

Model Answer

Subject Name: Environment Technology

Subject Code:

17646

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.	Answer	Marking Scheme
	N.		
1	Α	Attempt any THREE of the following	12
	а	Effect of air pollutant on human health	1 mark
		1) Sulfur dioxide (SO ₂)	each for
		i)SO2 is an irritant gas which can easily get oxidized to sulfur trioxide and in the presence of	any four
		water, these can form sulfurous and sulfuric acid	
		ii) The health problems related to the mucous membrane and respiratory tract are due to	
		sulfate aerosols.	
		iii) Chronic effects of SO2 include increased probabilities of bronchitis, "colds" of long	
		duration and suppression of immune system.	
		2) Hydrocarbons	
		iv) The health effects of hydrocarbons have been noted in occupational exposures to tetra	
		methyl lead, benzene, etc.	
		v) Inhaling formaldehyde can cause irritation.	
		vi) It is a major contributor to eye and respiratory irritation caused by photochemical smog.	
		3) Carbon monoxide	
		vii) Carbon monoxide has a great affinity for the hemoglobin in the blood and combines with	

Model Answer

Subject Name: Environment Technology

	blood to form carboxyhemoglobin. This reduces the ability of hemoglobin to carry oxygen to	
	the body tissues.	
	4) Oxide of Nitrogen	
	viii) NO reduces the oxygen carrying capacity of blood.	
b	BOD	1 mark
	It is the amount of oxygen required to degrade organic waste present in water by purely	each
	biological means.	
	COD	
	It is the amount of oxygen required to degrade organic waste present in water by purely	
	chemical means.	
	DO	
	It is the amount of oxygen that is present in the water. It is measured in milligrams per liter	
	(mg/L), or the number of milligrams of oxygen dissolved in a liter of water.	
	TDS	
	It is a measure of the combined content of all inorganic and organic substances contained in	
	a liquid in molecular, ionized or micro-granular (colloidal sol) suspended form.	
c	Pollutants from fertilizer plant (any four)	1 mark
	Oil and grease	each for
	Ammonia	any four
	• Fluorides	
	• Phosphate	
	• NaOH	
	• Urea	
	Ammonium nitrate	
	• Methanol	
	Carbon dioxide	
	Carbon monoxide	
	• Nitrogen oxide	

Model Answer

Subject Name: Environment Technology

	d	Type of material present in Biomedical Waste	1 mark
		General waste	each for
		• Sharps	any four
		Culture and stocks of infectious agents and associated biological	
		Bulk human blood and blood products	
		Pathological wastes	
		Isolation wastes	
		Animal wastes	
		Radio-active wastes	
		Chemical waste	
		Containers	
		Pharmaceuticals	
1	B	Attempt any ONE of the following	6
	a	High Volume Sampler	
		SECTION 2 CYCLONE SAMPLE BOTTLE	2
		Construction	2
		High volume sample consists of blower which sucks air from outside. Cyclone separator is	
		attached to inlet for separation of solid particles entering into sampler. Filter paper is placed	
		at inlet and it tightened with gasket. Speed of blower can be adjusted and pressure difference	
		can be measured with u-tube manometer placed inside assembly.	

Model Answer

Subject Name: Environment Technology

	Working	
	The sampler uses a continuous duty blower to suck in an air stream. When fitted with a	
	particle size classifier, it separates particles greater than 10µm size from the air stream. The	
	air stream is then passed through a filter paper to collect particles lesser than 10µm size	3
	(PM10). Gravimetric measurements yield values of suspended particulate matter (SPM), as	
	the sum of the two fractions, and PM 10, the material retained on the filter paper. The	
	sampler can also be used to sample gaseous pollutants. A stream of unfiltered air is bubbled	
	through a reagent, which either reacts chemically with the gas of interest or into which the	
	gas is dissolved. Wet chemical techniques are then used to measure the concentration of the	
	gas.	
	Application	1
	Measurement of concentration of particulate matter in air .	1
b	3R principle	3
	Reuse: In today's world use and through materials is increasing and hence solid waste.	
	Instead of throwing that material or item if it is used again, energy and environment can be	
	saved. Solid waste generation also will be reduced. In industry various boxes, cans, pallets	
	etc are used for material handling. These can be used again for same purpose.	
	e.g. Catalyst drums can be used again to fill catalyst.	
	Recycle : Recycling is a process to change materials (waste) into new products to prevent	
	waste of potentially useful materials, reduce the consumption of fresh raw materials, reduce	
	energy usage, reduce air pollution (from incineration) and water pollution (from landfilling)	
	by reducing the need for "conventional" waste disposal, and lower greenhouse gas emissions	
	as compared to plastic production. Recycling is a key component of modern waste reduction	
	and is the third component of the "Reduce, Reuse, and Recycle" waste hierarchy. Recyclable	
	materials include many kinds of glass, paper, metal, plastic, textiles, and electronics. In the	
	strictest sense, recycling of a material would produce a fresh supply of the same material-for	
	example, used office paper would be converted into new office paper, or used foamed	
	polystyrene into new polystyrene.	
	e.g. Plastic water bottles can be recycled to get plastic again.	

