SUMMER-19 EXAMINATION			
Subject Name: DESIGN OF R.C.C. STRUCTURES	Model Answer	Subject Code:	17604

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \mathrm{Q} . \\ & \mathrm{No.} \end{aligned}$	$\begin{aligned} & \hline \text { Sub Q. } \\ & \text { N. } \end{aligned}$	Answers	Marking Scheme
Q. 1	(A) (a) Ans	Solve any THREE: Explain the concept of limit state of flexure. State various limit states. Concept of limit state of flexure: It is to achieve an acceptable probability that a structure will not collapse in flexure in its life time, that is, it will not reach limit state of collapse (Flexure). Various limit states: 1. Limit state of collapse- i. Flexure/Bending. ii. Shear. iii. Torsion. iv. Axial load (Tension and compression). 2. Limit state of Serviceability- i. Deflection. ii. Cracking. iii. Vibration.	(12) 02 M 01 M 01 M
Q. 1	(A)(b) Ans	Define 'characteristic strength' and 'characteristic load'. Characteristic strength: It is the value of the strength of material below which not more than 5 percent of the test results are expected to fall. Characteristic load: It is the value of load which has a 95 percent probability of not being exceeded during the life of the structure.	$\begin{aligned} & 02 \mathrm{M} \\ & 02 \mathrm{M} \end{aligned}$
Q. 1	$(\mathrm{A})(\mathrm{c})$ Ans	Write the requirements of ductility for flexural members as per IS: 13920-1993. Requirements of ductility for flexural members. 1. The factored axial stress on the member under earthquake loading shall not exceed 0.1 fck . 2. The member shall preferably have a width-to-depth ratio of more than 0.3. 3. The width of the member shall not be less than 200 mm . 4. The depth D of the member shall preferably be not more than $I / 4$ of the clear	01 M for each

(ISO/IEC - 27001-2013 Certified)

		span.	
Q. 1	(A)(d) Ans	Explain pre-tensioning and post-tensioning. Pre-tensioning method: It is done by stressing wires or strands, called tendons, to predetermine amount by stretching them between two anchorages called abutments prior to placing the concrete. The concrete is then placed and tendons become bonded to concrete throughout their length. After the concrete has hardened, the tendons are released by cutting them at the anchorages. The tendons tend to regain their original length by shortening and transfer compressive stress to concrete through bond. Post-tensioning method: In this method first tendons are placed in position passing through flexible tube then concrete is placed in the mould. After gaining strength by concrete, tendons are stretched against concrete itself and then anchored at both ends. In this method, stress is transferred through bearing at ends of tendons.	02 M 02 M
Q. 1	(A)(e) Ans	State various forms of shear reinforcement in beams. Shear reinforcement in beams can be provided in any one of the forms given below. 1. Vertical stirrups. 2. Inclined stirrups. 3. Bent up bars with stirrups.	04 M
Q. 1	(B) (a) Ans	Solve any ONE: A beam having dimension $230 \times 450 \mathrm{~mm}$ effective is reinforced with 4 bars of 16 mm diameter on tension side. Calculate the ultimate moment of resistance of the beam if M20 grade concrete and Fe415 steel are used. $\begin{aligned} & \mathrm{b}=230 \mathrm{~mm}, \mathrm{~d}=450 \mathrm{~mm}, \text { Ast }=16 \mathrm{~mm}-4 \text { bars., } \mathrm{M}-20, \mathrm{Fe}-415, \mathrm{Mu}=? \\ & \begin{aligned} & \text { Ast }=4 \times \pi \times \phi^{2} / 4 \\ &=4 \times \pi \times 16^{2} / 4= 804.25 \mathrm{~mm}^{2} \\ & \begin{aligned} \text { Actual neutral axis } \times u & =(0.87 \times \mathrm{fy} \times \text { Ast }) /(0.36 \times \mathrm{fck} \times \mathrm{b}) \\ & =(0.87 \times 415 \times 804.25) /(0.36 \times 20 \times 230) \\ & =175.35 \mathrm{~mm} . \\ \text { Xumax } & =0.48 \times \mathrm{d} \\ & =0.48 \times 450 \\ & =216 \mathrm{~mm} . \end{aligned} \end{aligned} . \begin{aligned} \end{aligned} \\ & \end{aligned}$ Xu < xumax, hence beam is under reinforced. $\begin{aligned} \mathrm{Mu} & =0.87 \times \text { fy } \times \text { Ast }(\mathrm{d}-0.42 \mathrm{xu}) \\ & =0.87 \times 415 \times 804.25(450-0.42 \times 175.35) \\ & =109.28 \times 10^{6} \mathrm{~N}-\mathrm{mm} . \end{aligned}$ OR $\begin{aligned} \mathrm{Mu} & =0.36 \times \mathrm{fck} \times \mathrm{b} \times \mathrm{xu}(\mathrm{~d}-0.42 \times u) \\ & =0.36 \times 20 \times 230 \times 175.35(450-0.42 \times 175.35) \\ & =109.28 \times 10^{6} \mathrm{~N}-\mathrm{mm} \end{aligned}$	(06) 01 M 01 M 01 M 01 M 02 M
Q. 1	(B)(b) Ans	A beam $300 \mathrm{~mm} \times 500 \mathrm{~mm}$ effective size carries a factored bending moment of 175 kN \boldsymbol{m}. If concrete M20 \& Steel grade Fe500 are used, find area Of steel required. $\mathrm{b}=300 \mathrm{~mm}, \mathrm{~d}=500 \mathrm{~mm}, \mathrm{Mu}=175 \mathrm{kN}-\mathrm{m}, \mathrm{M}-20, \mathrm{Fe}-500$, Ast = ? $\begin{aligned} \text { Mulim } & =0.134 \times f c k \times b \times d^{2} \\ & =0.134 \times 20 \times 300 \times 500^{2} \\ & =201 \times 10^{6} \mathrm{~N}-\mathrm{mm} \end{aligned}$ Mu < Mulim, Hence beam is Under reinforced. Ast $=0.5 \times \mathrm{fck} \times \mathrm{b} \times \mathrm{d}\{1-\operatorname{SQRT}[1-(4.6 \times \mathrm{Mu}) /(\mathrm{fck} \times \mathrm{bx} \mathrm{d})]\} / \mathrm{fy}$	$\begin{aligned} & 02 \mathrm{M} \\ & 01 \mathrm{M} \\ & 01 \mathrm{M} \end{aligned}$

