

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Operation and Control

Subject Code:

17643

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub O N	Answer	Marking Scheme		
	X		Seneme		
1.	(A)	Attempt any THREE:	12		
	(a)	State the importance of 'bus' in power system.	4M		
	Ans.	Importance of 'bus' in power system:			
		• In a power system Bus is a node or junction where two or more than two transmission lines are connected.	1M for		
		• Each bus or node is associated with four quantities -magnitude of voltage V, P, Q, and load angle $,\delta$,	each		
		• Bus data is required to study the performance & operation of power system network			
		• There are three types of buses classified in load flow analysis as			
		⁻ Slack bus or swing bus : In this bus voltage magnitude Vi and load angle δi are specified. This bus is the first to respond to changing load condition and is called as slack bus because it takes up slack in losses.			
		⁻ Generator/ voltage control bus : In this type of bus real power output Pgi and voltage magnitude Vi are specified. It means we specify the bus power Pi. The voltage of this types of bus can be controlled.			
		⁻ Load bus: for this type of bus we will have a prior knowledge of load power PLi and QLi. As these buses do not have any generator so PGi			

Subject	t: Pow	er System Operati	on and Co	ntrol	Subject Code:	17	643]
		and QGi (generate load bus.	ed power) an	re equal to	zero and therefore is know	'n as		
	(b)	List the data re	equired for	r load flo	w studies with reference	e to	4N	1
		transformers, tra	ansmission	lines, bus	ses and generator.			
1	Ans.	Following Data and	re required	for load fl	ow analysis:			
		1. Transformer	data: Typ	be of trai	nsformer such as distribu	ition		
		transformer / po	ower trans	former, a	uto-transformer, tap-chan	ging	Eac	ch
		transformer (on-l	ine or ff-lin	ne). Also	ratings, % impedance and	tap	data	<i>1M</i>
		setting points, tap	setting on	HV /LV /	both sides are required. (Q	Juite		
		often it may be n	ecessary to	adjust vo	oltages on one or both side	es of		
		the transformers	to maintair	the pote	ntial levels at the neighbo	ring		
		buses within spe	cified limit	ts. For ac	hieving this, auto and do	uble		
		winding transform	ners with pr	ovision fo	r tap changing on H. V. sid	le or		
		used so as to fa	acilitate sn	noother co	ontrol. For every transfor	mer		
		connected betwee	en buses i a	and k the	data to be given includes:	the		
		starting bus nun	nber <i>i</i> , end	ding bus	number k, resistance of	the		
		transformer, react	tance of the	e transforn	ner, and the off nominal tu	rns-		
		ratio.						
		2.Transmission	line data -	For ever	y transmission line conne	cted		
		between buses I	and k the	data inclu	des the starting bus numb	er i,		
		ending bus number	er <i>k</i> ,					
		- Line parameters	s – . <i>r</i> esistar	nce of the	line, reactance of the line	and		
		the half line char	ging admit	tance. Ser	ries impedance (z) in per u	unit,		
		shunt admittance	(Y) in per u	inits,				
		- Thermal limits of	of the line.					
		- Length of the lir	ne.					
		- Identification of	each line a	nd its "Π"	equivalent circuit.			
		3. Bus data: Dep	pending up	on no. of	buses in the system, bus	data		
		should be made a	vailable.					
		Type of bus	Bus	No of	For each Bus			
	data buses							
	Generator bus $P, (V)$ $PGi, V_i, minimum and$				ind			
	maximum reactive power					ver		
	limit (Qi,min, Qi,max).							
		Load bus	P, Q		active power demand PD	i,		
					and the reactive power			
					demand QDi.			
		Slack bus	V, δ		Generator ratings which is			

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject	t: Powe	er System Operati	on and Co	ntrol	Subject Code:	17643
					assume to be connected to slack bus	
		Voltage control bus	P Q V		Voltage control equipment used and its rating, max. & min. limits	ż
		4. Generator da system ready to g duration should minimum limits control details are	ata: No. o generate the be availabl of generati made avail	f generati required a le. Each g on, their lable	ng stations connected in mount of power and their t generators rating, maximus characteristics, and excitat	the ime m& tion
	(c)	Explain briefly t	the relation	between	real power and frequency	y of 4M
	Ans.	Real power is get the real power generating station apparatus such as is also accounted We know that ele energy is genera means rate of en consumption. We velocity of light.	enerated at g demand. In to load contransmission as real power octrical energy ted has to nergy generated also know	generating During t enters som on line, tra er loss. gy cannot be utilize ration mus that elect	station by generators to n ransmission of power fr he of the power in lost in unsformers & generators wh be stored .Whatever amoun d at the same moment .T st be equal to rate of po tricity is transmitted at alm	neet rom the nich t of 'hat wer nost
		Considering entir generating end to as Real power gener lost in the system $P_g = P_d + P_d$	e power sys load end, it rated = Real d i.e pow	tem when can be rep power den ver balance	real power flows from presented in equation form manded by load + Real pow equation.	'er
		Under normal ope synchronously an is being drawn by The losses in the Hence Pg ≈ Pd	erating cond d generate t all load plu he system	lition the s cogether th us the real are neglig	ystem generator run e power that at each momen transmission losses. ible compared to P_g and	nt P _d .
		Sins power syste	m 1s a not a	an ideal sy	stem, hence $Pg \neq Pd$. Then	rg

