

SUMMER-19 EXAMINATION

Model Answer

Subject: Heat Transfer Operation

Subject code: 17560

Page **1** of **23**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Subject: Heat Transfer Operation

Subject code: 17560

Page **2** of **23**

Q	Sub	Answer	marks
No	Q.N		
1	a	Answer any three	12
1a	(i)	Thermal insulators: These are substances having low value of thermal	1
		conductivities.	
		Use: to minimize the rate of heat flow.	1
		Example: Asbestos, glass wool, cork	1 mark
			each for
			any 2
1a	(ii)	Fouling factor: When heat transfer equipment is put into service, after	2
		sometime, scale, dirt and other solids deposit on both sides of pipe wall,	
		providing two more resistance to heat transfer. The added resistance must	
		be taken into account in calculation of overall heat transfer coefficient. The	
		additional resistance reduces the original value of overall heat transfer	
		coefficient and required amount of heat is no longer transferred by original	
		heat transfer surface. Hence heat transfer equipment are designed by taking	
		into account the deposition of dirt and scale by introducing a resistance	
		known as fouling factor.	
		Effect: It offers additional resistance to heat transfer; reduces the heat	
		transfer coefficient and thus the required amount of heat is no longer	2
		transferred by the original heat transfer surface. Hence heat transfer	
		equipment are designed by taking into account the deposition of dirt and	
		scale by introducing a resistance R _d .	
1a	(iii)	Radiation: Radiation is transfer of energy through space by	2
		electromagnetic waves. If radiation is passing through empty space, it is not	

ct: Heat Trai	nsfer Operation Subject code: 17560	Page 3 of 23
	transformed into other forms of energy, nor is it diverted from its path. If	
	matter appears in its path, the radiation will be transmitted, absorbed or	
	reflected. It is only the absorbed energy that appears as heat.	
	Example: Loss of heat from unlagged pipe.	
	Stefan- Boltzman law:	
	It states that the total energy emitted (emissive power) per unit area per unit	
	time by a black body is proportional to fourth power of its absolute	2
	temperature.	
	$W_b \alpha T^4$	
	Or $W_b = \sigma T^4$	
	Where $W_b = \text{total}$ energy emitted (emissive power) by a black body	
	σ = Stefan Boltzman constant= 5.67*10 ⁻⁸ W/m ² K	
	T = absolute temperature	
1a (iv)	1-2 shell and tube heat exchanger:	4
	Tube sheet welded to shell Shell outlet nozzle Shell	
1 b	Answer any one	6
1b (i)	Heat loss through a composite wall:	
1 1 1 1		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

2 Answer any four		Answer any four		
2	a	Thermal conductivity:		
		It is a characteristic property of the material through which heat is flowing		
		and is a function of temperature. Thermal conductivity of a substance is a		
		measure of the ability of the substance to conduct heat.		
		It is the quantity of heat passing through a material of a unit thickness with		
		a unit heat flow area in unit time when a unit temperature difference is		
		maintained across the opposite faces of the material.		
		Thermal conductivity is independent of temperature gradient and it slightly		
		depends on temperature. For small temperature ranges it is considered		
		constant and for large temperature ranges K depends on temperature.		
		Unit:		
		Unit of thermal conductivity in SI is W/mK or J/(s.m.K)		
2	b	Let area $A=1 m^2$		
		$x_1 = 4mm = 4*10^{-3} m$ $k_1 = 0.138 w/mK$ $A=1 m^2$		
		$x_2 = 90mm = 90*10^{-3} m$ $k_2 = 1.38 m/mK$ A=1 m ²		
		Thermal resistance o sil-o-cel brick $R_1 = x_1/k_1 A$		
		$R_1 = 4*10^{-3} / 0.138 x1 = 0.0289 k/w$		
		Similarly Thermal resistance of common brick brick $R_2 = x_2/k_2 A$		
		$R_2 = 90*10^{-3} / 1.38x1 = 0.0652 $ k/w		
		$\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2$		
		= 0.029 + 0.0652 = 0.0942 k/w		
2	с	To show that at thermal equilibrium the ratio of total emissive power to		
		its absorptivity is same for all bodies		
		Consider that the two bodies are kept into a furnace held at constant		
		temperature of T K. Assume that, of the two bodies one is a black body&		
		the other is a non-black body i.e. the body having 'a' value less than one.		