			01 M for fig.
Q. 2	(c) Ans	Design a cantilever slab for Chajja with following data. Span $=1.5 \mathrm{~m}, \mathrm{~L} . \mathrm{L} .=2 \mathrm{kN} / \mathrm{m}^{2}$, F.F. $=0.5 \mathrm{kN} / \mathrm{m}^{2}$, Adopt M20 \& Fe415, Modification factor $=1.3$. Span $=1.5 \mathrm{~m}$, L.L. $=2 \mathrm{kN} / \mathrm{m}^{2}$, F.F. $=0.5 \mathrm{kN} / \mathrm{m}^{2}, \mathrm{M}-20, \mathrm{Fe}-415$, M.F. $=1.3$. Depth of slab required $=$ span $/($ M.F. $\times 7$) $\begin{aligned} & =1500 /(1.3 \times 7) \\ & =164.8 \mathrm{~mm} . \end{aligned}$ Assuming cover 25 mm , (Note: Students may assume different cover) $D=164.8+25=189.8 \mathrm{~mm}$ Assume overall depth $=190 \mathrm{~mm}$ and effective depth $=165 \mathrm{~mm}$. Effective span: 1) Clear span $+\mathrm{d} / 2=1.5+0.165 / 2=1.5825 \mathrm{~m}$. (Note: Students may consider given span as effective span) Loading: 1) Live load $\quad=2.0 \mathrm{kN} / \mathrm{m}^{2}$ 2) Floor finish $\quad=0.5 \mathrm{kN} / \mathrm{m}^{2}$ 3) Self weight $=0.19 \times 25=4.75 \mathrm{kN} / \mathrm{m}^{2}$ Total $=7.25 \mathrm{kN} / \mathrm{m}^{2}$ Factored load $=1.5 \times 7.25=10.875 \mathrm{kN} / \mathrm{m}^{2}$ $\mathrm{Mu}=10.875 \times 1.5825^{2} / 2$ $=13.62 \mathrm{kN}-\mathrm{m} .$ Depth required for strength $=\operatorname{SQRT}[\mathrm{Mu} /(0.138 \times \mathrm{fck} \times \mathrm{b})]$ $\begin{aligned} & =\operatorname{SQRT}\left[13.62 \times 10^{6} /(0.138 \times 20 \times 1000)\right] \\ & =70.25 \mathrm{~mm}<\text { assumed hence O.K. } \end{aligned}$ Provide D $=190 \mathrm{~mm}$ $\mathrm{d}=175 \mathrm{~mm} .$ Ast $=0.5 \times \mathrm{fck} \times \mathrm{b} \times \mathrm{d}\left\{1-\operatorname{SQRT}\left[1-(4.6 \times \mathrm{Mu}) /\left(\mathrm{fck} \times \mathrm{b} \times \mathrm{d}^{2}\right)\right]\right\} / \mathrm{fy}$ $\begin{aligned} & =0.5 \times 20 \times 1000 \times 175\left\{1-\operatorname{SQRT}\left[1-\left(4.6 \times 13.62 \times 10^{6}\right) /\left(20 \times 1000 \times 175^{2}\right)\right]\right\} / 415 \\ & =235.7 \mathrm{~mm}^{2} . \end{aligned}$ Minimum Ast $=0.12 \times 1000 \times 190 / 100=228 \mathrm{~mm}^{2}$. Ast > Min. Ast, Hence O.K. Providing 8 mm dia. Bars Area of one bar A1 $=\pi \times \phi^{2} / 4=\pi \times 8^{2} / 4=50.27 \mathrm{~mm}^{2}$ (Note: Students may assume different bar dia.) Spacing $=1000 \times$ A1 $/$ Ast $=1000 \times 50.27 / 235.7=213.3 \mathrm{~mm} .$ Provide 8 mm dia. @ $210 \mathrm{~mm} \mathrm{c} / \mathrm{c}$. Distribution steel: Area $=0.12 \times 1000 \times 190 / 100$ $=228 \mathrm{~mm}^{2}$ Spacing for 8 mm dia. Bars $=1000 \times 50.27 / 228=220.5 \mathrm{~mm}$ Provide 8 mm dia. @ $220 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.	01 M 01 M 01 M 01 M 02 M 02 M
Q. 3		Attempt any FOUR:	(16)

