MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION <u>Model Answer</u>

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page 1 of 28

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page 2 of 28

QN	Vo.	An	swer	Marking
				scheme
1	a	Attempt any THREE of the followin	g	12
1a	i	1)Accuracy:		1 mark each
		It is the instruments ability to indicate	or record the true value of the	
		variable being measured.		
		2) Precision:		
		It is the degree of exactness for which	an instrument is designed to perform	
		3)Sensitivity:		
		It is the smallest change in the value of	the measured variable to which an	
		instrument responds.		
		4) Repeatability: It is the closeness of	agreement among a number of	
		consecutive measurements of the output	nt for the same value of input under the	
		same operating conditions, approaching	g the measurement from the same	
		direction.		
1a	ii	Difference between variable head mo	eter and variable area meter:	1 mark each
		(any three)		
		Variable head meter	Variable area meter	
		1. Area of flow is constant and	Pressure drop is constant and area	
		pressure drop varies with flow rate	of flow varies with flow rate	
		2. Cannot give volumetric flow rate	Can give volumetric flow rate	
		directly	directly	
		3. Relatively cheap	costly	
		4. Simple in construction	complex	

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **3** of **28**

	5. Need straight pipe before and after the meter Does not need	
	Eg for variable head meter(any one): Orificemeter, venturimeter	1/2
	Eg for variable area meter: Rotameter	1/2
a iii	Different methods of direct level measurement	1
	Sight glass method, float type level indicator	
	Sight glass method for level measurement:	
	Open tank Sight-glass tube 30 Scale Liquid Scale	
	Sight glass instrument consists of graduated tube of toughened glass which is	3
	connected to the exterior of the tank at the bottom. The liquid level in the sight	
	glass matches the level of liquid in the tank. As the liquid level in the tank	
	rises and falls, the liquid level in the sight glass also rises and falls	
	accordingly. Thus by measuring the level in the sight glass, the level of the	
	liquid in the tank is measured.	
	OR	
	Float type liquid level measurement:	
	Diagram	

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **4** of **28**

		1 age 4 01 20
	Counter Weight Liquid Float	
	Explanation:	
	Float operated level indicator is used to measure liquid levels in a tank in	
	which a float rests on the surface of liquid and follows the changing level of	
	liquid. The float is made of corrosion resisting material (such as stainless	
	steel) and rests on liquid level surface between two grids to avoid error due to	
	turbulence The movement of the float is transmitted to a pointer through a	
	suitable mechanism which indicates the level on a calibrated scale	
1a iv	Servo operation	
	The operation in which the purpose of control system is to make the process to	
	follow the changes in set point as closely as possible (no change in load but	1
	set point is changing) is termed as servo operations	
	Eg: Varying the temperature of a reactor according to a prescribed time-	
	temperature pattern, processing of metals in which the set point is changed	1
	with certain time schedule so as to anneal the metal at different temperatures.	
	Regulator operation:	

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **5** of **28**

	The operation in which the purpose of control system is to maintain the	1
		1
	controlled variable at set point in spite of changes in load is called regulator	1
	operation.	1
	Eg: continuous chemical process in which the flow of process material is	
	maintained at a constant value.	
1b	Attempt any ONE of the following	06
1b i	Principle of positive displacement flow meter:	
	These meters have chambers of known volumetric capacity and they are	
	arranged so that when one chamber is being filled, the other is being emptied.	
	For measuring the total flow over a certain period, the fluid is continuously	2
	filled and emptied from the chamber and then the number of times the	
	chamber is being filled and emptied in that period is counted which when	
	multiplied by the volumetric capacity of the chamber gives the total flow.	
	Rotating vanemeter	
	Diagram:	
	Working: It consists of a cylindrical rotor that revolves on ball bearings around a	2

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **6** of **28**

	central shaft and stationary cam, as shown in Fig. The liquid entering the inlet	
	revolves the rotor and the vanes around a cam causing the vanes to move	
	radially. The vane nearest to the inlet port begins to move outward and	2
	becomes fully extended at point A as shown. The vane ahead at point B is	
	already fully extended and thus a measuring chamber of known volume is	
	formed between the two vanes. A continuous series of chambers at the rate of	
	four per revolution is formed which delivers the flow at the outlet.	
1b ii	Radiation pyrometer	
	Diagram	
	Diaphyagm Theymopile Signor Vacuum htmg theymoteuple Lens Indica tor	2
	Construction: It consists of a lens, diaphragm, radiation receiving element, sighting hole and	
	recorder or indicator. Lens is used to concentrate the radiant energy from the	1.5
	hot source on the diaphragm and on the thermopile. Sighting glasses enable the	
	proper line of sight and proper focus to be established.	
	Working:	
	Radiation of all possible wave lengths from a hot body is focused by the	1.5
	lens on the radiation receiving element. When thermopile or vacuum	1.5