٦

Subject: Pov	ver System Operation and Control Subject Code: 17	643
	>Pd or Pg < Pd. If Pg >Pd, then excess amount of power is at input side of generator that means at output of turbine .This shows that more KE is available in turbine so it's speed increases. Since generator is coupled to turbine, generator speed also increases. Now we know that, f= PN/120 i.e. frequency of generated e.m.f. also increases. If Pg >Pd → Pg ↑→ (Gen. i/p =Turbine o/p)↑ → more KE in turbine → N _T ↑↑→ N _G ↑↑ → f= PN/120 hence - f↑	2M
	Vice-Versa ,if Pg <pd, If Pg <pd <math="">\rightarrow Pg \checkmark (Gen. i/p =Turbine o/p) \checkmark more KE in turbine $\rightarrow N_T \checkmark \checkmark \rightarrow N_G \checkmark \checkmark = PN/120$ hence- f\checkmark</pd></pd, 	2M
	This shows that, difference between Pg and Pd will enter into or exit from kinetic energy storage in prime mover. This kinetic energy varies the speed of the generator .Hence imbalance in real power is reflected in variation in speed i.e. variation of frequency of generated voltage.	
	Imbalance of real power arises due to sudden drop or rise in load demand or fault occurred or failure of generator. Say suddenly all the loads connected to the system are put off or failure of transformer / tr. Line then, Pg >>> Pd, Hence speed of the generator i.e frequency of the supply increases ,But due to over speed protective system will operate and generators are trip off	
	If generators are trip off, we cannot restore the supply immediately or instantly .Generator units in hydro power station require half an hour in restart generation .Thermal power station requires more, once the generator started they have to be connected in parallel. Load on the system has to be increased in discrete steps.	
(d)	State the need of load forecasting in power system operation.	4M
Ans.	Need of Load forecasting:	
	Load forecasting for power system operation is required	Any
	1. For proper planning, designing of new power system network or	four
	expansion of existing.	needs
	2. For varying generation of power with respect to time i.e. amount	IM each
	3. For determining the capacity of power generation and power flow through transmission lines and distribution lines.	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subj	ect: Pow	er Syste	em Operat	ion an	d Contr	ol	Subj	ect Code:	17643	I
		 4. Fo dis 5. Fo 6. Fo 7. Fo dis 8. Fo op 9. To coi 10. Fo 11. Fo 12. Fo 	r proper p stribution n r proper op r proper p nventional r deterministribution. r proper m eration of p decide p nsumers. r proper po r proper en r finding th	planni etworl beratio blannir or nor ing the an power power power tr bergy s he requ	ng of p a of pow n of pow ng of res conven cost of p ver devel system. tariff ansaction ales in el iirement	ower flo er systen sources f tional res power ge lopment o for diffe n between lectrical n of fuel in	ow through the in in instability for generation ources. neration, transfor training of meters utilities neighbouring market.	ransmission condition. of power mission and nanpower fo and differ g grid syster	i.e. l or rent m.	
1.	(B) (a)	Attem Develo	pt any ON op a Y ma	NE: trix fo	r the fol	lowing 3	bus system:		06 6M	Í
			Bus Code	Line I	mpedance P.u.)	Bus Code	Line charging admittance (P.u	.)		
			1 - 2	0.08	+ j0.32	1	j0.02			
			2 - 3	0.06	+ j0.082	2	j0.01			
			1 - 3	0.05	+ j0.06	3	j0.03			
	Ans.	Y bus Bus code	matrix for Impeda Z (pu	r givei ince 1)	Admita pu(Y)	tance = Z ⁻¹	Line char admittanc	rging e(pu)		
		1-2	0.08 +j	0.32	0.73 -	j2.94	j 0.02			
		2-3	0.06 +j 0	0.082	5.871-	j7.94	i 0.01		1/2M	1
		1-3	0.05 +j	0.06	8.197-	j9.84	j 0.03	}		
		Line admir Bus-2 Bus-2	charging ttance of 1 - 2 - 3 -	in(1 y ₁₁ y ₂₂ y ₃₃	= j0.02/2 + j $= j0.02/2 + j0$ $= j0.01/2 + j0$	0.03/2 = j0.0 .01 /2= j0.01 .03/2 = j0,02	25		1M	ſ

Subj	ject: Powe	er System Operation and Control Subject Co	ode: 17643	
		Calculation of diagonal elements: $Y_{11} = y_{11} + y_{12} + y_{13}$		2M
		=(j0.025) + (0.73 – j2.94) + (8.197 – j9.84)		
		= 8.927 – j12.755 pu		
		$\mathbf{Y}_{22} = \mathbf{y}_{21} + \mathbf{y}_{22} + \mathbf{y}_{23}$		
		=(0.73 - j2.94) + (j0.015) + (j5.811 - j7.94)		
		= 6.541 – j10.865 pu		
		$\mathbf{Y}_{33} = \mathbf{y}_{31} + \mathbf{y}_{32} + \mathbf{y}_{33}$		
		=(8.197 – j9.84) + (5.811- j7.94) + (j0.02)		
		= 14.00 – j17.76 pu		
		Calculation of off-diagonal elements:		2 <i>M</i>
		$Y_{12} = y_{21} = -y_{12} = -y_{21} = -(0.73 - j2.94)$ pu		
		$Y_{13} = y_{31} = -y_{13} = -y_{31} = -(8.197 - j9.84)$ pu		
		$Y_{23} = y_{32} = -y_{23} = -y_{32} = -(5.871 - j7.94) \text{ pu}$		
		\therefore Y _{bus} matrix		
		$\begin{vmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{vmatrix} =$	Į	′2 M
		$ \begin{vmatrix} 8.927 - j12.755 & -(0.73 - j2.94) & -(8.197 - j9) \\ -(0.73 - j2.94) & (6.541 - j10.865) & -(5.871 - j7) \\ -(8.197 - j9.54) & -(5.871 - j7.94) & -(14.00 - j17) \end{vmatrix} $.84) .94) 7.76)	
	(b)	For a simple two bus power system, derive the equation		6M

Subj	ject: Powe	er System Operation and Control Subject Code: 17	7643		
		By applying KCL at bus $-I$, we get $I_1 = V_1 Y + (V_1 - V_2) Y$ We get	1M		
		$I_{1} = S_{1}^{*}/V_{1}^{*} = V_{1} Y + (V_{1}-V_{2}) Y' - \dots (1)$ $I_{2} = S_{2}^{*}/V_{2}^{*} = V_{2} Y + (V_{2}-V_{1}) Y' - \dots (2)$ The above two = o.s. can be simplified as $I_{1} = V_{1} (Y + Y') - Y' V_{2} - \dots (3)$ $I_{2} = -Y_{1}Y' + (Y + Y') V_{2} - \dots (3)$ Let $Y + Y' = Y_{11} = Y_{22}$ $-Y = Y_{12} = Y_{21}$ Substituting in above equn, we get $I_{1} = Y_{11} V_{1} + Y_{12} V_{2} - \dots (4)$ $I_{2} = Y_{2} V_{1} + Y_{22} V_{2} - \dots (4)$ Above eq. 7 o.s. can be written in matrix form as, $\begin{vmatrix} I_{1} \\ I_{2} \end{vmatrix} = \begin{vmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{vmatrix} + \begin{vmatrix} V_{1} \\ V_{2} \end{vmatrix} - \dots (5)$	1M		
		i.e. $I_{bus} = Y_{bus} V_{bus}$ (6) $I_{bus} = bus current vector$ $V_{bus} = bus voltage vector$ $Y_{bus} - bus admittance matrix = \begin{vmatrix} Y_{11} \\ Y_{12} \\ Y_{21} \end{vmatrix}$	1M		
2.	(a) Ans.	Attempt any FOUR: State the need for load flow analysis. Need for load flow analysis: Load flow studies give magnitude & phase angle of the voltage at	16 4M		
		 each bus, Real and reactive power flow through tr. Lines, current flow through tr. Lines. Hence load flow Studies are essential for For designing the power system. For operation of the system. For future expansion of the system to meet increase in the demand. For inter connecting the two systems to meet the load demand. For analyzing both normal and abnormal (means outage of tr. 	Any four needs 1M each		