ıbject: Heat T	Transfer OperationSubject code:17560	Page 7 of 23
	Both the bodies will eventually attain the temperature of T K & the bodies	
	neither become hotter nor cooler than the furnace. At this condition of	
	thermal equilibrium, each body absorbs and emits thermal radiation at the	
	same rate. The rate of absorption & emission for the black body will be	
	different from that of he non-black body.	
	Let the area of non-black body be A_1 and A_2 respectively. Let 'I' be the	
	rate at which radiation falling on bodies per unit area and E_1 and E_2 be the	1
	emissive powers (emissive power is the total quantity of radiant energy	
	emitted by a body per unit area per unit time)of non-black & black body	
	respectively.	
	At thermal equilibrium, absorption and emission rates are equal, thus,	
	$Ia_1 A_1 = A_1 E_1$ (1.1)	
	$\therefore Ia_1 = E_1$ (1.2)	
	And $Ia_b A_2 = A_2 E_b$ (1.3)	
	$Ia_b = E_b \qquad \dots $	
	From equation (1.1) and (1.4).we get	
	$\frac{E1}{a1} = \frac{Eb}{ab} \qquad \dots $	
	Where $a_{1,}a_{b}$ = absorptivity of non-black & black bodies respectively.	
	If we introduce a second body (non-black) then for the second non-black	1
	body,we have :	
	$I A_3 a_2 = E_2 A_3$ (1.6)	
	$\therefore Ia_2 = E_2 \qquad \dots $	
	Where $a_1 = E_2$ are the absorptivity and emissive power of the second non-	
	black body.	

Subject: Heat Trans	sfer Operation Subject code: 17560	Page 10 of 23
	On differentiating	
	$d(\Delta T) = dTh - dTc(5)$	1
	substituting for dq, dTh and dTc from equations (1), (2) and (3) into	
	equation (5), we obtain	
	$d(\Delta T)/\Delta T$ = - (1/(mh Cph) + 1/(mc Cpc)) U B dx	
	ΔTe	1
	$\int_{\Delta Ti} d(\Delta T) / \Delta T = - (1/(mh Cph) + 1/(mc Cpc)) U B \int_0^L dx$	
	ln ($\Delta Te/\Delta Ti$) = - (1/(mh Cph) + 1/(mc Cpc)) U A(6)	
	where $\Delta Te = T_{he} - T_{ce}$	
	$\Delta Ti = T_{hi} - T_{ci}$	1
	Now if q is the total rate of heat transfer in the heat exchanger, then	
	$q = m_h C p_h (T_{hi} - T_{he})$ (7)	1
	$= mc Cpc (T_{ce} - T_{ci})(8)$	
	Substituting equations (7) and (8) into equation (6),	
	$\ln (\Delta Te/\Delta Ti) = -1/q[(T_{hi}-T_{he}) + (T_{ce}-T_{ci})]U A$	
	$q=U A (\Delta Ti - \Delta Te) / \ln (\Delta Ti / \Delta Te)(9)$	
	Equation (9) is the performance equation for a parallel-flow heat exchanger.	1

		$Q = U A \Delta T lm$		1	
		Where $\Delta Tlm = (\Delta Ti - \Delta Te) / \ln (\Delta Ti / \Delta Te)$:)		
3	b	Differentiate Co current and Counter	er current Flow arrangement in	2 mark	
		Heat Transfer:		each	
		Co current and counter current flow:			
		Co current flow	Counter current flow		
		i) Both hot fluid & cold fluid enter at	i) Both hot fluid & cold fluid enter		
		same end & come out from other end	different ends & come out from		
			Different ends.		
		ii) Both fluid flow in the same	ii) Both fluid flow in opposite		
		direction.	direction.		
		iii) LMTD is low	iii)) LMTD is more.		
		The K			
		This Thomas The	TCO		
	1	$\frac{1}{100}$			
3	c	FIND U? hi=12, ho=11600 W/m ² K			