Model Answer

Subject Name: Environment Technology

		Reduce: When you avoid making garbage in the first place, you don't have to worry about	
		disposing of waste or recycling it later. Changing your habits is the key - think about ways	
		you can reduce your waste when you shop, work and play. There's a ton of ways for you to	
		reduce waste, save yourself some time and money, and be good to the Earth at the same	
		time. Buy products in bulk. Larger, economy-size products or ones in concentrated form use	
		less packaging and usually cost less per ounce.	
		e.g. Unnecessary use of plastic and paper can be avoided in packing.	
		Application in Chemical industry	
		Reduction in waste generation.	
		Reduction in catalyst loss.	3
		Reduction in energy consumption.	
		Reduction in flue gas.	
		Reduction in loss of cooling water, steam and compressed air.	
		Recycling of treated waste water.	
		Recycling of unreacted raw material which otherwise send to flare.	
		Reuse of containers used for material or catalyst.	
		Reuse of catalyst.	
2		Attempt any four of the following	16
	a	Sources of air pollution (any four)	2
		1. Industries	
		2. Transportation	
		3. Burning of fossil fuel and fires	
		4. Agricultural activities	
		5. Solid waste disposal	
		6. Construction activities	
		7. Deforestation	
		Pollutants (any four)	
		1. Dust	2
		2. Mist	
	1		

Model Answer

Subject Name: Environment Technology

	3.	Smoke	
	4.	Carbon dioxide	
	5.	Sulfur dioxide	
	6.	Carbon monoxide	
	7.	Nitrogen oxide	
	8.	Methane	
b	Role o	of pollution control board	1 mark
	1)	Advise the Government on any matter concerning prevention and control of water	each for
		and air pollution and improvement of the quality of air;	any four
	2)	Plan and cause to be executed a nation-wide programme for the prevention, control	
		or abatement of water and air pollution;	
	3)	Plan and organise training of persons engaged in programmes for prevention, control	
		or abatement of water and air pollution;	
	4)	Organise through mass media, a comprehensive mass awareness programme on	
		prevention, control or abatement of water and air pollution;	
	5)	Collect, compile and publish technical and statistical data relating to water and air	
		pollution and the measures devised for their effective prevention, control and	
		abatement;	
	6)	Prepare manuals, codes and guidelines relating to treatment and disposal of sewage	
		and trade effluents as well as for stack gas cleaning devises, stacks and ducts;	
	7)	Disseminate information in respect of matters relating to water and air pollution and	
		their prevention and control;	
	8)	Lay down, modify or annul, in consultation with the State Government concerned,	
		the standards for stream or well, and lay down standards for quality of air;	
	9)	Establish or recognize laboratories to enable the Board to perform;	
	10)	To issue directions to any industry, local bodies, or other authority for violation of	
		the notified general emission and effluent standards, and rules relating to hazardous	
		waste, bio-medical waste, hazardous chemicals, industrial solid waste, municipal	
		solid waste including plastic waste under the Environment (Protection) Rules, 1986.	
			1

SUMMER- 19 EXAMINATION Model Answer

Subject Name: Environment Technology

с	Working of bar screen		2
	A bar screen is a mech	anical filter used to remove large objects, such as rags and plastics,	
	from wastewater. It is	part of the primary filtration flow and typically is the first, or	
	preliminary, level of file	tration, being installed at the influent to a wastewater treatment plant.	
	They typically consist o	f a series of vertical steel bars spaced between 1 and 3 inches apart.	
	Bar screens come in n	nany designs. Some employ automatic cleaning mechanisms using	
	electric motors and chai	ins, some must be cleaned manually by means of a heavy rake. Items	
	removed from the influe	ent are called screenings and are collected in dumpsters and disposed	
	of in landfills. As a bar	screen collects objects, the water level will rise, and so they must be	
	cleared regularly to prev	vent overflow.	
	Inlet	Parallel bars Trough Head loss Outlet Trough	2
	Classification of dome	atio golid wasta	
d			
	Types Food wastes	Example of sources	
	roou wastes	Animal, fruits and vegetable residues resulting from the	4
		handling and preparation, cooking and eating of foods	
	Rubbish	1. Combustible papers, plastics, leather, cardboard,	
		wood, rubber etc. 2. Non-combustible glass, aluminum	