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **7** of **28**

thermocouple is used as radiation receiving element, the radiant energy from	
the target is focused in blackened measuring junction. Due to absorption of	
radiant energy, the measuring junction temperature rises. According to	
Seebeck effect, emf is developed between output leads which are proportional	
to temperature difference between measuring and reference junction. The emf	
developed is calibrated in terms of target temperature by using either a	
voltmeter or Wheatstone bridge circuit.	
Application (Any one):	
1) Used in corrosive environments	1
2) Used for measuring temperature of moving objects	
3) Measuring temperature of targets which are not easily accessible.	
Attempt any FOUR of the following	16
Turbine flow meter:	
Diagram	
Magnetic State of Sta	
Working The flow of liquid past the wheel causes the wheel to rotate at a rate which is	2
Working	2
_	the target is focused in blackened measuring junction. Due to absorption of radiant energy, the measuring junction temperature rises. According to Seebeck effect, emf is developed between output leads which are proportional to temperature difference between measuring and reference junction. The emf developed is calibrated in terms of target temperature by using either a voltmeter or Wheatstone bridge circuit. Application (Any one): 1) Used in corrosive environments 2) Used for measuring temperature of moving objects 3) Measuring temperature of targets which are not easily accessible. Attempt any FOUR of the following Turbine flow meter:

Model Answer

SUMMER-19 EXAMINATION

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **8** of **28**

		and coil inside the meter housing. A voltage pulse is induced in the coil as	2
		each blade on the turbine wheel moves past it and these pulses are measured	
		by a pulse counter.	
2	b	Strain gauge:	
		Diagram:	
		Strain eiement Bellows Pressure tonnection	2
		Working	
		As the pressure acting against the bellows changes, bellows get compressed or	
		expanded that causes straining of the strain elements. Strain element being a	
		resistance element, its electrical resistance changes with strain produced. This	
		change in resistance causes deflection of galvanometer in the bridge circuit.	2
		The galvanometer can be calibrated in terms of pressure. It can be used for	
		absolute, gauge and differential pressure measurement.	
		Due consideration should be given for any other type of strain gauge	
		transducer	
2	c	Different elements of Instruments:	
		1. Primary element: It is the part of the instrument that first utilizes	
		energy from the measured medium to produce a condition representing	
		the value of the measured variable.	

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **9** of **28**

		2. Secondary element: It converts the condition produced by the primary	
		element into a condition useful to the function of the instrument.	3
		3. Manipulation element: It performs the given operation on the condition	
		produced by the secondary element.	
		4. Functioning element: It is the part of the instrument used for	
		transmitting, signaling, registering, indicating or recording.	
		Eg. Bourdon tube pressure gauge. In this case the bourdon tube acts as the	
		primary element, mechanical linkage as secondary element, gearing	1
		arrangement as the manipulating element and scale & pointer as the final	
		functional element.	
2	d	C type Bourdon tube	
		Diagram	
		Pinion Pivot Connecting link Movement Sector Socket A Process pressure	2
		Advantages:	
		1) Low cost	
		2) Simple construction	½ mark
		3) Wide pressure range	each for any
		4) High accuracy in relation with low cost	two points
		Disadvantages:	
		1) Low spring gradient	

SUMMER-19 EXAMINATION

Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **10** of **28**

		2) Susceptible to shock and vibration	½ mark
		3) Susceptible to hysteresis	each for any
			two points
2	e	0 K = $[5/9 (^{0}$ F -32)] +273	
		(i) $77^0 \text{F} = 298 \text{ K}$	2
		(ii) 113^{0} F = 318 K	2
2	f	Inputs for control systems:	
		Input signals to control systems that are used to analyze systems called	
		standard test inputs can be of the following types.	
		i) Step input: It is the sudden application of the input at a specified	
		time.	1 mark each
		T(t)	for any four
		A dthica >= td	
		20-5-	
		t	
		ii)Sinusoidal: It is the input which oscillates with a constant amplitude and	
		frequency.	
		The state of the s	
		iii)Ramp: It is a constant rate of change in input ie, gradual application of	