 For analyzing the initial conditions of the system when the transient behavior of the system is to be studied. Transmission lines can carry only certain amount of current and we must make sure that we do not operate these links too close to their stability or thermal limits so LFA helps to know the amount current flowing through various lines in the network. LFA also helps in maintaining the stability of the system by giving the information about real, reactive power flow in the system. OR (1) The total amount of real power flow thro' the network generates at generating stations whose size and location are fixed. At each moment power generation must be equal to power demand as electrical power cannot be stored. Hence the load on the system has to be divided between no. of generators in a unique ratio in order to achieve optimum economic power generation. Hence the generator output must be closely maintained at predetermined set closely maintained at predetermined set points. It is important to remember that the power demand under goes slow but wide variation throughout the 24 hrs. Of the day. Therefore we must change these set points slowly or continuously or in discrete step as the hours wear on. This means that load flow configuration that fits the demand of a certain hr. of the day may look quite different next hour. (2) Transmission lines can carry only certain amount of current and we must make sure that we do not operate these links too close to their stability or thermal limits. Load flow analysis help to know the amount current flowing thro' various lines in the network. (3) Due to flow of reactive power voltage profile of certain buses changes. It is necessary to keep the voltage levels of these buses within close tolerances. This can be achieved by proper scheduling of reactive power demand it is necessary to inter connects the networks through the lines. Then both networks must fulfil certain contractual power demeda to a nestory through tie lines	Subject: Power System Operation and Control Subject Code:	17643	
 throughout the 24 hrs. Of the day. Therefore we must change these set points slowly or continuously or in discrete step as the hours wear on. This means that load flow configuration that fits the demand of a certain hr. of the day may look quite different next hour. (2) Transmission lines can carry only certain amount of current and we must make sure that we do not operate these links too close to their stability or thermal limits. Load flow analysis help to know the amount current flowing thro' various lines in the network. (3) Due to flow of reactive power voltage profile of certain buses changes. It is necessary to keep the voltage levels of these buses within close tolerances. This can be achieved by proper scheduling of reactive power flow and that can be studied by load flow analysis. (4) To meet power demand it is necessary to inter connects the networks through tie lines. Then both networks must fulfill certain contractual power scheduling commitments via its tie lines to neighboring system. Hence power flow through tie lines can be monitored with the help of load flow solution. (5) The disturbances in network leads to a massive network fault and sometime it can cause system outages. The effect of system outage can be minimized by progen processing. 	Subject: Power System Operation and Control Subject Code: • For analyzing the initial conditions of the system when the transient behavior of the system is to be studied. • Transmission lines can carry only certain amount of current and w must make sure that we do not operate these links too close to their stability or thermal limits so LFA helps to know the amount current flowing through various lines in the network. • LFA also helps in maintaining the stability of the system by giving the information about real, reactive power flow in the system. OR (1) The total amount of real power flow thro' the network generate at generating stations whose size and location are fixed. At each moment power generation must be equal to power demand a electrical power cannot be stored. Hence the load on the system had to be divided between no. of generators in a unique ratio in order to achieve optimum economic power generation. Hence the generate output must be closely maintained at predetermined set closel maintained at predetermined set points. It is important to remembe that the power demand under goes slow but wide variation	ve g es ch as to or ly er on	
	 that the power demand under goes slow but wide variation throughout the 24 hrs. Of the day. Therefore we must change these set points slowly or continuously or in discrete step as the hour wear on. This means that load flow configuration that fits the demand of a certain hr. of the day may look quite different next hout (2) Transmission lines can carry only certain amount of current and we must make sure that we do not operate these links too close to their stability or thermal limits. Load flow analysis help to know the amount current flowing thro' various lines in the network. (3) Due to flow of reactive power voltage profile of certain buse changes. It is necessary to keep the voltage levels of these buse within close tolerances. This can be achieved by proper scheduling of reactive power flow and that can be studied by load flow analysis (4) To meet power demand it is necessary to inter connects the networks through tie lines. Then both networks must fulfill certa contractual power scheduling commitments via its tie lines neighboring system. Hence power flow through tie lines can monitored with the help of load flow solution. (5) The disturbances in network leads to a massive network fau and sometime it can cause system outages. The effect of system 	on se rs ne ur. nd to ne es es ng s. the ain to be llt m	

Subject: Po	wer System Operation and Control Subject Code: 17	643
	(6) Load flow analysis is very important in the planning stages of new system networks or additions to avisting ones	
(b)	Derive the equation to prove that the voltage drop across the	4 M
	transmission line is mainly due to reactive power flow.	-11/1
Ans.	Consider a simple two bus system represented by a single line diagram as :	
	G I Z Z Z Z Z Z Z Z	1M
	Let $V_1 < \delta_1$ -	
	be the voltage at bus-1 and $V_2 < \delta_2$ - be the voltage at bus-2	
	$\mathbf{S}_1 = \mathbf{V}_1 \mathbf{I}_1 \qquad \qquad \mathbf{S}_2 = \mathbf{V}_2 \mathbf{I}_2$	
	S_1 = complex power that flows from bus 1 to bus 2	
	$=V_1 I_1 *= \left[\frac{V_1 < -\delta 1 - V_2 < -\delta 2}{-JX}\right]$	
	$= \frac{V_1 V_2 \sin\delta}{X} + j \left(\frac{V_1^2 - V_1 V_2 COS\delta}{X}\right) = \mathbf{P}_1 + j\mathbf{Q}_1$	
	$\therefore Q_1 = \frac{V_1^2 - V_2 I_2 \cos\delta}{X} \dots \dots$	$^{1/2}M$
	S_2 = Complex power that flows from by bus 2 to bus 1	
	$= (V_2 I_2) * = V_2 < \delta_2 \left[\frac{[V_2 < -\delta_2 - V_1 < -\delta_1]}{-jX} \right] =$	
	$\frac{V_2 V_1 \sin \delta}{X} + \left(\frac{\left(V_2 V_1 \cos \delta - V_2^2\right)}{X}\right)$	$^{1/2}M$
	$= P_2 + Q_2$	
	$\therefore Q_2 = \frac{V_2 V_1 \cos \delta - {V_2}^2}{X} \dots \dots$	
	To maintain the stability of system the angle δ is maintained at lower value. For small value of δ , the value of $\cos \delta \approx 1$ Rewriting the equations (1) & (2)	^{1/2} M
	$Q_1 = \frac{V_1^2 - V_2 V_1}{X} = \frac{V_1 (V_1 - V_2)}{X} Q_2 = \frac{V_2 V_1 - V_2^2}{X} = \frac{(V_2 - V_2) V_2}{X}$	1/2 M
	This shows that the reactive power depends on voltage drop.i.e. $Q \propto V_1 - V_2$	171

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subj	ject: Powe	er System Operation and Control Subject Code: 1'	7643	
	(c) Ans.	 In order to keep the receiving end voltage V₂ fixed the drop (Q/VX) must remain constant. This shows that (V1 – V2) ∝ Q Any variation in Q will vary the voltage drop i.e voltage of bus 2. Hence locally Q can be supplied to the load to maintain V2 constant. List the various methods of voltage control and their field of applications. Following are the method of voltage control in power system. By tap changing transformers. i. Off load tap changing Location – Distribution Substations, ii. On load tap changing Location – Intermediate Distribution Substations. By shunt reactors – location long Transmission line By static shunt compensation – Distribution LDC By series capacitors – Long tr. lines By flexible AC transmission lines 	4M Any four - IM each	h
	(d) Ans.	 Enlist any four factors which govern the load shedding in a power system. Factors that governs the load shedding pattern in power system Imbalance between power demand & power generation Sudden rise or fall in demand/ load Major faults like 3 phase faults, L-L fault. turns into instability Condition. Sharing of power so to increase run time of critical loads. To reduce wastage of energy & max demand To adopt energy conservation objectives To reduce peak demand charges and also to reduce energy bills To optimize capacity of the UPS battery can be extended. 	4M Any four factors 1M each	h
	(e) Ans.	 State the factors that govern load shedding. The factors governing load shedding duration: 1. The imbalance between power demand and power generation due insufficient resources. To reduce effect of imbalance intentionally supply to some load are cut off. 2. The sudden rise or fall in power demand leads to wide gap 	4M	