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
What is flange width of T-beam as per IS: 456? State meaning of each term used therein. \\
Flange width of T-beam \(=\left(I_{0} / 6\right)+b_{w}+6 D_{f}\) but not greater than the width of web plus half the sum of the clear distance to the adjacent beams on either side. \\
\(\mathrm{L}_{0}=\) Distance between points of zero moments in the beam. \\
\(\mathrm{b}_{\mathrm{w}}=\) width of web. \\
\(D_{f}=\) Depth of flange.
\end{tabular} \& 02 M
02 M \\
\hline Q. 3 \& (b)

Ans \& \begin{tabular}{l}
Find the moment of resistance of (T) beam with following data: $D f=100 \mathrm{~mm}, b f=1200 \mathrm{~mm}, \mathrm{bw}=\mathbf{2 5 0} \mathrm{mm}, d=500 \mathrm{~mm}$, Ast $=1600 \mathrm{~mm}^{2}$, M25 concrete and Fe415 steel.

$\mathrm{Df}=100 \mathrm{~mm}, \mathrm{bf}=1200 \mathrm{~mm}, \mathrm{bw}=250 \mathrm{~mm}, \mathrm{~d}=500 \mathrm{~mm}$, Ast $=1600 \mathrm{~mm}^{2}, \mathrm{M}-25, \mathrm{Fe}-415$.

Actual neutral axis $\mathrm{xu}=(0.87 \times$ fy \times Ast $) /(0.36 \times \mathrm{fck} \times \mathrm{bf})$

$=(0.87 \times 415 \times 1600) /(0.36 \times 25 \times 1200)$

$=53.49 \mathrm{~mm}$.

Xumax $=0.48 \mathrm{xd}$

$=0.48 \times 500$

$=240 \mathrm{~mm}$.

Xu < xumax, hence beam is under reinforced.
$$
\begin{aligned}
\mathrm{Mu} & =0.87 \times \text { fy } \times \text { Ast }(\mathrm{d}-0.42 \times u) \\
& =0.87 \times 415 \times 1600(500-0.42 \times 53.49) \\
& =275.9 \times 10^{6} \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

OR
$$
\begin{aligned}
\mathrm{Mu} & =0.36 \times \mathrm{fck} \times \text { bf } \times \mathrm{xu} \overline{(\mathrm{~d}}-0.42 \times u) \\
& =0.36 \times 25 \times 1200 \times 53.49(500-0.42 \times 53.49) \\
& =275.9 \times 10^{6} \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

 \&

01 M

01 M

02 M
\end{tabular}

\hline Q. 3 \& \& | Diameter of steel bar is 16 mm, Use Fe415 and design bond stress is 1.2 mPa. For plain bar in tension. Find development length in tension and compression. |
| :--- |
| $\phi=16 \mathrm{~mm}$, Fe-415, Design bond stress $=1.2 \mathrm{mPa}$. |
| Bond stress for deformed bars in tension $=1.2 \times 1.6=1.92 \mathrm{mPa}$. |
| Bond stress for deformed bars in compression $=1.2 \times 1.6 \times 1.25=2.4 \mathrm{mPa}$. |
| Development length in tension $=0.87 \times 415 \times 16 /(4 \times 1.92)=752.2 \mathrm{~mm}$. |
| Development length in compression $=0.87 \times 415 \times 16 /(4 \times 2.4)=601.75 \mathrm{~mm}$. | \& \[

$$
\begin{aligned}
& 01 \mathrm{M} \\
& 01 \mathrm{M} \\
& 01 \mathrm{M} \\
& 01 \mathrm{M}
\end{aligned}
$$
\]

\hline Q. 3 \& | (d) |
| :--- |
| Ans | \& | Define the development length. How it is calculated. |
| :--- |
| Development length: It is an additional length of a bar of given diameter that required beyond a section for proper anchorage through bond. |
| Development length is calculated using following expression. |
| Ld = Actual stress in steel $\times \phi / 4 \times$ design bond stress. | \& \[

$$
\begin{aligned}
& 02 \mathrm{M} \\
& 02 \mathrm{M}
\end{aligned}
$$
\]

\hline Q. 3 \& (e)