Model Answer

Subject Name: Environment Technology

		cans crockery, tin cans, dirt, and construction wastes.	
	Ashes and residue	Material remaining from the burning of wood, coal,	
		and coke and other combustible wastes in homes,	
	Demolition and construction	Wastes from construction, remolding, repairing of	
	waste	residential, commercial and industrial buildings	
6	e Business Benefits of ISO14000		1 mark
	1. Efficiency, discipline and ope	rational integration with ISO 9000	each for
	2. Greater employee involvement	t in business operations with a more motivated workforce	any four
	3. Easier to obtain operational pe	ermits and authorizations	
	4. Assists in developing and tran	sferring technology within the company	
	5. Helps reduce pollution		
	6. Fewer operating costs		
	7. Savings from safer workplace	conditions	
	8. Reduction of costs associate	d with emissions, discharges, waste handling, transport &	
	disposal		
	9. Improvements in the product	as a result of process changes	
	10. Safer products		
	11. Minimizes hazardous and no	n-hazardous waste	
	12. Conserves natural resources	- electricity, gas, space and water with resultant cost savings	
t	f Grab sampling		1 mark
	Grab samples consist of either a	single discrete sample or individual samples collected over a	each
	period of time not to exceed 15	5 minutes. The grab sample should be representative of the	
	wastewater conditions at the tim	e of sample collection.	
	Freeze out Sampling		
	In freeze out sampling a series	of cold traps, which are maintained at progressively lower	
		the air sample, whereby the pollutants are condensed. The	
	-	bry, the samples are removed and analyses by means of gas	
		traviolet, spectrophotometer, and mass spectrometry or by	
	wet chemical means.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Model Answer

Subject Name: Environment Technology

		Absorption			
		In this method desired pollutant can be separated from gas stream by using satiable solvent.			
		Absorbed gas is then separated and analyzed.			
		Adsorption			
		In this method desired pollutant gas is adsorbed on suitable adsorbent. Gas is desorbed and			
		analyzed in laboratory.			
3		Attempt any FOUR of the following	16		
	a	Bag Filter			
		Advantages	2		
		• Very high efficiency			
		Retention of fine particles			
		• Low pressure drop			
		• Collection of particle in dry form			
		Disadvantages	1		
		• Required large space			
		High construction cost			
		• Operation temperature of gas below 285 °C			
		Application	1		
		Power plants, steel mills, pharmaceutical producers, food industry, chemical industry			
	b	Working of Gas absorber for pollution control			
		Gas absorption is commonly conducted in equipment which is designed to provide intimate			
		contact between the two phases. The contact between gas and liquid can be accomplished by			
		dispersing the liquid in the gas or vice versa. Some of the commonly used absorbers in			
		pollution control are Packed towers, plate and spray towers and venturi scrubbers.	4		
		Packed towers are very efficient absorption devices involving a continuous contact of two			
		phases. These use a variety of packing materials ranging from specially designed ceramic			
		packing to crushed rock. The liquid is distributed over the packing, which provides high			
		interfacial surface area and flow down the packing surface in the form of thin film or			

Model Answer

Subject Name: Environment Technology

	subdivided streams. Normally the liquid and gas flow counter current to each other, the gas	
	flowing upward and the liquid flowing downward. The use of packed towers is limited to	
	clean gases, as any precipitate or slurry will cause plugging of packing.	
	OR	
	Explanation of working any one type of gas absorber may given 04 marks.	
c	Trickling filter	4
	sprinkler filter fied pipe filter support collection	
d	Electrostatic Precipitator	2
	Working: The most basic precipitator contains a row of thin vertical wires, and followed by	
	a stack of large flat metal plates oriented vertically, with the plates typically spaced about 1	
	cm to 18 cm apart, depending on the application. In cylindrical design a wire is hanged with	
	weight inside a cylinder.	
	The air or gas stream flows horizontally through the spaces between the wires, and then	
	passes through the stack of plates. A negative voltage of several thousand volts is applied	
	between wire and plate. If the applied voltage is high enough an electric (corona) discharge	
	ionizes the gas around the electrodes. Negative ions flow to the plates and charge the gas	
	flow particles. The ionized particles, following the negative electric field created by the	
	power supply, move to the grounded plates.	