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **11** of **28**

			1 age 11 01 20
		input.	
		(+) x	
		iv)Impulse: It is the input applied for a short duration of time of very high	
		amplitude.	
		Y(t)	
		v. Parabolic input: this is the input which is one degree faster than ramp input	
		Slope = At	
3	<u> </u>	Attempt any FOUR of the following	16
3	a	Pressure gauge method : Diagram:	

SUMMER-19 EXAMINATION

Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **12** of **28**

		Pressure Liquid 5 Pressure gauge 1 - Zero line (Levoi)	2
		Description: When liquid is held in a tank, then it exerts equal pressure on the walls of the tank. Such a pressure is due to the weight of liquid present above a certain reference point or base and is called hydrostatic head or pressure. A pressure	2
		gauge is located at the zero level of the liquid in the tank. Any rise in level causes an increase in pressure, which can be measured by the gauge. The gauge scale is marked in units of level measurement.	
3	b	Applications of	
		(i) Ultrasonic flow meter (Any two)	
		a) Oil and gas industry.	
		b) Water and wastewater.	1 mark each
		c) Power plant.	
		d) Chemical industry.	
		e) Food and beverage industry.	
		f) Pharmaceutical, metals and mining, and pulp and paper.	
		(ii) Turbine flow meter (Any two)	
		a) For Military Application.	
		b) Used in blending system for the Petroleum industry.	1 mark each

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **13** of **28**

		c) Used in aerospace and airborne application for energy-fuel	
		and cryogenic flow measurements.	
3	С	Air to open control valve:	
			1.5
		They are control valves operated through pneumatic actuators. It is designed in	
		such a way that if the air supply fails, the control valve will be fully closed for	
		safety requirement of the process.	
		Air to close control valve:	
		It is designed in such a way that if the air supply fails, the control valve will be	
		fully open for safety requirement of the process.	
			1.5
		Control valve used in hazardous system: The valve used to control	
		hazardous processes should be completely shut off in case of air failure. Hence	1
		air to open control valve is recommended.	
3	d	Seebeck effect:	
		Seebeck discovered that when there is temperature difference between two	
		junctions of thermocouple, an emf is developed between the junctions. This	
		emf causes electric current to flow through thermocouple circuit. This is called	2

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **14** of **28**

		thermoelectric effect by	which thermal energy is con	nverted to electrical	
		energy.			
		Thermocouple with temperature range (any two)			
		Thermcouple type	Material used	Temperature range	
		В	Platinum and Rhodium	0 to 1860 ⁰ C	
		Е	Chromel and	-196 °C to 900°C	
			Constantan		1 mark each
		J	Iron and Constantan	-196°C to 760°C	
		K	Chromel and Alumel	-190°C to 1370°C	
		S	Platinum-Rhodium and	-18 ⁰ C to 1760 ⁰ C	
			Platinum		
		T	Rhodium –Copper and	-190°C to 399 °C	
			Constantan		
3	e	Bellows used for measuring differential pressure: Link to Pointer Spring			4
		fed inside the bellows, while the other is fed outside it so that the differential			
		pressure acts across the bellows. The movement of free end of bellows			
		represents differential pressure.			
3	f	Features of distributed	control system(Any four)	:	1 mark each

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **15** of **28**

	i. Monitor & manipulate the process	
	ii. Retrieve historical data (batch history is required to facilitate display &	
	analysis of key characteristics within a batch between batches of similar types)	
	iii. Configure the system	
	iv. Develop control programs	
	v. Diagnose system failures.	
4 a	Attempt any THREE of the following	12
4a i	Bimetallic thermometer:	
	Diagram:	
	Fixed End High-expansion Metal	2
	Working:	
	Bimetallic strip consists of two strips of metal such as invar and brass welded	
	together, each strip made from a metal having a different coefficient of thermal	
	expansion. Whenever the welded strip is heated, the two metals change length	
	in accordance with their individual rates of thermal expansion. The two metals	
	expand to different lengths as the temperature rises. This forces the bimetallic	2
	strip to bend towards the side with low coefficient of thermal expansion as	2
	shown in Fig above. If one end of the bimetallic strip is fixed so that it cannot	
	move, the distance the other end bends is directly proportional to the square of	
	the length of the metal strip, as well as to the total change in temperature, and	
1		İ