Ans \& | Design an axially loaded column $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ pinned at both ends with an unsupported length of 3 m for carrying a factored load of 2500 kN . Use M20 grade concrete and Fe415 steel. |
| :--- |
| Column $400 \mathrm{~mm} \times 400 \mathrm{~mm}$, le $=3 \mathrm{~m}, \mathrm{Pu}=2500 \mathrm{kN}, \mathrm{M}-20, \mathrm{Fe}-415$. $\begin{aligned} & \mathrm{Ag}=400 \times 400=160000 \mathrm{~mm}^{2} \\ & \mathrm{Ac}=\mathrm{Ag}-\mathrm{Asc}=160000-\mathrm{Asc} \\ & \mathrm{Pu}=(0.4 \times \mathrm{fck} \times \mathrm{Ac})+(0.67 \times \mathrm{fy} \times \mathrm{Asc}) \\ & \begin{aligned} 2500 \times 10^{3} & =[0.4 \times 20 \times(160000-\mathrm{Asc})]+(0.67 \times 415 \times \text { Asc }) \\ & =1280000-8 \text { Asc }+278.05 \text { Asc } \end{aligned} \\ & \text { Asc }=\left(2500 \times 10^{3}-1280000\right) / 270.05 \end{aligned}$ | \& (16)

01 M

01 M

\hline
\end{tabular}

		```= 4517.7 mm Min. Asc = 0.8 \times400 < 400 / 100= 1280 mm '. Max. Asc = 6 x 400 x 400 / 100=9600 mm 2. Min. Asc < Asc < Max. Asc Hence O. K. Provide }22\textrm{mm}\mathrm{ dia. }12\mathrm{ bars. (Note: Students may provide different combination of no. and dia. Of bars.) Lateral Ties: Diameter of bar: (Greater of below) i. 1/4 of main bar dia. = 22/4 = 5.5 mm ii. }6\textrm{mm}\mathrm{ . Provide 6 mm dia. bars. Pitch: (Least of below) i. 16 times dia. Of main bar = 16 x 22=352 mm}\mathrm{ . ii. Least lateral dim. = 400 mm. iii. }\quad300\textrm{mm}\mathrm{ . Provide pitch }300\textrm{mm}\mathrm{ . Hence provide 6 mm dia. @ 300 mm c/c.```	01 M $01 \text { M }$
Q. 4	(A)   (a)   Ans	Attempt any THREE:   State any four losses in pre-stressing and describe any one.   Losses in pre-stressing:   1. Due to elastic shortening.   2. Due to creep of concrete.   3. Due to shrinkage of concrete.   4. Due to relaxation of steel.   5. Due to friction.   6. Due to slip of anchorages.   1. Elastic shortening: When pre-stress is applied to the concrete, an elastic shortening of concrete takes place. This results in an equal and simultaneous shortening of pre-stressing steel. This loss occurs in pre-tensioning method while in post-tensioning method this loss can be avoided by stretching all tendons simultaneously.   2. Creep of concrete: Creep is the property of concrete by which it continues to deform with time under sustained load at unit stresses within the accepted elastic range. Due to creep, shortening of concrete takes place. This results in an equal and simultaneous shortening of pre-stressing steel.   3. Shrinkage of concrete: Shrinkage is defined as decrease in volume of concrete due to loss in moisture. Due to shrinkage, shortening of concrete takes place. This results in an equal and simultaneous shortening of pre-stressing steel.   4. Relaxation of steel: Relaxation is assumed to mean the loss of stress in steel under nearly constant strain at constant temperature. It is similar to creep of concrete.   5. Friction: This loss occurs only in post-tensioning method. There are small frictional losses in the jacking equipment. There is also friction between tendons and surrounding materials.   6. Slip of anchorages: This loss occurs only in post-tensioning method. After stretching and anchoring, tendons are released and the force is transferred to the anchorages. Due to this load, anchorages pierce in the concrete resulting	(12)   Any four 01/2 M for each   Any one 02 M

\begin{tabular}{|c|c|c|c|}
\hline \& \& shortening of tendons. This shortening of tendons results in decreasing stress in tendons. \& \\