Model Answer

Subject Name: Environment Technology

Subject Code:

17646

Model Answer

Subject Name: Environment Technology

		waste water Air (O ₂) H ₂ O H ₂ O H ₂ O Ffluent Sludge separation New biomass Solids Returned Activated Sludge (RAS) Waste sludge	2
	f	Sludge Thickening Process	4
		The sludge thickening involves removal of water from the sludge and reduces sludge volume	
		as much as possible so that the sludge can be handled more efficiently. The common method	
		for thickening is gravity settling.	
		Working of gravity thickener	
		In gravity thickener the sludge is subjected to gentle agitation by means of a slow stirrer	
		which enhances settling. The stirring action serves to release trapped water and gases from	
		the sludge, allowing it to become denser or thicker. The thickened underflow of sludge is	
		withdrawn from the bottom of the tank; the effluent or supernatant overflows a weir and is	
		pumped back to the inlet of the treatment plant. In this manner the combined sludge from	
4		primary and secondary settlers can be thickened so as to contain 5-9% solids	10
4	A	Attempt any THREE of the following	12
	а	Physical Characteristics of waste water(any 4)	¹∕₂ mark each
		• Temperature	euen
		• Odor	
		• Color	
		Total dissolved solids	
		• Turbidity	
		Chemical Characteristics of waste water (any 4)	¹∕₂ mark
		Chemical oxygen demand(COD)	each
		• pH	
		Acidity or alkalinity	

Model Answer

Subject Name: Environment Technology

	• Hardness	
	• Total carbon	
	Chlorine demand	
b	Sources of water pollution:(any 4)	
	 Oxygen demanding waste: Organic waste from industry, sewage from domestic waste, food industry waste, distillery. Disease causing waste : Pathogens from domestic waste Synthetic organic compounds: Industrial waste from petrochemical Plant. Plant nutrients: Fertilizer from farms. Inorganic chemicals: Waste from fertilizer, acid and chloro alkali Industry. Thermal discharge: condenser water from thermal power plant. Oil: oil from industrial equipment, crude oil tankers. 	¹∕2 mark each
	MPCB - Maharashtra Pollution Control Board WHO - World Health Organization	1
 c	Cyclone separator	2
	Dush Din Din	
	Cyclone separator is used in (any two)	2
	• cement dust in Cement industry to control cement dust	

Model Answer

Subject Name: Environment Technology

	different pressures. Therefore the vapor from one evaporator body can be the steam supply	
	evaporators. These evaporators remove the bulk of the water by operating in series while at	
	vicinity of 60-80% solids. The most common way of doing this is via multiple-effect	
	recovery boiler, the black liquor solids content must be increased to somewhere in the	
	order to maximize the burning efficiency and get out as much energy as possible from the	
	The black liquor that comes out of the pulping sequence is approximately 10-15% solids. In	
a	Recovery of Chemicals from Black liquor	6
B	Attempt any ONE of the following	6
P	feedback from the follow up action is provided for the next audit.	-
	comments based on which the final report is prepared, and action plan is evolved. The	
	Post Audit Activities: In the post audit phase, the draft report is circulated for review and	
	findings are discussed with the management.	
	as necessary, relevant records are reviewed, various persons are interviewed and tentative	
	interact throughout, a thorough inspection is made in the field, sampling and tests are made	
	On site Audit Activities: In the on site phase, it is ensured the audit team and interact staff	
	objectives and scope of environmental audit and preparation of a background note.	
	team, setting out of terms of reference and priorities, making all concerned aware of the	
	Pre Audit Activities: The activities in the pre audit phase cover the nomination of the audit	
	post-audit phases.	
	Environmental Audit procedure involve following activities viz., the pre-audit, at site and	
	inspection of facilities and post-visit activities.	
	pre audit preparation, a site visit normally involving interviews with personnel and	
	conclusions, including identification of aspects needing improvement. These phases cover	
	collection of information, evaluation of information collected and formulation of	
	The general approach followed for environmental audit overs three main phases, namely	
d	Environment Audit Procedure	4
	• In metallurgical industry to control metal dust	
	• Power plant to control ash	