Subject: Powe	er System Operation and Control Subject Code: 17	643			
	 between demand and supply, and that results into instability in the system. To reduce effect of instability load shedding is carried out. 3. Due to major faults like three phase short circuit fault, line to ground fault, failure of switch gears or major equipments instability condition occurs in the system. To reduce effect of instability load shedding is carried out. 4. To reduce wastage of energy and to adopt energy conservation techniques supply to selective loads (mostly lighting loads) are shut off. 5. To reduce the maximum demand of any industry or commercial complex local load shedding is carried out to reduce the peak demand and also to reduce energy bills. 6. Refer to individual load; lighting control strategy is adopted for selectively reducing the output of light fixtures on a temporary basis so that it will reduce peak demand charges. 7. Load shedding is carried out to selectively shut off a set of output receptacles so that the capacity of the UPS battery can be extended. 8. To share power, the UPS switches off selected devices to increase run time of critical loads. 9. The onset of summer every year brings with it the woes of load shedding. It has hit the manufacturing sector and many times forcing them to shut down operations resulting in losses worth several crore. 10. Excessive drop in voltage profile in certain part of network then load shedding is carried out for compensation. 	Any four factors IM each			
(f)	State & explain different types of buses in Power system.	4M			
Ans.	I ypes of buses: In power system for load flow studies following types of buses are				
	considered.				
	i. Slack bus / Reference bus				
	ii. Load bus / PQ bus				
	iii. PV bus / Generator bus				
	i. Load Bus: At this bus power is injected or delivered to load.				
	Hence real & reactive component of power is specified. At this bus				

3. Attempt any FOUR: 16 3. Attempt any FOUR: 16	Subject: Power System Operation and ControlSubject Code:170								
ii. Generator bus: At this bus power generated is injected into the system. Hence the magnitude of voltage corresponding to its rating are specified from load flow solution and it is required to find out Q & S. This is also called as PV busIM eachiii. Voltage Control bus: This bus generally considered as PV bus, but there is physical difference. Voltage control bus has voltage control capabilities and uses tap-changing transformer & static VAR compensators where as generator bus has generator. Here P $_{G}=0$ & Q $_{G}=0$, hence P $_{i}=-P_{D}$, Q $_{i}=-Q_{D}$. V; are known and δ_{i} is unknown.iv. Slack Or Swing Or Reference Bus: In power system power is injected by generator bus and power is delivered or ejected at Load bus. So whatever losses takes place in the system remains unknown, until the load flow solution is complete. Hence one of the generator bus is made to take additional real and reactive power to supply transmission losses. This bus is known as slack or swing bus. At this bus the magnitude of bus voltage and phase angle are specified while P & Q are obtained through the load flow solution.If ype 0f Bus Specified quantities Quantities Obtained Unknown Quantities A duantities Voltage control V, P, Q163.Attempt any FOUR: (ingle area case).16			voltage is allowed angle 'δ' is not imp called as PQ bus. P	to vary within the p portant from consumers Power ejected from bus	permissible limit and phase s point of view. This is also is considered as negative.				
 iii. Voltage Control bus: This bus generally considered as PV bus, but there is physical difference. Voltage control bus has voltage control capabilities and uses tap-changing transformer & static VAR compensators where as generator bus has generator. Here P_G=0 & Q_G=0, hence P_i = -P_D, Q_i= -Q_D. V_i are known and δ_i is unknown. iv. Slack Or Swing Or Reference Bus: In power system power is injected by generator bus and power is delivered or ejected at Load bus. So whatever losses takes place in the system remains unknown, until the load flow solution is complete. Hence one of the generator bus is made to take additional real and reactive power to supply transmission losses. This bus is known as slack or swing bus. At this bus the magnitude of bus voltage and phase angle are specified while P & Q are obtained through the load flow solution. Type Of Bus Specified quantities Quantities Obtained Unknown Quantities Load bus P, Q V, δ Generator bus P, V Q, δ Voltage control V, P, Q Δ bus Attempt any FOUR: (a) Attempt any FOUR: 			ii. Generator bus: At this bus power generated is injected into the system. Hence the magnitude of voltage corresponding to its rating are specified from load flow solution and it is required to find out Q & S. This is also called as PV bus						
iv. Slack Or Swing Or Reference Bus: In power system power is injected by generator bus and power is delivered or ejected at Load bus. So whatever losses takes place in the system remains unknown, until the load flow solution is complete. Hence one of the generator bus is made to take additional real and reactive power to supply transmission losses. This bus is known as slack or swing bus. At this bus the magnitude of bus voltage and phase angle are specified while P & Q are obtained through the load flow solution. Type Of Bus Specified quantities Quantities Obtained Load bus P,Q V,δ Generator bus P,V Q,δ Voltage control V,P,Q Δ bus Image: transmission losses 16 4M (a) Attempt any FOUR: 16			iii. Voltage Control bus: This bus generally considered as PV bus, but there is physical difference. Voltage control bus has voltage control capabilities and uses tap-changing transformer & static VAR compensators where as generator bus has generator. Here P _G =0 & Q _G =0, hence P _i = -P _D , Q _i = -Q _D . V _i are known and δ_i is unknown.						
Type Of Bus Specified quantities Quantities Obtained Specification Unknown Quantities Load bus P,Q V, δ Generator bus P, V Q, δ Voltage control V,P,Q Δ bus 16 (a) With the help of block diagram, explain load frequency control (single area case). 16			iv. Slack Or Swing Or Reference Bus: In power system power is injected by generator bus and power is delivered or ejected at Load bus. So whatever losses takes place in the system remains unknown, until the load flow solution is complete. Hence one of the generator bus is made to take additional real and reactive power to supply transmission losses. This bus is known as slack or swing bus. At this bus the magnitude of bus voltage and phase angle are specified while P & O are obtained through the load flow solution						
Load bus P,Q V,δ Generator bus P,V Q,δ Voltage control V,P,Q Δ bus Image: Specification Image: Specification 3. Attempt any FOUR: 16 (a) Mith the help of block diagram, explain load frequency control 4M			Type Of Bus	Specified quantities	Quantities Obtained				
Iteration Iteration Generator bus P, V Generator bus P, V Voltage control V,P,Q bus Δ 3. (a) Attempt any FOUR: 16 With the help of block diagram, explain load frequency control 4M (a) (single area case).			Load bus	PO	V S				
Voltage control V,P,Q bus Δ 3. Attempt any FOUR: (a) Mith the help of block diagram, explain load frequency control 4M			Generator bus	P. V	Ο, δ				
bus 3. (a) Attempt any FOUR: (a) With the help of block diagram, explain load frequency control 4M (single area case).			Voltage controlV,P,Q Δ						
3. Attempt any FOUR: 16 (a) With the help of block diagram, explain load frequency control 4M (single area case). 16			bus						
3.Attempt any FOUR:16(a)With the help of block diagram, explain load frequency control4M(single area case).16									
(a) With the help of block diagram, explain load frequency control 4M (single area case).	3.		Attempt any FOUR:						
(single area case).		(a)	With the help of block diagram, explain load frequency control						
			(single area case).						
Ans. In power system network single area is defined as grid network		Ans.	in power system n	nerators supply power	to all consumer in that area	Errland			
Stability is concerned with that area only. Power demand and supply <i>tion 2M</i>			Stability is concern	ed with that area only	. Power demand and supply	tion 2M			