\hline Q. 4 \& \begin{tabular}{l}
(A)(b) \\
Ans
\end{tabular} \& \begin{tabular}{l}
Calculate working load carrying capacity of column \(300 \mathrm{~mm} \times 450 \mathrm{~mm}\) in dimension and provided with \(8-16 \mathrm{~mm}\) diameter bars. Use M20 \& Fe500 steel. \\
Column \(300 \mathrm{~mm} \times 450 \mathrm{~mm}, \mathrm{M}-20, \mathrm{Fe}-500\), Asc \(=16 \mathrm{~mm}\) dia. 8 bars.
\[
\begin{aligned}
\& \mathrm{Ag}=300 \times 450=135000 \mathrm{~mm}^{2} \\
\& \mathrm{Asc}=8 \times \pi \times 16^{2} / 4=1608.5 \mathrm{~mm}^{2} \\
\& \mathrm{Ac}=\mathrm{Ag}-\mathrm{Asc}=135000-1608.5=133391.5 \\
\& \mathrm{Pu}=(0.4 \times \mathrm{fck} \times \mathrm{Ac})+(0.67 \times \mathrm{fy} \times \mathrm{Asc}) \\
\& \quad=(0.4 \times 20 \times 133391.5)+(0.67 \times 500 \times 1608.5) \\
\& \\
\& \quad \begin{aligned}
\text { Working load } \& =\mathrm{Pu} / \text { F.O.S. } \\
\& =1605.98 / 1.5 \\
\& =1070.65 \mathrm{kN}
\end{aligned} \\
\& \begin{aligned}
\end{aligned} \\
\&
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
01 M \\
02 M \\
01 M
\end{tabular} \\
\hline Q. 4 \& \[
\begin{array}{|l|}
\hline \text { (A)(c) } \\
\text { Ans }
\end{array}
\] \& \begin{tabular}{l}
State the values of partial factor of safety for steel and concrete. \\
1) Partial factor of safety for steel \(=1.15\) \\
2) Partial factor of safety for concrete \(=1.5\)
\end{tabular} \& \[
\begin{array}{|l}
\hline 02 \mathrm{M} \\
02 \mathrm{M} \\
\hline
\end{array}
\] \\
\hline Q. 4 \& \begin{tabular}{l}
(A)(d) \\
Ans
\end{tabular} \& \begin{tabular}{l}
State four situations where doubly reinforced section is preferred. \\
Situations where doubly reinforced section is preferred. \\
1. When depth of beam is restricted and strength of beam having restricted depth is inadequate. \\
2. When the section are subjected to reversal of bending moment. \\
3. In continuous T-beam where the portion of beam over intermediate supports has to be designed as doubly reinforced. \\
4. When the beams are subjected to eccentric loading, shocks or impact loads.
\end{tabular} \& 01 M for each \\
\hline Q. 4 \& \begin{tabular}{l}
(B) \\
(a) \\
Ans
\end{tabular} \& \begin{tabular}{l}
Attempt any ONE: \\
An R.C.C. beam \(230 \mathrm{~mm} \times 450 \mathrm{~mm}\) effective is subjected to a factored moment of 140 kN -m. Calculate area of steel in tension and compression zone. Use M2O gratd concrete \& Fe415 steel. (Assume d' 45 mm and \(d^{\prime} / d=0.1, f s c=353 \mathrm{~N} / \mathrm{mm}^{2}\) ) \(\mathrm{b}=230 \mathrm{~mm}, \mathrm{~d}=450 \mathrm{~mm}, \mathrm{Mu}=140 \mathrm{kN}-\mathrm{m}, \mathrm{M}-20, \mathrm{Fe}-415, \mathrm{~d}^{\prime}=45 \mathrm{~mm}, \mathrm{fsc}=353 \mathrm{~N} / \mathrm{mm}^{2}\).
\[
\begin{aligned}
\text { Mulim } \& =\mathrm{Mu}_{1}=0.138 \times \mathrm{fck} \times \mathrm{b} \times \mathrm{d}^{2} \\
\& =0.138 \times 20 \times 230 \times 450^{2} \\
\& =128.547 \times 10^{6} \mathrm{~N}-\mathrm{mm} . \\
\mathrm{Mu}_{2}= \& 140 \times 10^{6}-128.547 \times 10^{6} \\
= \& 11.453 \times 10^{6} \mathrm{~N}-\mathrm{mm}
\end{aligned}
\] \\
Xumax \(=0.48 \times 450=216 \mathrm{~mm}\). \\
\(\mathrm{Ast}_{1}=\mathrm{Mu}_{1} /[0.87 \times\) fy \(\times(\mathrm{d}-0.42\) xumax \()]\) \\
\(=128.547 \times 10^{6} /[0.87 \times 415 \times(450-0.42 \times 216)]\) \\
\(=990.97 \mathrm{~mm}^{2}\) \\
Asc \(=\mathrm{Mu}_{2} /\left[\mathrm{fsc} \times\left(\mathrm{d}-\mathrm{d}^{\prime}\right)\right]\) \\
\(=11.453 \times 10^{6} /[353 \times(450-45)]\) \\
\(=80.11 \mathrm{~mm}^{2}\). \\