SUMMER-19 EXAMINATION Model Answer

Subject Name: Environment Technology

	for the next unit. In this approach the original feed steam performs the final concentration	
	and the vapor becomes the steam for the next less-concentrated evaporator (i.e.,	
	countercurrent operation). The recovery furnace smelt is dissolved in water to form the green	
	liquor. The green liquor is clarified (filtered) to remove insolubles (dregs) and reacted with	
	lime (CaO) to form the white liquor. The white liquor is then clarified to remove the	
	precipitated lime mud (CaCO ₃). At this point the white liquor can be submitted to the	
	digester for chip delignification. The lime mud is reburned to form CaO in the lime kiln, and	
	the material can be used again in converting the NaCO ₃ to NaOH.	
b	Importance of Environment Management in Chemical Industry	6
	Environmental issues are commanding considerable attention internationally. Climate	
	change, water availability, pollution and waste generation and disposal are among the	
	leading challenges in this regard. As a major user of raw materials and energy, and a major	
	source of pollutants and waste, industry is an important player. Growth of industrial	
	processing, guided mostly by the necessity of increasing productivity, has led to serious	
	environmental degradation of water resources, soil and air around these plants. A proper	
	Environment management plan in chemical industry can	
	i) It helps in assessing whether the existing environmental practices being followed are	
	satisfactory and whether the environmental protection regulations are compiled with.	
	ii) It provides an opportunity for comprehensive review of environmental policies,	
	management systems, organizations and practices and to assess whether introduction of new	
	innovative practices are necessary to comply with the stringent regulations from time to	
	time.	
	iii) It protects against possible penalties or regulatory risk.	
	iv) It contributes its modest share towards sustainable development and gives due credit for	
	environmental management.	
	v) It provides an up to date environmental data base which may be useful in emergencies and	
	also while making decision on plant modifications.	
	Example (any one)	
	Reduction of pollution can be achieved through improvements in process chemistry, reaction	
	· · · · · · · · · · · · · · · · · · ·	

SUMMER- 19 EXAMINATION Model Answer

Subject Name: Environment Technology

		kinetics, stoichiometry, conversion and yields. Similar approaches also include using	
		different physical forms of catalysts, using water instead of volatile organic compounds	
		(VOCs) in paints and coatings, using oxygen instead of air in oxidation reactions and thus	
		preventing side reactions, using pigments and fluxes free of heavy metals and so on.	
		Extensive hazard and risk analysis using techniques such as hazard operability (HAZOP)	
		Studies and quantitative risk assessment (QRA) are conducted based on which safe systems,	
		work practices and risk reduction measures are adopted for processing facilities.	
		Environment management plans of the production units are capable of mitigating the risk	
		from most expected crisis situations barring those from nightmare incidents such as	
		earthquakes, sabotage, etc.	
5		Attempt any FOUR of the following	16
	а	Thermal incinerator	2
		A thermal incinerator is a process unit for air pollution control in many chemical plants that	
		decomposes hazardous gases at a high temperature and releases them into the atmosphere.	
		They typically used to destroy hazardous air pollutants (HAPs) and volatile organic	
		compounds (VOCs) from industrial air streams. These pollutants are generally hydrocarbon	
		based and when destroyed via thermal combustion they are chemically oxidized to form CO_2	
		and H_2O . Three main factors in designing the effective thermal oxidizers are temperature,	
		residence time, and turbulence. The temperature needs to be high enough to ignite the waste	
		gas. A polluted stream with hazardous gases is preheated and then introduced into a firing	
		box through or near the burner and enough residence time is provided to get the desired	
		destruction removal efficiency (DRE) of the VOCs. Most direct-fired thermal oxidizers	
		operate at temperature levels between 980 °C (1,800 °F) and 1,200 °C (2,190 °F) with air	
		flow rates of 0.24 to 24 standard cubic meters per second.	
		now rates of 0.24 to 24 standard cubic meters per second.	