Subje	ect: Powe	er System Operation and Control Subject Code: 17	/643
		observed for this area only. All generators are connected in parallel in synchronism and share the load. The system can be modeled as below Diagram:	
		Frequency sensor and comparator p	Diagram 2M
	(b)	List out the information that can be collected from load flow	4M
		analysis.	
	Ans.	 The information collected from the load flow analysis is as, 1. Get MW and MVAR flow in the various parts of the system network. 2. Get the information about voltage at various buses in the system. 3. Get the information about optional load distribution. 4. Impact of any change in generation on the system. 5. Influence of any modification or extension of the existing circuits on the system loading. 6. It also gives information for choice for of appropriate rating and tap setting of the power of transformer in the system. 7. Influence of any change in conductor size of system voltage level on power flow. 	Any four points 1M each
	(C) Ans	Write the swing equation and define each term in it. $m d^2 \delta$	4M Fauatio
	A115.	$\frac{ma^2o}{dt^2} = P_a = P_m - P_e$	n 3M
		wherem = angularmomentum,	Meanin
		$P_m = mechanical power input,$	g of
		$P_e = electrical power output,$ $P_e = accelerating mouser$	each
		$r_a = acceleralingpower,$ $\delta = angular displacement of rotor$	
		o = ungunun unspincemiento ji otor	

Г

Subj	ect: Powe	er System Operation and Control Subject Code: 170	643
	(d)	State and explain factors affecting the transient stability of a	4 M
		power system.	
	Ans.	Factors affecting the transient stability of a power system: 1. The designing of system network and if any new addition of	
		system, compo.(generation, transformer, sub-station, transmission line database line protection system)	Any four
		 If the generation plays the major role in the stability condition of 	points
		system. The performs characteristics of generator depend on type of prime-move, type of the flue sources and it ability and manufacturing technology hence also maximum and minimum. Power generation	1M each
		system and each generating unit and their characteristics have significant impact on transient stability condition.	
		constant) and excitation response of excitation system response of damping system provided in the rotor of alternator the response of	
		mechanical damping system. Prime-mover determines the performance of generator under transient stability condition.	
		4. The transfent reactor of the network (transmission line, distribution line reactor). The transient reactor are decides transient stability limit and hence it has got significant response on a transient stability	
		5. Protective scheme are adopted for system major component like generator, transformer and transmission line. The critical fault	
		transient stability. Similarly, considering all network together total network response also has great impact on transient stability.	
		6. All machine connected in the network subjected to angular swing. The angular swing of machine during fault and often clearness of	
		fault affect stability condition of the system (the excitation of rotor of machine is inversely proportional to its movement of inertia) the	
		higher movement of inertia area variation in rotor angle will small work and there by long time is required for circuit breaker operation.	
		7. Switching time of reactor have which decides the transient reactor the switching type of shunt and series reactor, have sustainable	
		reactor on transient condition. 8 The voltage regulation adopted in system affect the stability sub-	
		sequence of first oscillation after clearance of fault.	
	(e)	State and explain the different planning tools used for load forecasting.	4M
	Ans.	8	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject: Power System Operation and Control Subject Code: 1	7643
Types of planning tools:i. Simulation Tools: Load flow models, sc models transient stability models, production costing, adequacy calculations.ii. Optimization tools: Optimum power, least cost expansion planning, generating expansion planningiii. The scenario techniques: Sequence of events recording, possible outcomes, decisions, assumptions, computerize and automatic system.	List of Types of plannin g tools 1M
 i. Stimulation Tool: This tool help stimulate the behaviour of the system under certain load condition. This helps to calculate certain relevant indices. i .e cost of generation , transmission & distribution. Corporate models simulate the impact of various decision of financial performance of utilities. It requires voluminous data and required result from various models to be integrated. Eg: Load flow model, short circuit model, Transient stability model, production costing, estimation of environmental impact. Results obtained are reliable as we wouldn't experience major failure. ii. Optimization Tools: This tool minimizes or maximizes adequate values for decision variables. Eg: Optimum power, least cost expansion planning of generation. For example, we considered the expansion of transmission circuit and planning for electrification rural areas. Though the cost involved is very high, still we can implement it, because objective behind it is on higher side (Socio economic harnessing of ground water resource food production rural employment prevention of migration). 	Each explanat ion 1M
 iii. Scenario Tool: This tool is used to known the future in quantitative fashion. In this technique narrative description is developed which includes probable, sequential or simultaneous recorded data. This can be built up into case history. A decision points are always identified and possible outcomes are investigated. The sort of decision or assumption made by utility is noted. All these narrative descriptions are computerized and used as past data. After certain period it is also used in "automatic power management" as data. Electrical utilities should prepare integrated resource plan. This long term plan must develop the best mix of demand and supply options to meet consumers need. 	

Г

٦

Subj	ect: Powe	er System Operation and Control	Subject Code: 17	/643
	(f)	Write down at least four major f	unctions of load dispatch center.	4 M
	Ans.	 Following are the Major functions i) LDS shall facilitate wheeling an local grid systems within its transmission and supply of electric ways. ii) The Load Dispatch Centre sh scheduling and dispatch of electro accordance with the contracts entre generating companies operating in iii) LDC should monitor grid operativ) LDC has to keep the accout transmitted through the State/nation v) LDC has to exercise supervision transmission system. vi) LDC are responsible for carryin control and dispatch of electricity secure and economic operation accordance with the Grid Standa Code. vii) Overall supervision, monitor power system in the State on real security and economy operation State/region. 	of Load dispatch centre: d inter-connection arrangements of territorial jurisdiction, for the ity by economical and efficient all – be responsible for optimum etricity within a State/region, in ered into with the licensees or the that State/region. tions within the State/region. nts of the quantity of electricity hal /regional grid. on and control over the intra-state ng out real time operations for grid y within the State/region through of the State/regional grid in ards and the State/National Grid ing and control of the integrated I time basis for ensuring stability, n of the power system in the	Any four function s 1M each
4.	(A)	Attempt any TWO:		12 (M
	(a)	'synchronous compensation'.	i shunt compensation and	UIVI
	Ans.			
		Shunt Compensation	Synchronous Compensation	A mu ain
		Static system/No moving parts	machine	Any six differen
		Control is slow and stepwise	Control is fast and continuous	ces 1M
		compensation		eacn
		It cannot be overloaded	It can be overloaded for short	
			periods	
		Located near load	Located away from load	

Subj	ject: Powe	er System Operation and Control	Subject Code: 1	7643
		Less maintenanceFailure of one unit of static capacitor bank affects that unit only, remaining unit continue to operateApplicable for small reactive power requirement.Maintenance is easy e.g Reactor, Capacitor	More maintenance Failure of synchronous compensator means loss of complete unit Applicable for large i.e above 10 MVAr it is required. Maintenance is difficult e.g Synchronous motor	
	(b) Ans	List out the adverse effects of power	wer system instability.	6M
	Апѕ.	 It derivers unrehable power. Supply parameters fluctuate be; Delivers poor quality supply to Non-economical power generat takes place. The system experiences failure lead to measure of power failur Disturbance in load scheduling planning. Operation of the system under u damaging of power system com connected to system network. 	yond the tolerance limit. consumers. tion, transmission and distribution of system components which may e. and power generation and instable condition leads to inponents as well as loads	Any six 1M for each
	(c) Ans.	The incremental fuel curve of 2 u df/dp ₁ = 0.6 P ₁ + 60Rs/MWh df/dp ₂ = 0.4 P ₁ + 40Rs/MWh Determine load distribution b economical load dispatch, if the t 600W. df/dp ₁ = 0.6 P ₁ + 60Rs/MWh df/dp ₂ = 0.4 P ₁ + 40Rs/MWh Total load = 600W	units of a generating station are between the two units under total load on generating station is	6M
		Total load = $600W$ $\therefore P_1 + P_2 = 600W$ For economical load dispatch df/dp $0.6P_1 + 60 = 0.4P_2 + 40Rs/MWh$	$p_1 = df/dp_{PL}$	1M 1M