\(A s t_{2}=\mathrm{Mu}_{2} /\left[0.87 \times \mathrm{fy} \times\left(\mathrm{d}-\mathrm{d}^{\prime}\right)\right]\) \\
\(=11.453 \times 10^{6} /[0.87 \times 415 \times(450-45)]\) \\
\(=78.3 \mathrm{~mm}^{2}\). \\
Ast \(_{2}=(\mathrm{fsc} \times \mathrm{Asc}) /(0.87 \times \mathrm{fy})\)
\[
=(353 \times 80.11) /(0.87 \times 415)
\]
\end{tabular} \& (06)

01 M
01 M
01 M
01 M
01 <br>
\hline
\end{tabular}

		$\begin{aligned} & \quad=78.3 \mathrm{~mm}^{2} . \\ & \text { Total Ast }=990.97+78.3=1069.27 \mathrm{~mm}^{2} . \end{aligned}$	01 M
Q. 4	(B)(b) Ans	A beam $240 \mathrm{~mm} \times 500 \mathrm{~mm}$ effective, it is reinforced with 4-16 mm diameter tension side and 2-12 mm in compression zone, each an effective cover of 40 mm . Use M20 concrete \& Fe415 steel. Find ultimate moment of resistance. Assume fsc $=352 \mathrm{~N} / \mathrm{mm}^{2}$. $\mathrm{b}=240 \mathrm{~mm}, \mathrm{~d}=500 \mathrm{~mm}$, Ast $=16 \mathrm{~mm}-4$, Asc $=12 \mathrm{~mm}-2, \mathrm{M}-20, F e-415, \mathrm{~d}^{\prime}=40 \mathrm{~mm}$, $\mathrm{fsc}=352 \mathrm{~N} / \mathrm{mm}^{2}$.   Ast $=4 \times \pi \times \phi^{2} / 4$ $=4 \times \pi \times 16^{2} / 4=804.25 \mathrm{~mm}^{2}$   Ast $=2 \times \pi \times \phi^{2} / 4$ $=2 \times \pi \times 12^{2} / 4=226.19 \mathrm{~mm}^{2}$ $\begin{aligned} \text { Actual neutral axis } \mathrm{xu} & =[(0.87 \times \mathrm{fy} \times \text { Ast })-(\mathrm{fsc} \times \text { Asc })] /(0.36 \times \mathrm{fck} \times \mathrm{b}) \\ & =[(0.87 \times 415 \times 804.25)-(352 \times 226.19)] /(0.36 \times 20 \times 240) \\ & =121.97 \mathrm{~mm} . \\ \text { Xumax } & =0.48 \times \mathrm{d} \\ & =0.48 \times 500 \\ & =240 \mathrm{~mm} . \end{aligned}$   Xu < xumax, hence beam is under reinforced. $\begin{aligned} \mathrm{Mu} & =0.36 \times \mathrm{fck} \times \mathrm{b} \times \mathrm{xu}(\mathrm{~d}-0.42 \times u)+\mathrm{fsc} \times \operatorname{Asc}\left(\mathrm{d}-\mathrm{d}^{\prime}\right) \\ & =0.36 \times 20 \times 240 \times 121.97(500-0.42 \times 121.97)+352 \times 226.19(500-40) \\ & =131.21 \times 10^{6} \mathrm{~N}-\mathrm{mm} . \end{aligned}$	01 M   02 M   01 M   02 M
Q. 5	(a) Ans	Attempt any TWO:   Design a doubly reinforced rectangular beam $300 \mathrm{~mm} \times 660 \mathrm{~mm}$ overall size, for an effective span of 5 m . The beam is subjected to udl of $55 \mathrm{kN} / \mathrm{m}$. Assume effective cover 60 mm . Use M20 \& Fe415 steel. $\mathrm{d}^{\prime} / \mathrm{d}=0.1, \mathrm{fsc}=353 \mathrm{~N} / \mathrm{mm}^{2}$.   $\mathrm{Le}=5 \mathrm{~m} ., \mathrm{w}=55 \mathrm{kN} / \mathrm{m}, \mathrm{b}=300 \mathrm{~mm}, \mathrm{D}=660 \mathrm{~mm}, \mathrm{M}-20, \mathrm{Fe}-415, \mathrm{~d}^{\prime}=60 \mathrm{~mm}, \mathrm{fsc}=353$ $\mathrm{N} / \mathrm{mm}^{2}$.   Factored load $=1.5 \times 55=82.5 \mathrm{kN} / \mathrm{m}$ $\begin{aligned} \mathrm{Mu} & =82.5 \times 5^{2} / 8 \\ & =257.81 \mathrm{kN}-\mathrm{m} . \end{aligned}$   Effective depth $d=660-60=600 \mathrm{~mm}$. $\begin{aligned} \text { Mulim } & =0.138 \times 20 \times 300 \times 600^{2} \\ & =298.08 \mathrm{kN}-\mathrm{m} \end{aligned}$   Mu < Mulim, Hence singly under reinforced beam is to be designed. $\begin{aligned} \text { Ast } & =0.5 \times f c k \times b \times d\left\{1-\operatorname{SQRT}\left[1-(4.6 \times \mathrm{Mu}) /\left(\mathrm{fck} \times \mathrm{b} \times \mathrm{d}^{2}\right)\right]\right\} / \mathrm{fy} \\ & =0.5 \times 20 \times 300 \times 600\left\{1-\operatorname{SQRT}\left[1-\left(4.6 \times 257.812 \times 10^{6}\right) /\left(20 \times 300 \times 600^{2}\right)\right]\right\} / 415 \\ & =235.71424 .7 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 01 \mathrm{M} \\ & 02 \mathrm{M} \\ & 01 \mathrm{M} \\ & 01 \mathrm{M} \\ & 01 \mathrm{M} \\ & 02 \mathrm{M} \end{aligned}$