Model Answer

Subject Name: Environment Technology

SUMMER-19 EXAMINATION Model Answer

Subject Name: Environment Technology

	the microwave section and temperature holding section, respectively for disinfection. The	
	outlet of the temperature holding section protrudes near the back end of the unit and is	
	designed to transport the disinfected waste into waste disposal containers (or compaction	
	units). From there the material can be transported to a local municipal landfill for disposal or	
	to a refuse recycling plant or wherever ordinary household solid waste is disposed.	
	Incineration	
	Incineration destroys harmful microorganisms and toxic substances often contained in	
	biomedical waste. It is also the method for destroying recognizable human anatomical	
	remains at very high temperature using fuel. The disadvantage of this method is that it	
	releases persistent pollutants to the air, including dioxin and toxic metals such as mercury.	
	Medical waste incinerators are a major contributor of dioxin pollution to the environment	
c	Sanitary landfill method	4
	In sanitary landfill operation, refuse is spread and compacted in this layers within a small	
	area. This layered structure is usually referred to as a cell. To allow for proper compaction,	
	the cell depth should not exceed about 2 meters. The cell is then covered with a layer of soil	
	which is spread uniformly and then compacted. To provide as adequate seal the 'cover'	
	should normally be at least 20 cm thick. If the refuse includes large irregular objects it may	
	be necessary to increase the thickness of the cover. On the other hand , a cover thickness of	
	less than 15 cm may be satisfactory if the refuse has been pulverized. When a number of	
	cells reach the final desired elevation, a final cover of about one meters of earth is placed and	
	it is again compacted. This final cover is necessary to prevent rodents from burrowing into	
	the refuse. The following figure is shows the cross-sectional area of a typical sanitary	
	landfill.	
1		

Model Answer

Subject Name: Environment Technology

c Need of ISO14001 1 mark i) Brivinomental improvements ach for ii) Regulatory compliance any four iii) Ingrovement & cost saving orgonetitive advantage vi) Opening of international market & partners any four viii) An ethical or social commitment 2 d Significance of BOD and COD 2 g Significance of BOD and COD 2 expression Doinging of international market & partners any four viii) An ethical or social commitment any four viii) An ethical or social commitment 2 expression Significance of BOD and COD 2 g Significance of BOD and COD 2 g Significance of BOD and COD 2 g Significance of BOD and Significance of organic equired to degrade organic waste present in water by purely biological means. any roter ins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable any roter ins. BOD also helps determine the quantum of organic waste present in water by purely chemical means. COD: - It is the amount of oxygen required to degrade organic waste present in water by purely ch	·		
i) Environmental improvementseach for any fourii) Regulatory complianceeach for any fouriii) Improvement of corporate imageiv) Cost containment & cost saving v) Competitive advantage vi) Opening of international market & partners vii) Improvement in employee awareness about environment viii) An ethical or social commitment2cSignificance of BOD and COD2BOD: - It is the amount of oxygen required to degrade organic waste present in water by purely biological means. The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bio- organic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable COD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It2		Working face Bull dozer Bull dozer Intermediate cover	
i) Regulatory complianceany fourii) Improvement of corporate imageiv) Cost containment & cost savingv) Cost containment & cost savingv) Competitive advantagevi) Opening of international market & partnersvii) Improvement in employee awareness about environmentviii) An ethical or social commitment2eSignificance of BOD and COD2BOD: - It is the amount of oxygen required to degrade organic waste present in water by purely biological means.2The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bio- organic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable2COD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means.2	d	Need of ISO14001	1 mark
iii) Improvement of corporate image iii) Cost containment & cost saving iii) Cost containment & cost saving v) Competitive advantage vi) Opening of international market & partners vii) Improvement in employee awareness about environment viii) An ethical or social commitment viii) An ethical or social commitment 2 e Significance of BOD and COD 2 BOD: - It is the amount of oxygen required to degrade organic waste present in water by purely biological means. 2 The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bioorganic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable 2 COD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. 2		i) Environmental improvements	each for
 iv) Cost containment & cost saving v) Competitive advantage vi) Opening of international market & partners vii) Improvement in employee awareness about environment viii) An ethical or social commitment e Significance of BOD and COD BOD: - It is the amount of oxygen required to degrade organic waste present in water by purely biological means. The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bioorganic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable COD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It 		ii) Regulatory compliance	any four
v) Competitive advantage v) Opening of international market & partners vii) Opening of international market & partners vii) Improvement in employee awareness about environment viii) An ethical or social commitment viii) An ethical or social commitment viii) An ethical or social commitment 2 BOD: - It is the amount of oxygen required to degrade organic waste present in water by purely biological means. 2 The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bioorganic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable 2 COD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. 2		iii) Improvement of corporate image	
vi) Opening of international market & partners vii)Improvement in employee awareness about environment viii) An ethical or social commitment 2 e Significance of BOD and COD 2 BOD: - It is the amount of oxygen required to degrade organic waste present in water by purely biological means. 2 The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bioorganic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable 2 COD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. 2		iv) Cost containment & cost saving	
vii) Improvement in employee awareness about environment viii) An ethical or social commitment e Significance of BOD and COD 2 BOD: - It is the amount of oxygen required to degrade organic waste present in water by purely biological means. 2 The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bio-organic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable 2 COD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. 2		v) Competitive advantage	
viii) An ethical or social commitment 2 e Significance of BOD and COD 2 BOD: - It is the amount of oxygen required to degrade organic waste present in water by purely biological means. 2 The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bioorganic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable 2 COD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. 2 COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It 2		vi) Opening of international market & partners	
e Significance of BOD and COD 2 BOD: - It is the amount of oxygen required to degrade organic waste present in water by purely biological means. 2 The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bio-organic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable 2 COD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. 2 COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It 2		vii)Improvement in employee awareness about environment	
 BOD: - It is the amount of oxygen required to degrade organic waste present in water by purely biological means. The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bioorganic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable COD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It 		viii) An ethical or social commitment	
purely biological means.The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bio- organic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradableCOD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means.2COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It2	e	Significance of BOD and COD	2
The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bio- organic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable COD : - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It		BOD: - It is the amount of oxygen required to degrade organic waste present in water by	
organic substances in wastewater. These can be in the form of fat, oils, carbohydrates and proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable COD : - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It		purely biological means.	
proteins. BOD also helps determine the quantum of organic chemicals contained in wastewater that are synthetic and biodegradable COD : - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It		The biological oxygen demand, ie, BOD in wastewater, is a measure of the quantity of bio-	
 wastewater that are synthetic and biodegradable COD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It 		organic substances in wastewater. These can be in the form of fat, oils, carbohydrates and	
COD: - It is the amount of oxygen required to degrade organic waste present in water by purely chemical means. 2 COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It 2		proteins. BOD also helps determine the quantum of organic chemicals contained in	
purely chemical means. COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It		wastewater that are synthetic and biodegradable	
purely chemical means. COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It		COD : - It is the amount of oxygen required to degrade organic waste present in water by	2
		purely chemical means.	2
is quick method to determine strength of waste in water. Strength of waste waster can be		COD can help gauge the quantum of both biodegradable and non-biodegradable organics. It	
		is quick method to determine strength of waste in water. Strength of waste waster can be	