Subj	ect: Powe	er System Operation and Control Subject Code:	17643	
		$0.6P_1 - 0.4P_2 = 40.60$		
		$0.6P_1 - 0.4P_2 = -20$	11	ſ
		$P_{1+}P_2 = 600(ii)$		
		By solving (i) and (ii)		
		$0.4(P_{1+}P_2) = 0.4(600)$		
		$0.6P_1 - 0.4P_2 = -20$	11	ſ
		$0.4P_1 + 0.4P_2 = 240$ $0.6P_1 - 0.4P_2 = -20$		
		$P_1 = 220 MW$	11	[
		$P_2 = 600 - 220 = 380 MW$	11	ſ
4.	(B)	Attempt any ONE:	06	
	(a) Ans	Write SLFE for a two bus system and define it's parameters. For a simple two bus system I oad flow equations can be written	6N	I
	A115 .	as		
		SI FF Equation:		
		$S_{1} = V_{12} Y_{11} L \angle \alpha_{11} + Y_{12} V_{2} V_{1} (\delta_{2} - \delta_{1}) = P_{1} - j Q_{1}$		
		$P_{1} = V_{12} Y_{11} \cos \angle \alpha_{11} + Y_{12} V_{2} V_{1} \cos (\delta_{2} - \delta_{1})$	2M	ſ
		$Q_1 = (V_{12} Y_{11} \sin \angle \alpha_{11} + Y_{12} V_2 V_1 \sin (\delta_2 - \delta_1)$		
		$S_2 * = V_{22} Y_{22} L \angle \alpha_{22} + Y_{21} V_2 V_1$		
		$(\delta_1 - \delta_2) = \mathbf{P}_2 - \mathbf{j} \mathbf{Q}_2$	2N	ſ
		$P_2 = V_{22} Y_{21} \cos \angle \alpha_{22} + Y_{21} V_2 V_1 \cos (\delta_1 - \delta_2)$		
		$ Q_2 = (v_{22} \ Y_{22} \ \sin \angle \ \alpha_{11} + Y_{12} \ v_2 \ v_1 \ \sin (\delta_1 - \delta_2) $		
		V_1, V_2V_n are the bus voltages		
		$\delta_1, \delta_2,$ are load angles with reference to bus-1, bus-2 and so on.		
		on.		

Subj	ect: Powe	er System Operation and Control Subject Code: 17	643
		Y_{12}, Y_{21} are Mutual admittance with reference to bus-1, bus-2 and so on S_1, S_2 complex power at bus-1, bus-2. P_1, P_2 Real power at bus-1, bus-2. Q_1, Q_2 Reactive power at bus-1, bus-2.	2M
	(b) Ans.	Derive the expression for maximum power flow under steady state condition. Consider a simple power system with less transmission line as shown in figure. Power transmitted from S.E. to R.F. is $S = VsI$	6М
		Where $I = \frac{-J_{X}}{jx} = V_{S}$ $\therefore V_{S} = \left(\frac{V_{S} - V_{R}}{-jx}\right)$	1M
		Now $V_R = V_R < 0$	1M
		$V_{S} = V_{S} < \delta$ $\therefore S_{S} = P_{S} + jQ_{S}$	1M
		$S_{S} = \frac{V_{S}^{2} - V_{S}V_{R} < \delta}{-jx} X \frac{1}{J}$ $= \frac{V_{S}^{2} - V_{S}V_{R}(\cos \delta + i\sin \delta)}{x} j$	
		$= \frac{V_{\rm S} - V_{\rm R}}{x} \sin \delta + i \frac{V_{\rm S}^2}{x} - \frac{V_{\rm S} V_{\rm R} \cos \delta}{X}$ $\therefore P_{\rm S} = \frac{V_{\rm S} - V_{\rm R}}{x} Q_{\rm S} = V s^2 - \frac{V_{\rm S} V_{\rm R} \cos \delta}{X}$	1M

٦

Subj	ject: Pow	er System Operation and Control Subject Code: 17	643
		Similarly at receiving end power will be	
		$S_{R} = V_{R}I_{R}^{*} = V_{R} \left[\frac{V_{R} - V_{S}}{jx}\right]^{*}$ $= V_{R}V_{L} \sin \delta + i \left(\frac{V_{S} V_{R}}{jx} \cos \delta - \frac{VR^{2}}{jx}\right)$	
		$= v_{\rm S} v_{\rm R} \sin \theta + J \left(\frac{1}{x} \cos \theta - \frac{1}{x} \right)$	
		i.e. $= P_R = \frac{V_S V_R}{x} \sin \delta$ $Q_R = \frac{V_R (V_S \cos \delta - V_R)}{x}$	
		$\therefore \mathbf{P}_{\mathrm{S}} = \mathbf{P}_{\mathrm{R}} = \frac{\mathbf{v}_{\mathrm{S}} \mathbf{v}_{\mathrm{R}}}{\mathrm{x}} \sin \delta$	
		\therefore For constant $V_S V_R$. X	
		Ρα sinδ	
		When $0 < \delta < 180$ P is +ve $180 < \delta < 360$ P is -ve	$^{1/2}M$ $^{1/2}M$
		\therefore When δ is 90 ⁰	
		$P_{max} = \frac{V_S V_R}{x}$	1M
		This is the maximum power flow for steady state stability.	
5.	(9)	Attempt any FOUR: State the advantages of reactive power compensation	16 4M
	Ans.	Advantage of reactive power compensation	7171
		1. Reduction in reactive component of circuit current	
		2. Maintenance of voltage profile within limits	Any
		3. Reduction of Copper losses in the system due to reduction of	four
		current.	advanta
		5. Decrease in KVA loading of generators and circuits. This decrease	ges IM each
		in KVA loading may relieve an overload condition or release	cuch
		capacity for additional load growth.	
		6. Improvement in p.f. of generators.	
		7. Reduction in KVA demand charges for large consumers	
		8. Overall improvement in system efficiency.	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Operation and Control

Subject Code: 17643

	Similarly power flows from j	
	to k is $Bus k V_k Z^1 = Y^1 U$	
	$P_{ik} - jQ_{ik} = V_i^* I_{ik} = V_i^* (V_i)$	
	$V_k)y^1 + V_j^* V_j Y/2$ Y/2	
	The above two equations are called as "Line flow equation". The algebraic sum of power	
	expressed by above equations gives power loss in the transmission	
	line $k - j$.	
(c)	State the difference between 'power system stability', 'Power	4M
Ama	system instability', 'Stability limit' and 'overall stability'.	
Ans.	synchronism of one of working generator has been lost the normal	
	operating condition can be re-established without disconnection of	
	major elements.	1M each
	ii) Power System Stability: It is ability to return to normal or stable	
	operation after having been subjected to some form of disturbance.	
	normal stable operating condition because of increase in power	
	demand beyond the capacity of power generation.	
	iv) Stability Limit: It is the maximum power flow possible though	
	same particular point in the system when the entire system or part of	
	the system to which the stability limit refers is operating with stability	
(d)	Draw a neat labelled diagram of turbine speed governing system.	4 M
Ans.		