Q. 5	(b)	A beam $250 \mathrm{~mm} \times 400 \mathrm{~mm}$ deep effective is reinforced with 3 bars of 16 mm diameter of grade Fe415. The shear force at the support is 60 kN . Design the shear reinforcement if grade of concrete used is M20. Use 6 mm or 8 mm diameter vertical stirrups. $\begin{aligned} & \mathrm{b}=250 \mathrm{~mm}, \mathrm{~d}=400 \mathrm{~mm}, \mathrm{Ast}=16-3, \mathrm{Fe}-415, \mathrm{~V}=60 \mathrm{kN}, \mathrm{M}-20 . \\ & \mathrm{Vu}=1.5 \times 60=90 \mathrm{kN} \end{aligned} \begin{aligned} \text { Nominal shear stress } & =\mathrm{Vu} /(\mathrm{b} \times \mathrm{d}) \\ & =90 \times 10^{3} /(250 \times 400) \\ & =0.9 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned} \quad \begin{aligned} & \text { Ast }=3 \times \pi \times 16^{2} / 4= 603.19 \mathrm{~mm}^{2} \\ & \mathrm{Pt} \%=603.19 \times 100 /(25 \times 400)=0.60 \% \end{aligned}$	01 M 01 M


(ISO/IEC - 27001-2013 Certified)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& Provide \& \(\mathrm{D}=220 \mathrm{~mm}\) \& \(\mathrm{d}=160 \mathrm{~mm}\) \& \(\mathrm{D}=220 \mathrm{~mm}\) \& \(\mathrm{d}=160 \mathrm{~mm}\) \& \multirow[b]{2}{*}{01 M} \\
\hline \& \& Ast \(=0.5 \times \mathrm{fck} \times \mathrm{b} \times \mathrm{d}\{1-\) SQRT[1-(4.6x Mu) / (fck x b x \(\left.\left.\left.\mathrm{d}^{2}\right)\right]\right\}\) / fy \& \[
\begin{array}{|l}
\hline 0.5 \times 20 \times 1000 \times 160\{1- \\
\text { SQRT }[1-(4.6 \times 65.44 \times \\
\left.\left.\left.10^{6}\right) /\left(20 \times 1000 \times 160^{2}\right)\right]\right\} / \\
415=1380.5 \mathrm{~mm}^{2} \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 0.5 \times 20 \times 1000 \times 160\{1- \\
\& \text { SQRT } 1-(4.6 \times 62.31 \times \\
\& \left.\left.\left.10^{6}\right) /\left(20 \times 1000 \times 160^{2}\right)\right]\right\} / \\
\& 415=1297.5 \mathrm{~mm}^{2}
\end{aligned}
\] \& \\
\hline \& \& Spacing for 16 mm dia.
\[
\text { Bars }=1000 \times \text { A1 / Ast }
\] \& 145.6 mm \& 155 mm \& \multirow[t]{2}{*}{01 M} \\
\hline \& \& Provided \& 16 mm dia. @ \(140 \mathrm{~mm} \mathrm{c} / \mathrm{c}\) \& 16 mm dia. @ \(150 \mathrm{~mm} \mathrm{c} / \mathrm{c}\) \& \\
\hline \& \& \&  \&  \& 01 M for fig. \\
\hline Q. 6 \& (a)
Ans \& \multicolumn{3}{|l|}{\begin{tabular}{l}
Attempt any FOUR: \\
An R.C. \(\boldsymbol{T}\)-beam section reinforced for tension has the following dimension bf \(=1250\) \(\mathrm{mm}, b w=300 \mathrm{~mm}, d=550 \mathrm{~mm}, \mathrm{Df}=100 \mathrm{~mm}\), Ast \(=1884 \mathrm{mm2}\). Use of M 20 \& steel Fe415 is made. Calculate the limiting moment of resistance.
\[
\begin{aligned}
\& \mathrm{Df}=100 \mathrm{~mm}, \mathrm{bf}=1250 \mathrm{~mm}, \mathrm{bw}=300 \mathrm{~mm}, \mathrm{~d}=550 \mathrm{~mm}, \text { Ast }=1884 \mathrm{~mm}^{2}, \mathrm{M}-250, \\
\& \text { Fe-415. } \\
\& \begin{aligned}
\text { Actual neutral axis } \times \mathrm{xu} \& =(0.87 \times \mathrm{fy} \times \text { Ast }) /(0.36 \times \mathrm{fck} \times \mathrm{bf}) \\
\& =(0.87 \times 415 \times 1884) /(0.36 \times 20 \times 1250) \\
\& =75.58 \mathrm{~mm} . \\
\text { xumax } \& =0.48 \times \mathrm{d} \\
\& =0.48 \times 550 \\
\& =264 \mathrm{~mm} .
\end{aligned}
\end{aligned}
\] \\
xu < xumax, hence beam is under reinforced.
\[
\begin{aligned}
\mathrm{Mu} \& =0.87 \times \text { fy } \times \text { Ast }(\mathrm{d}-0.42 \times u) \\
\& =0.87 \times 415 \times 1884(550-0.42 \times 75.58) \\