Model Answer

Subject Name: Environment Technology

		finding out by knowing COD value.				
	f	Methods used for Wastewater samplings	2			
		Grab sampling Grab samples consist of either a single discrete sample or individual				
	Grab sampling Grab samples consist of either a single discrete sample or individual samples collected over a period of time not to exceed 15 minutes. The grab sample should be representative of the wastewater conditions at the time of sample collection. The sample volume depends on the type and number of analyses to be performed. This involves manual sampling and minimal equipment but may be unduly costly and time-consuming for routine or large-scale sampling programs. As the name implies 'Grab samples' are simple scoops of the wastewater being sampled and are appropriate where conditions are constant or well mixed and slow to change. This type of sample can be used for instance for Balance Tank sampling or measuring sludge solids in the aeration basin (MLSS). Care should always be taken that a grab sample is representative of the whole, and should be taken from well-mixed areas on all occasions.Composite sampling collected in a common container over the sampling period. The analysis of this material, collected over a period of time, will therefore represent the average performance of a wastewater treatment plant during the collection period.When wastewater flow and composition are relatively uniform grab samples of a fixed volume can be manually taken at given time intervals and composite sample obtained. If the flow rate varies the volume of the grab sample collected is proportional to the flow.					
		representative of the wastewater conditions at the time of sample collection. The sample				
		volume depends on the type and number of analyses to be performed. This involves manual				
		sampling and minimal equipment but may be unduly costly and time-consuming for routine				
		or large-scale sampling programs. As the name implies 'Grab samples' are simple scoops of				
		the wastewater being sampled and are appropriate where conditions are constant or well				
		mixed and slow to change. This type of sample can be used for instance for Balance Tank				
		sampling or measuring sludge solids in the aeration basin (MLSS). Care should always be				
		taken that a grab sample is representative of the whole, and should be taken from well-mixed				
		areas on all occasions.				
		Composite sampling consists of a collection of numerous individual discrete samples taken				
		at regular intervals over a period of time, usually 24 hours. The material being sampled is	2			
		collected in a common container over the sampling period. The analysis of this material,				
		collected over a period of time, will therefore represent the average performance of a				
		wastewater treatment plant during the collection period.				
		When wastewater flow and composition are relatively uniform grab samples of a fixed				
		volume can be manually taken at given time intervals and composite sample obtained. If the				
		flow rate varies the volume of the grab sample collected is proportional to the flow.				
6		Attempt any FOUR of the following	16			
	a	Working of fabric filter	4			
		Dust-laden gas or air enters the fabric filter through hoppers (large funnel-shaped containers				
		used for storing and dispensing particulate) and is directed into the fabric filter compartment.				
		The gas is drawn through the bags, either on the inside or the outside depending on cleaning				
		method, and a layer of dust accumulates on the filter media surface until air can no longer				
		move through it. When sufficient pressure drop (delta P) occurs, the cleaning process of bag				
		begins. Cleaning can take place while the fabric filter is online (filtering) or is offline (in				
		1				