SUMMER – 2019 EXAMINATION MODEL ANSWER

17643 Subject Code: **Subject: Power System Operation and Control** Steam Lower Speed 522 Direction of changer positive Diagram movement Raise **4M** D to \odot turbing 1. 1, 14 13 Pilot valve 000 Jain High piston pressure oit Speed Hydraulic amplifier governor (speed control mechanism) Turbine-Speed Governing System Draw only a neat labelled schematic diagram for alternator **4M (e)** voltage control system. Voltage control system used for alternator is called as Automatic Ans. Voltage Control/Automatic Voltage regulator (AVR): Amplifier V-comparator <- Ref. Vnc. ΔVoc S Amplified ∆V_{DC} Vpc Exciter Rectifier Diagram **4M** controller Vac V-sensor VAC Т G

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Operation and Control

Subject Code:

17643

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Operation and Control

Subject Code: 17643

0.		Attempt any FOUR:	16
	(a)	Explain the effect of change in frequency on various consumers.	4 M
	Ans.	Consumers need constant frequency supply because	
		 In most of the industries, Induction motor is used as common drive, which runs at speed that is directly related with frequency. (N= 120f/p) variation in frequency affects the quality of the product and rate of production. Induction motor used as common a.c. drives though has rigid construction but due to variation in supply frequency, life of induction motor reduces by 500 Hrs. They are not sensitive for small variation in the supply frequency. i.e. of the order of 50 ± 2 Hz. In railway stations, the electric chokes are driven by single-phase synchronous motor, The speed of the synchronous motor depends on supply frequency directly. Hence it needs constant frequency supply for all 24 Hrs. of the day. If frequency falls by 1 hr, then clock falls back by 15 min. & it takes no. of hours to reduce the error to zero. In some industries such as the textiles rubber, plastic & paper require frequency constant or to a tolerance of ± 0.25 per min. Electric gear systems used in industries requires the frequency 49.5 Hz to 50.5 Hz range. 	Any four points IM each
	(b)	Define the following terms:	4 M
	(~)	(i) Steady state stability and its limit.	
		(ii) Transient state stability and its limit.	
	Ans.	(ii) Transient state stability and its limit.	
	Ans.	(ii) Transient state stability and its limit.(i) Steady state stability: When the power system has capacity to	
	Ans.	(ii) Transient state stability and its limit.(i) Steady state stability: When the power system has capacity to regain and maintain equilibrium condition (synchronous speed) after	
	Ans.	 (ii) Transient state stability and its limit. (i) Steady state stability: When the power system has capacity to regain and maintain equilibrium condition (synchronous speed) after a small slow disturbance such as load variation or changes in load 	
	Ans.	 (ii) Transient state stability and its limit. (i) Steady state stability: When the power system has capacity to regain and maintain equilibrium condition (synchronous speed) after a small slow disturbance such as load variation or changes in load condition occurs, then the power system is said to be in steady state stability and the power system is said to be in steady state. 	
	Ans.	 (ii) Transient state stability and its limit. (i) Steady state stability: When the power system has capacity to regain and maintain equilibrium condition (synchronous speed) after a small slow disturbance such as load variation or changes in load condition occurs, then the power system is said to be in steady state stability condition. 	1M for
	Ans.	 (ii) Transient state stability and its limit. (i) Steady state stability: When the power system has capacity to regain and maintain equilibrium condition (synchronous speed) after a small slow disturbance such as load variation or changes in load condition occurs, then the power system is said to be in steady state stability condition. Steady State stability limit: It is defined as max power which can flow through point in the system without causing loss of stability 	1M for
	Ans.	 (ii) Transient state stability and its limit. (i) Steady state stability: When the power system has capacity to regain and maintain equilibrium condition (synchronous speed) after a small slow disturbance such as load variation or changes in load condition occurs, then the power system is said to be in steady state stability condition. Steady State stability limit: It is defined as max power which can flow through point in the system without causing loss of stability, when system experiences a small disturbance. 	1M for each
	Ans.	 (ii) Transient state stability and its limit. (i) Steady state stability: When the power system has capacity to regain and maintain equilibrium condition (synchronous speed) after a small slow disturbance such as load variation or changes in load condition occurs, then the power system is said to be in steady state stability condition. Steady State stability limit: It is defined as max power which can flow through point in the system without causing loss of stability, when system experiences a small disturbance. (ii) Transient stability: Transient stability is the ability of the power 	1M for each
	Ans.	 (ii) Transient state stability and its limit. (i) Steady state stability: When the power system has capacity to regain and maintain equilibrium condition (synchronous speed) after a small slow disturbance such as load variation or changes in load condition occurs, then the power system is said to be in steady state stability condition. Steady State stability limit: It is defined as max power which can flow through point in the system without causing loss of stability, when system experiences a small disturbance. (ii) Transient stability: Transient stability is the ability of the power system to regain or maintain equilibrium conditions after 	1M for each
	Ans.	 (ii) Transient state stability and its limit. (i) Steady state stability: When the power system has capacity to regain and maintain equilibrium condition (synchronous speed) after a small slow disturbance such as load variation or changes in load condition occurs, then the power system is said to be in steady state stability condition. Steady State stability limit: It is defined as max power which can flow through point in the system without causing loss of stability, when system experiences a small disturbance. (ii) Transient stability: Transient stability is the ability of the power system to regain or maintain equilibrium conditions after experiencing a large sudden disturbance. 	1M for each
	Ans.	 (ii) Transient state stability and its limit. (i) Steady state stability: When the power system has capacity to regain and maintain equilibrium condition (synchronous speed) after a small slow disturbance such as load variation or changes in load condition occurs, then the power system is said to be in steady state stability condition. Steady State stability limit: It is defined as max power which can flow through point in the system without causing loss of stability, when system experiences a small disturbance. (ii) Transient stability: Transient stability is the ability of the power system to regain or maintain equilibrium conditions after experiencing a large sudden disturbance. Transient state stability limit: It refers to max possible flow of 	1M for each
	Ans.	 (ii) Transient state stability and its limit. (i) Steady state stability: When the power system has capacity to regain and maintain equilibrium condition (synchronous speed) after a small slow disturbance such as load variation or changes in load condition occurs, then the power system is said to be in steady state stability condition. Steady State stability limit: It is defined as max power which can flow through point in the system without causing loss of stability, when system experiences a small disturbance. (ii) Transient stability: Transient stability is the ability of the power system to regain or maintain equilibrium conditions after experiencing a large sudden disturbance. Transient state stability limit: It refers to max possible flow of power through a point without loss of stability when system 	1M for each