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

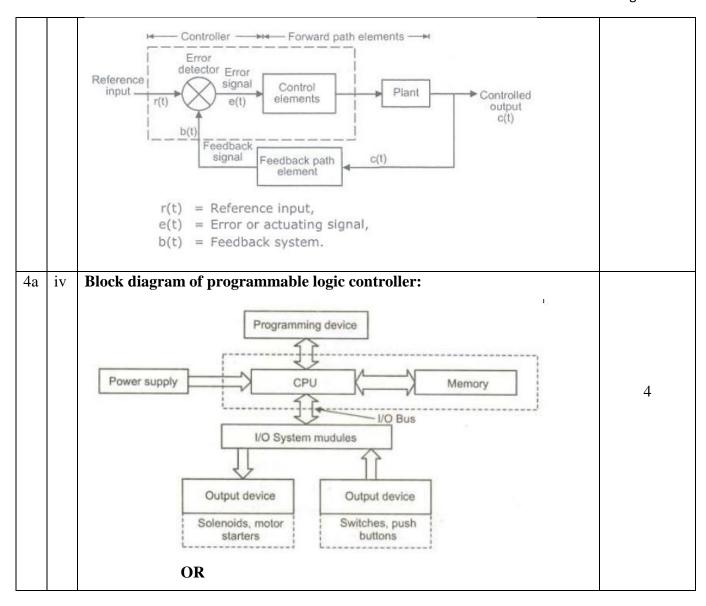
Page **16** of **28**

		is inversely proportional to the thickness of the metal. The movement of the	
		bimetallic strip is utilized to deflect a pointer over a calibrated scale.	
4a	ii	Calibration of pressure gauge by dead weight tester: Pressure gauge Piston	
		It consists of a very accurately machined, bored and finished piston which is inserted into a close-fitting cylinder. The cross sectional areas of both the piston and the cylinder are known. At the top of the piston is provided a platform on which the standard weight, of known accuracy, can be placed An oil reservoir with a check valve at its bottom is also provided. The oil from the reservoir can be sucked by a displacement pump on its upward stroke. For calibration purpose, first a known (calculated) weight is placed on the platform and the fluid pressure is applied on the other end of the piston until enough force is developed to lift the piston-weight combination and the piston floats freely within the cylinder when the fluid gauge pressure equals the dead weight divided by the piston area.	4
4a	iii	Block diagram of closed loop control system:	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page 17 of 28

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-19 EXAMINATION Model Answer

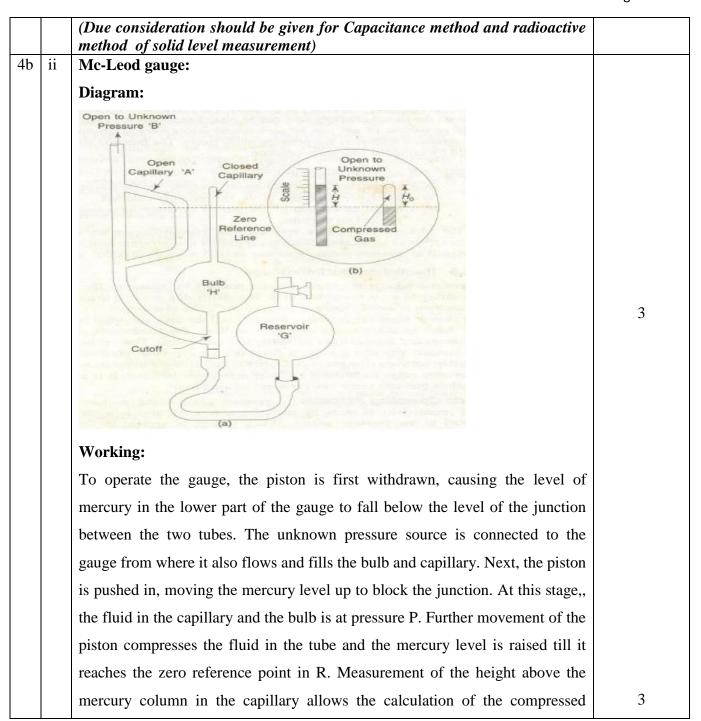
Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page 18 of 28