Model Answer

Subject Name: Environment Technology

Model Answer

Subject Name: Environment Technology

				1				
			µg/m ³					
		7	Carbon	8	02	02		
			monoxide	hours**	04	04		
			mg/m ³	1 hour**				
	с	Trickling f	filter			· · · ·	4	
		A trickling	g filter is used	for treatme	ent of waste water. It c	onsists of a bed of highly		
		permeable media on whose surface a mixed population of microorganisms is developed as a slime layer. Passage of wastewater through the filter causes the development of a gelatinous						
		coating of l	bacteria, protozo	a and other	organisms on the media	With time, the thickness of		
		the slime l	ayer increases p	preventing of	oxygen from penetrating	the full depth of the slime		
		layer. In the	e absence of oxy	gen, anaero	bic decomposition becom	nes active near the surface of		
		the media.	Parts of trickling	filter are				
		Sprinkler :	To sprinkle wast	te water on f	filter			
		Filter: To h	old biological sl	ime				
		Feed pipe : Inlet for waste water Filter support: To hold filter media Effluent channel: to take out treated waste water sprinkler filter filter support collection filter support collection						
	d Pollution control in fertilizer plant						4 marks for any one	
		Air						
		Main emissions sources from the production of fertiliser are continuous process vents from						
the synthesis section containing ammonia, and waste gases from solid formation (prilling						n solid formation (prilling or		
		granulation) containing am	monia and o	dust (solid urea particles)	. Ammonia emissions result		

SUMMER-19 EXAMINATION Model Answer

Subject Name: Environment Technology

Subject Code: 17646

from the decomposition of urea during solid formation. Off-gases from prilling towers contain significant amounts of dust. The ratio of particles with a size below 10 μ m is typically rather high in off-gases of prilling towers.

Conventional absorption equipment is used for removing ammonia emissions from continuous process vents. Off-gases from solid formation processes are treated by wet scrubbing techniques, in order to reduce ammonia and dust emissions. Process condensate arising from the evaporation of urea solution is usually used for scrubbing liquor. An acidic washing solution can be used for scrubbing liquor, in order to increase the efficiency for NH3 removal. In that case the scrubbing solution cannot be recycled into the urea production process, due to the high content of ammonium nitrate. The scrubbing liquor can be recycled into fertiliser production processes if there is fertiliser production at the same site.

Liquid

Process condensate (about 300 kg H_2O/t urea) is the main source of waste water arising from fertilizer production. The major part of the condensate arises in the evaporation unit. The condensates contain large amounts of NH_3 , urea and CO_2 , which are recovered from the process condensate and recycled into the urea synthesis. Purified process condensate is sent to a waste water treatment plant or discharged into running waters.

Exhaust vapours from evaporation of the urea solution are washed before they are condensed. Ammonia is separated and recovered from the process water by distillation. By way of distillation, the ammonia concentration in the process condensate is reduced from 66 mg/l to 37 mg/l. Waste water is daily analyzed and discharged into the running water together with cooling water.

Sludge dewatering is accomplished by mechanical methods, the most common being е centrifugation and filtration, which includes pressure filtration and vacuum filtration. In centrifugation, conditioned sludge is added to a rotating bowl that separates the sludge into a cake and a dilute stream. The solid cake is transported within the bowl and is removed by a screw conveyor at one end of the bowl the liquid is removed at the opposite end. Centrifugation is a compact method which requires careful control of process variables.

Page 23 / 25

4

Model Answer

Subject Name: Environment Technology

17646

Model Answer

Subject Name: Environment Technology