\& =352.53 \times 10^{6} \mathrm{~N}-\mathrm{mm} .
\end{aligned}
\] \\
OR
\[
\begin{aligned}
\mathrm{Mu}= \& 0.36 \times \mathrm{fck} \times \mathrm{bf} \times \times \mathrm{u}(\mathrm{~d}-0.42 \times \mathrm{u}) \\
= \& 0.36 \times 20 \times 1250 \times 75.58(550-0.42 \times 75.58) \\
\& =352.53 \times 10^{6} \mathrm{~N}-\mathrm{mm}
\end{aligned}
\]
\end{tabular}} \& (16)

01 M
01 M

02 M <br>
\hline Q. 6 \& (b)

Ans \& \multicolumn{3}{|l|}{| State the I.S. specification for, |
| :--- |
| i) Maximum reinforcement in beams \& slabs. |
| ii) Minimum reinforcement in slab. |
| iii) Minimum shear reinforcement. |
| iv) Cover to reinforcement in beam and slab. |
| i. Maximum reinforcement in slab and beam $=4 \%$ of gross area. ( $0.04 \times b \times D$ ) |
| ii. Minimum reinforcement in slab $=0.15 \%$ for M.S. and $0.12 \%$ for deformed bars, of gross area. |
| iii. Minimum shear reinforcement, [Asv / (b x sv)] > or $=[0.4 /(0.87 \times f y)]$ |
| iv. Cover to reinforcement in beams \& slab. |
| For beams, 20 mm to 70 mm depending upon fire resistance required. |
| For slabs, 20 mm to 55 mm depending upon fire resistance required. |} \& \[

$$
\begin{aligned}
& 01 \mathrm{M} \\
& 01 \mathrm{M} \\
& 01 \mathrm{M} \\
& 01 \mathrm{M}
\end{aligned}
$$
\] <br>

\hline Q. 6 \& (c) \& \multicolumn{3}{|l|}{Calculate effective flange width for T-beam for following details. Width of web $=\mathbf{2 3 0} \mathbf{~ m m}$.} \& <br>
\hline
\end{tabular}

	Ans	```Slab thickness = 100 mm. Size of hall = 12 m x 6 m. Width of support for beam = 230 mm}\mathrm{ . C/c spacing of beams = 3 m. bw = 230 mm, Df = 100 mm, Hall size = 12 m x 6 m., Support = 230 mm, C/c spacing of beam \(=3 \mathrm{~m}\). \[ \mathrm{le}=6+0.23=6.23 \mathrm{~m} \] \[ \text { Hence } \mathrm{I}_{0}=6.23 \mathrm{~m} . \] \[ b f=\left(l_{0} / 6\right)+b w+6 D f \] \[ =(6230 / 6)+230+6 \times 100 \] \[ \text { = } 1868.3 \mathrm{~mm} .<\mathrm{C} / \mathrm{c} \text { spacing (3000 mm) } \] \\ Hence bf = 1868.3 mm .```	01 M   02 M   01 M
Q. 6	(d) Ans	Write four I.S. specifications for the longitudinal reinforcement in columns.   1. Minimum area of longitudinal reinforcement $=0.8 \%$ of gross area.   2. Maximum area of longitudinal reinforcement $=6.0 \%$ of gross area.   3. Minimum number of bars $=04$ for square column, 06 for circular column and 06 for column with helical reinforcement.   4. Minimum diameter of bar $=12 \mathrm{~mm}$.   5. Maximum spacing of bars measured along periphery of column $=300 \mathrm{~mm}$.	Any four, 01 M for each
Q. 6	(e)   Ans	Calculate the area of longitudinal steel for short circular column of diameter 400 mm with effective length 4.5 m to carry a factored load of 900 kN . Use M20 and Fe500.   Column 400 mm diameter, $\mathrm{le}=4.5 \mathrm{~m}, \mathrm{Pu}=900 \mathrm{kN}, \mathrm{M}-20$, Fe-500. $\begin{aligned} & \mathrm{Ag}=\pi \times 400^{2} / 4=125663.71 \mathrm{~mm}^{2} \\ & \mathrm{Ac}=\mathrm{Ag}-\mathrm{Asc}=125663.71-\mathrm{Asc} \\ & \mathrm{Pu}=(0.4 \times \mathrm{fck} \times \mathrm{Ac})+(0.67 \times \mathrm{fy} \times \mathrm{Asc}) \\ & 900 \times 10^{3}=[0.4 \times 20 \times(125663.71-\mathrm{Asc})]+(0.67 \times 500 \times \text { Asc }) \\ & \quad=1005309.68-8 \text { Asc }+335 \text { Asc } \\ & \text { Asc } \end{aligned} \quad\left(900 \times 10^{3}-1005309.68\right) / 327 .$   Required area of compression steel is negative; hence minimum area of steel is to be provided.   Min. Asc $=0.8 \times 125663.71 / 100=1005.3 \mathrm{~mm}^{2}$.   Provide Asc $=1005.3 \mathrm{~mm}^{2}$	01 M   02 M   01 M