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

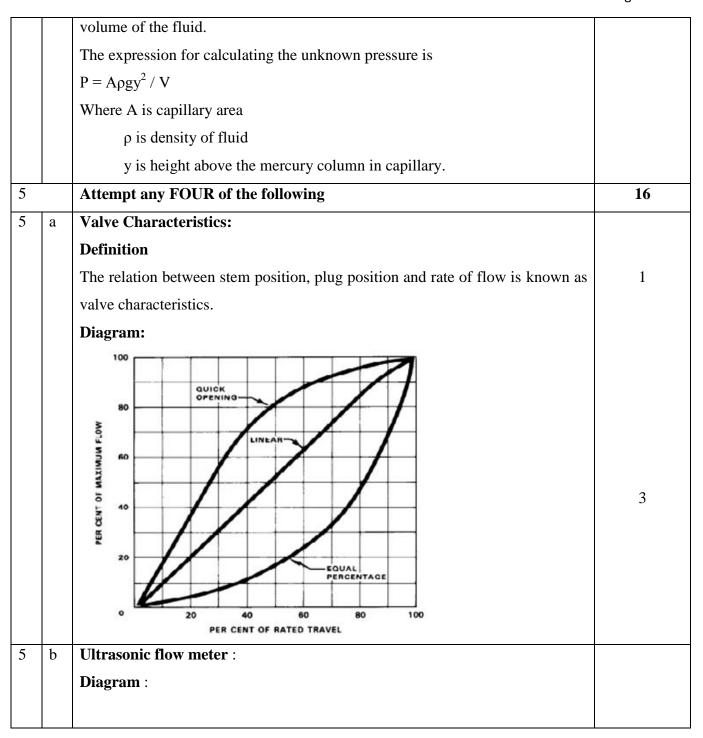
17561

Page 19 of 28

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-19 EXAMINATION Model Answer

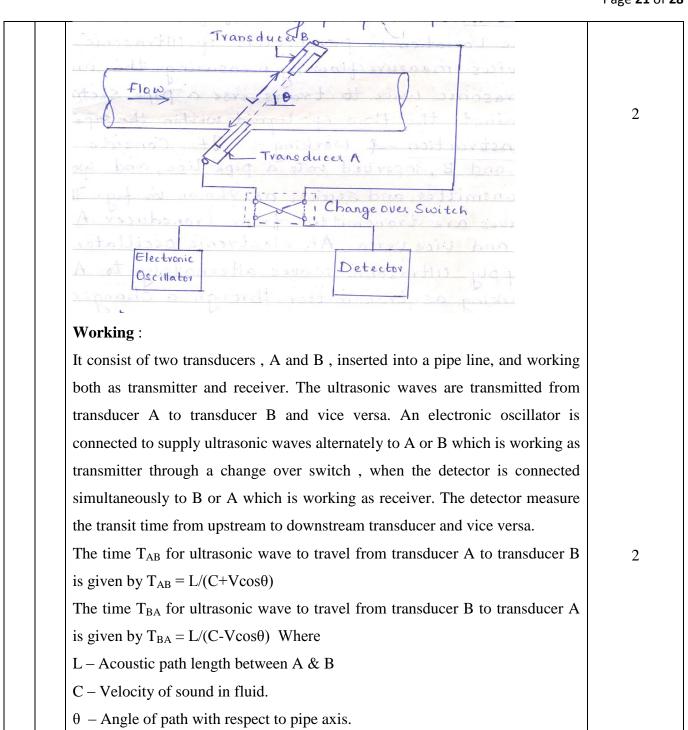
Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **20** of **28**

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **21** of **28**

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **22** of **28**

		V – Velocity of fluid in pipe.	
		$V = \Delta T C / 2L Cos\theta$ where $\Delta T = T_{BA} - T_{AB}$	
		Since this type of flow meter relies upon an ultrasonic signal traversing across	
		the pipe, the liquid must be relatively free of solids and air bubbles.	
5	c	Factors to be considered for valve selection(any four):	1 mark each
		The basic steps in control valve selection are	
		1. The first step in control valve selection involves collecting all relevant data	
		and completing the ISA Form S20.50. The piping size must be set prior to	
		valve sizing, and determining the supply pressure may require specifying a	
		pump	
		2. The size of the valve is required; select the smallest valve Cv that satisfies	
		the maximum Cv requirement at 90% opening. While performing these	
		calculations, checks should be made regarding flashing, cavitation, sonic flow	
		and Reynolds number to ensure that the proper equation and correction factors	
		are used. As many difficulties occur due to oversized valves as to undersized	
		valves. Adding lots of "safety factors" will result in a valve that is nearly	
		closed during normal operation and has poor rangeability.	
		3. The trim characteristic is selected to provide good performance; goals are	
		usually linear control loop behaviour along with acceptable rangeability.	
		4. The valve body can be selected. The valve size is either equal to the pipe	
		size or slightly less, for example, a 3-inch pipe with a 2-inch globe valve body.	
		When the valve size is smaller than the process piping, an inlet reducer and	
		outlet expander are required to make connections to the process piping.	
		5. The actuator is now selected to provide sufficient force to position the stem	
		and plug.	

