kg dried product			1
	Let X kg wet solids and Y kg moisture eva	porated		
	Overall balance is $X = Y + 100$			1
	Solid balance is $0.2 X = 0.95 * 100$			1
	Or $X = 4/5$ kg moisture evaporated $475-100 = 375$ kg			1
5-e	Solution : The flux for equimolar counter d	liffusion is given by,		
	$NA = D_{AB} P(pA1-pA2) / RTz P_{BM}$			1
	Where, $D_{AB} = 1.81 \times 10^{-5} \text{ m}^2/\text{s}$, $R = 8.3145$	51 m^3 . kPa/ (kmol. K)		
	T = 298 K, $z= 2mm=0.002m$			
	$p_{A1} = 0.2*101.3=20.26$ kPa, $p_{A2}=0.1*101$.3 = 10.13 kPa		1
	$P_{B1} = P_{-} p_{A1} = 101.3 - 20.26 = 81.04 \text{ kPa}$			
	$P_{B2} = P_{-} p_{A2} = 101.3 - 10.13 = 91.17 \text{ kPa}$			
	$P_{BM} = (P_{B2}, P_{B1}) / ln (P_{B2}/P_{B1})$			
	$= (91.17 - 81.04) / \ln(91.17.81.04) = 86$	kPa		1
	NA = $1.81*10^{-5}$ (20.26-10.13) 101.3/8.314	51*298*0.002*86		
	$=4.358*10^{-5}$ kmol/(m ² .s)			1
6	Attempt any 2			16
6-a	Basis 1000 kg feed solution at 353K			

SUMMER-19 EXAMINATION **Model Answer**

1921

ct Title:	Mass Transfer Operation Subject	t code	17648	Page 25 of 27
	F=1000 kg. x_F =64.2/164.2=0.391			1
	Water in feed = $1000(1-0.391) = 609 \text{ kg}$			
	Water evaporated = $0.1*609 = 60.9$ kg			1
	Mol wt of MgSO ₄ =120, Mol wt of MgSO ₄ 7H ₂ O = 24	-6		1
	Solvent balance is			
	$F(1-x_F) = V+C8(126/246)+L$			1
	100 (1-0.391)=60.9+0.5122C+L			
	or L=609-60.9+0.5122C kg.			1
	MgSO ₄ balance			
	$MgSO_4$ in feed = $MgSO_4$ crystals + $MgSO_4$ in mothe	er liquor.		1
	0.391*1000=C(120/246)+[609-60.9+0.5122C] * solub	ility of N	aNO ₃	
	391 = 0.488C+[609-60.9+0.5122C]*0.408			1
	Or C=599.7 kg			
	Yield of MgSO ₄ crystals (C)=599.7 kg.			1
6-b	Basis: 100 kmol feed			
	$D=60, W=40 x_F=0.4$			1
	Plot 1/(y-x) vs x			1
	Ln(F/W) = ln(100/40) = 0.916			1
	From the graph measure the area under curve from x_{F}	=0.4 till ar	rea equals 0.9	916
	and the corresponding value of \boldsymbol{x} is noted as \boldsymbol{x}_W			2
	$\mathbf{x}_{\mathbf{W}} = 0.07$			
	$Fx_F = Dx_D = Wx_W$			1
	$100*0.4 = 60*x_{\rm D} + 40*0.07$			
	Solving the equation $\mathbf{x}_{\mathbf{D}} = 0.62$			1
	Composition of distillate = 62%			
	Composition of residue = 7%			1
6-c	Basis: Feed containing 40% benzene and 60% toluene	3		

ect Title: Mass Transfer Operation	Subject code	17648	Page 26 of 27
Molecular weight of benzene=78			· · · · · · · · · · · · · · · · · · ·
Molecular weight of toluene= 92			
Xf= mole fraction of benzene in the feed			
=(40/78)/(40/78+60/92)			
=0.44			
Similarly xd=(96/78)/(96/78+4/92)=0.9	66		1
Xw=(5/78)/(5/78+95/92)=0.058			
Relative volatility = α = 2.5			
With the help of relative volatility, gene	erate x-y data and plot	the equilibri	um
diagram.			
For generating x-y data assume			
$X=0,0.1,0.2,\ldots,1$ and find the correspondence of the corresponden	nding values of y from	the relation	1
$Y = \alpha x/(1+(\alpha-1)x)$			
Procedure for finding out the minimum re	eflux ratio		
q=1/3			
slope of feed line=- $(q/1-q)$ = -0.5			
Intercept on y axis=xf/(1-q) =0.66			1
Draw the feed line through the point (0.	.44,0.44) on the diagon	al with a slo	ope
equal to -0.5 or intercept equal to 0.66 w	which will cut the equil	ibrium curve	e at
point P. Through the point A(0.966,0.966	6) on the diagonal ,drav	w the operation	ing
line A-P of the rectification section (dot	ted line) and read y' and	nd x' on y a	ixis 1
and x axis respectively.			
Minimum reflux ratio $Rm = (x_D-y') / (y'-x)$	x')		
From graph y'=0.515, x'=0.3			
Rm= 2.1			
R=1.5Rm=1.5x 2.1=3.14			1
Operating line of rectification section:			

Subject Title: Mass Tr	cansfer Operation	Subject code	17648	Page 27 of 27
Point	A(0.966,0.966) on the diagonal.			
The in	The intercept of the rectifying section of operating line is = $x_D / R + 1$			1
		=0.966/3	8.14+1=0.232	2
From	From the graph the theoretical stages required including reboiler = $n=10$.			1
Numł	ber of stages required in column=n-1=	10-1=9		1