SUMMER – 2019 EXAMINATION MODEL ANSWER

17643 **Subject Code: Subject: Power System Operation and Control** Explain with the help of block diagram working of automatic 4M**(c)** load frequency control (ALFC) of a synchronous generator. Ans. Т G Valve controller f Diagram f-Sensor Hydraulic **Primary Loop** 2Mamplifier f ٨f Turbine Integrator f-Comparato Speed Governor change`r Secondary Loop δf f-Amplifier In an electric power system, Automatic Generation Control (AGC) is a system for adjusting the power output of multiple generators at different power plants, in response to changes in the load. Ideally it is required that at each moment in power grid power generation and power demand closely balance. To achieve this frequent adjustments are necessary to the output of generators. The imbalance can be found out by measuring the system frequency. If the system frequency is increasing, means more power is being generated than demand and all *Explana* the machines in the system are accelerating. If the system frequency tion 2M is decreasing, means more loads is on the system, than all the machines in the system are slowing down. The frequency is closely related to the real power balance in the Under normal operating conditions the system overall network. generators run synchronously and generate together the power at each moment is being drawn by all loads plus the real. Automatic load frequency control helps to regulate the MW output of the generator to maintain the frequency. It consists of two feedback loop--Primary loop & Secondary loop system. Primary loop works for a frequency variation which is a result of power imbalance in MW. In this loop the output generated voltage frequency is fed to the governor which raises a signal to control

Subject: Power System Operation and Control Subject C	ode:	17643	
valves to regulate the steam flow so that output of the generated match with fast load fluctuations. This loop matches the inition of adjustment of frequency. Response time of this loop is in of 2-20 seconds.	rator w ial cout the ore	vill rse der	
 Primary loop: It is a feedback loop system, consists of f sensor, Frequency comparator, Integrator, speed changer, governor, Hydraulic amplifier and Valve control mechanism. Frequency Sensor: It senses the actual frequency of generate and sends the signal to Frequency comparator. Frequency comparator: It compares the actual frequency reference frequency and rise the signal Δf to integrator. Integrator: It converts frequency signal into speed signal i.e. and feed it to speed changer. Speed Changer: According to the signal it rolls low /high activate Turbine governor. Turbine governor: It is a turbo-generator governor. It raises to to increase or decrease the speed of turbine through Link med Link mechanisms: This is a 4-link mechanism, which pu movement to Steam valve through Hydraulic amplifier in p to change in speed. It also provides a feedback from the ste movement Hydraulic amplifier: It comprises a pilot valve and ma arrangement. Low power level pilot valve movement is or into high power level piston valve movement. This is nect order to open or close the steam valve to increase /decrease the power output of turbine. Accordingly generator output varies 	frequent Turbin a Turbin a Tu	hcy ine age the ΔN and nal ms s a ion lve ton ted in sm i.e.	
Secondary loop: It comprises Frequency amplifier which minor variation signal of frequency and feed the amplified integrator. Secondary loop works for fine adjustment of the frequency from the output of the generator is amplified by amplifier amplified signal is fed to integral controls which integ frequency error and raise a signal to control the valves whic regulate the steam flow. This loop is sensitive to rapid vari load frequency. Response time of this loop is in order of one This ALFC is located in power stations. It is operative on	receiv signal y, sign and t grate t h in tu ations minute ly duri	es to al he he rn in e. ing	

SUMMER – 2019 EXAMINATION MODEL ANSWER

17643 Subject Code: **Subject: Power System Operation and Control** normal changes in load and frequency. It is unable to provide adequate control during emergency conditions when large MW imbalance occurs. Explain reactive power injection method used for voltage control. **4M (d)** Reactive power injection Ans. Po tiep Petjar method for voltage control: То keep the 1jac receiving end voltage at a Load LOCAINAR specified value, a fixed *Concept* generator amount of VARS must be *1M* 77 TTTI drawn from the line. Q_G $=Q_D$ bus voltage is maintained at specific value. As VAR demand Q_D varies, a local VAR generator must be used as shown in fig. The VAR balance equation at the receiving end is now. $Q_{\rm G} = Q_{\rm D} + Q_{\rm C}$

Following are at different po	the equipments ints.	used to inject VARs in the system	
Generation	Excitation	Production of reactive power	
system	control	field to raise the generator's	Eac
		terminal voltage. To increase the	equip
		magnetic field, increase the	nt 1
		current in the field winding.	
		Absorption of reactive power is	
		limited by the magnetic-flux	
		pattern in the stator, which	
		the stator-end iron the core-end	
		heating limit.	
Transmission	Series	Capacitors and inductors in HV	
system	reactors	and EHV trans. Line	
		Static VAR system	
Distribution	Shunt reactors	Capacitor's bank	
system		Synchronous condenser	
		Static VAR system	1

٦

Subject: P	Power System Operation and Control Subject Code:	7643	
(e)	State and explain any two methods that can be adopted for the improvement of transient stability condition of a power system	4M	[
Ans	 Following are methods that can be adopted for the improvement of transient stability condition of a power system: These techniques are classified as Traditional Technique and New Approaches Traditional Technique: New Approaches: i) Effect of generator design. ii) Increase of voltage iii) Application of braking resistors 	Any t metho from	wo ods n
	iv) Rapid fault clearing v) Automatic reclosing	techni es 21 eacl	, iqu M h
	i) Effects of Generator Design: A heavy machine has greater inertia and is more stable than a light machine. Modern machines are designed to get more power from smaller machines but this is undesirable from the stability point of view. In earlier days a large number of machines were employed to generate more power and this is also not desirable from stability point of view. A salient pole alternators operate at lower load angles and hence they are more preferred than cylindrical rotor generates from considerations of stability.		
	 ii) Increase of voltage: The amplitude of the power angle curve is directly proportional to the internal voltage of the machine. An increase in voltage increases the stability limit. iii) Poduction in transfer most pass The amplitude of the neuron. 		
	angle curve is inversely proportional to the transfer reactance. This reactance can be reduced by connecting more line in parallel. When two lines are connected in parallel and a fault occurs in one line then some power is transferred to healthy line (except when the fault is at receiving end or sending end bus. This transmission of power helps		
	the stability of the system. Some features of the power system layout and business arrangement also help in improving stability. Use of bundled conductors helps in reducing line reactance and improving line stability. The compensation of line reactance by series capacitance is another effective method of improving stability.		
	 iv) Kapid fault clearing: By decreasing the fault cleaning angle (by using high speed breakers) stability can be improved. v) Automatic Reclosing: Most of the fault's on the transmission 		

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Power System Operation and Control

Subject Code: 17643

	lines are of transient nature and are self-clearing. Modern circuit breakers are mostly of reclosing type. When a fault occurs, the faulted line is de-energized to suppress the fault and then the circuit breaker recloses, after a suitable time interval.	
(f)	State the significant features of Y bus.	4 M
Ans.	Significance of Y _{bus} matrix in load flow studies:	
	1. Y bus is a nodal matrix, is called as a n×n matrix which describes	
	power system network which having n number of buses.	Any
	2. Admittance matrix is use to analyze data which is use in power flow study	four points
	3. Y bus matrix explains admittance & topology of network.	1M each
	4. Outage of line or outage of generator can be easily indicated through Y bus matrix in load flow analysis.	
	5. The off diagonal elements of matrix indicate mutual admittance i.e. the transmission line admittance between two buses.	
	6. All diagonal elements indicate the sum of line charging admittance	
	& transmission line admittance. It is also called as self admittance	
	of a bus.	