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

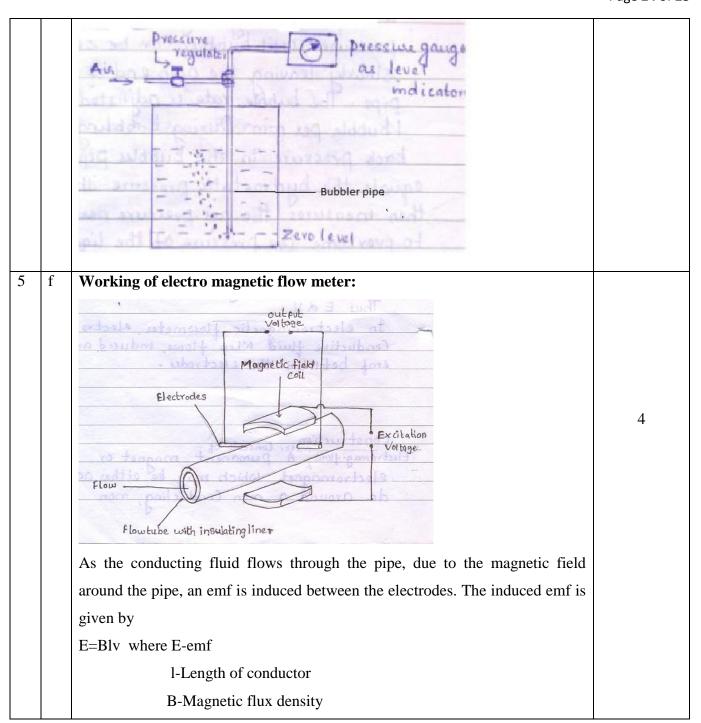
Page **23** of **28**

		6. Finally, auxiliaries can be added to enhance performance. A booster can be	
		increase the volume of the pneumatic signal for long pneumatic lines and large	
		actuators. A positioner can be applied for slow feedback loops with large	
		valves or valves with high actuator force or friction. A hand wheel is needed if	
		manual operation of the valve is expected.	
5	d	Application of PLC:	
		1) PLC can be a vital part of industrial automation as it produces on/off	1 mark each
		voltage outputs to actuate elements such as electric motors, solenoids	
		etc.	
		2) It can also be used in sequential controllers used for periodical on/off of	
		fans, heaters and light switches.	
		Application Of DCS:	
		1) DCS are designed for continuous process where the control signal is	
		analog rather than discrete.	1 mark each
		2) It is a powerful integrated control system having capabilities such as,	
		data acquisition, advanced process control and batch control capabilities	
		for various industrial environments such as cement factory, oil refinery,	
		power plant etc.	
5	e	Air purge method: To make level measurement, the air supply is adjusted so that the pressure is	
		slightly higher than the pressure due to the height of the liquid and bubbles can	
		be seen slowly leaving the open end of the pipe. The bubble rate is adjusted as	4
		1 bubble / minute. During bubbling, the back pressure in the bubbler pipe	7
		exactly equals the hydrostatic pressure. The gauge then measures the air	
		pressure needed to overcome the pressure of the liquid	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page 24 of 28

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **25** of **28**

		v-Velocity of conductor	
		This emf induced is proportional to the velocity of the conductor. As the flow	
		rate varies, velocity of fluid changes and hence the induced emf changes.	
6	1	Attempt any TWO of the following	16
6	a	Different control actions	
		The 4 basic control action are,	
		1. On-Off or Two position control action:	
		In ON/OFF control action, the output has only two states -fully ON or fully	
		OFF. It operates on the manipulated variable only when the measured variable	
		crosses the set point.	
		m=0, for $e>0$	
		m = 100%, for $e < 0$	
		m – output , e - error	2 marks
		2. Proportional (P)controller:	each
		In proportional controller, the output of the controller is proportional to error.	
		m=K _{P.} e	
		Kp – proportional gain	
		e - error	
		3.Integral (I)or reset action:	
		In integral control action, value of controller output is the accumulated error	
		over an extended period of time. The controller output can have nonzero value	
		when the error signal is zero.	
		$m = \frac{1}{T_i} \int_0^t e dt + m(0)$	
		Ti – integral time	
		e – error	

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **26** of **28**

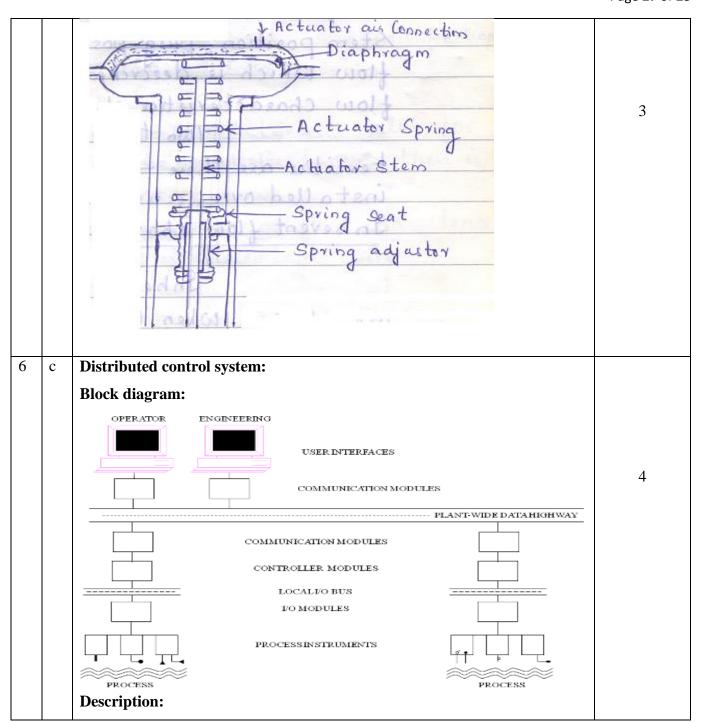
		m(0) - controller output for zero error.	
		4. Derivative (D)or Rate controller:	
		$\mathbf{M} = \mathbf{T}_{\mathrm{d}} \; \mathrm{d}\mathbf{e}/\mathrm{d}t$	
		Td – derivative time	
		de/dt – rate of change of error.	
		The derivative control action responds to the rate at which the error is	
		changing. makes the above expression equal to zero.	
6	b	Function of valve actuator: it is that portion of the valve that responds to the	
		applied signal and results in the movement of the stem due to which the flow	2
		rate of fluid changes. It consists of diaphragm, stem and diaphragm returning	
		spring	
		Working of spring diaphragm actuator:	
		It consists of a pressure tight housing sealed by a flexible diaphragm, stem and	
		diaphragm returning spring. Signal air pressure from the controller is applied	
		to upper diaphragm case, that exerts force on the diaphragm and the actuator	3
		assrmbly.by selecting proper spring rate or stiffness, desired stem	
		displacement can be obtained for any given input signal. The diaphragm is	
		made of neoprene or any other synthetic elastic element.	
	1		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-19 EXAMINATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page **27** of **28**

SUMMER-19 EXAMINATION Model Answer

Subject title: Chemical Process Instrumentation & Control

Subject code

17561

Page 28 of 28

	Page 28 of 28
In DCS equipment is separated in functional area and is installed in different	
work areas of a process plant. The plant operator monitors and manipulates the	
set-points of the process parameter from central control room.	
Controlling portion of the DCS, distributed at various location performs	
following two function at each location.	4
Measurement of analog variable and discrete inputs	
2. Generation of output signals to actuators that can change process condition	
In Figure above the operator console in the control room is connected through	
a data highway to several distributed system components.	
A DCS consist of the following modules:	
1 Operator stations that use microprocessor based CRT display and keyboard	
communication with control device and displays	
2 Remote multifunction microprocessor based controllers (PLCs)	
3 A digital data link (data highway) that connects the multifunction	
controllers with the central operator stations.	
The first priority of DCS is to provide operator interfacing and real time	
process control. DCS has flexibility of implementation of sequential control	
and integration among the various types of control.	