SUMMER-19 EXAMINATION Model Answer

Subject: Heat Transf		sfer Operation Subject code: 17560	Page 12 of 23
		$1/U = 1/h_o + 1/h_i + 1/k/x$	2
		Where U= overall heat transfer coefficient	
		$h_0 = 11600 W / m^2 K$	
		$hi=12 W/m^2 K$	2
		x = (29-25)/2 mm = 2mm = 0.002m	
		$k=34.9 \text{ W/m}^2 \text{ K}$	
		1/U=1/12 + 1/11600 + 0.002/34.9	2
		U= $1/0.08347 = 11.979 \text{ W/m}^2 \text{ K}$	2
4 a		Answer any three	12
4a	(i)	Optimum thickness of insulation and its determination process:.	
		Optimum thickness of insulation:	
		The optimum thickness of an insulation is obtained by purely economic	
		approach. The greater the thickness, the lower the heat loss & the greater	
		the initial cost of insulation & the greater the annual fixed charges.	2
		It is obtained by purely economic approach. Increasing the thickness of an	
		insulation reduces the loss of heat & thus gives saving in operating costs but	
		at the same time cost of insulation will increase with thickness. The	
		optimum thickness of an insulation is the one at which the total annual cost	
		(the sum values of heat lost and annual fixed charges) of the insulation is	
		minimum.	

ct: Heat Transfer Operation		Subject code: 17560	Page 14 of 23			
rate at which ra	adiation falling on bodie	es per unit area and E_1 and E_2 be t	the			
emissive powe	emissive powers (emissive power is the total quantity of radiant energy					
emitted by a b	ody per unit area per u	nit time)of non-black & black bo	dy			
respectively.						
At thermal e	quilibrium, absorption a	nd emission rates are equal, thus,	1			
Ia	$\mathbf{a}_1 \mathbf{A}_1 = \mathbf{A}_1 \mathbf{E}_1$	(1.1)				
	$Ia_1 = E_1$	(1.2)				
And	$Ia_b A_2 = A_2 E_b$	(1.3	3)			
	$Ia_b = E_b$	(1.4)				
From equation	(1.1) and (1.4).we get					
	$\frac{E1}{a1} = \frac{Eb}{ab}$	(1.5)				
Where $a_{1,a_b} = a^{1}$	bsorptivity of non-black	& black bodies respectively.				
If we introduce	e a second body (non-b	lack) then for the second non-bla	ick			
body,we have :						
	$I A_3 a_2 = E_2 A_3$	(1.6)				
	\therefore Ia ₂ = E ₂	(1.7)				
Where $a_1 = E_2 a_1$	are the absorptivity and ϵ	emissive power of the second non-				
black body.			1			
Combining ed	quations (1.2),(1.4) and(1.7) we get,	1			
	$\frac{\mathrm{E1}}{\mathrm{a1}} = \frac{\mathrm{E2}}{\mathrm{a2}} = \frac{\mathrm{E3}}{\mathrm{a3}} = \mathrm{E_b}$	(1.8)				
4a (iii) Parts of shell a	nd tube heat exchange	r and their function: (any 4)	1 mark			
		× • /	each			

t: Heat Tran	sfer Operation Subject code: 17560	age 15 of 2
	ii) Tube – to hold the liquid to be heated	
	iii) Baffles – To increase turbulence on shell side	
	iv) Tube Sheet – to hold the tubes	
	v) Tie rods $-$ to hold the baffles in place	
	vi) Pass partition – divides the tubes equally into two sections	
	vii) Channel – to provide inlet and outlet connections for the tube	
	side fluid	
4a (iv)	Basis : 10,000 kg/hr of solution.	
	Amount of NaOH in Solution	
	$= 10,000 \ge 0.1$	1
	= 1000 kg	
	\therefore Amount of H ₂ O = 9000 kg	
	Find concentration of solution = 50%	
	Let 'x' is amount of find solution	
	$\therefore 0.5 = \frac{1000}{x}$	
	$\therefore \mathbf{x} = \frac{1000}{0.5}$	1
	= 2000 kg	
	: H_2O evaporated =10,000 - 2000	
	= 9000-1000	1
	= 8000	1
	$\therefore Capacity of Evaporation = 8000 \frac{\text{kg}}{\text{hr}}$	1
4 b	Answer any one	6

4b	(i)	Compare forward feed and backward feed arrangement: (any4)		1.5 mark
		Forward feed	Backward feed	each
		Flow of solution to be concentrated	Flow of solution to be concentrated	
		is parallel to steam flow.	in opposite direction to steam flow.	
		Does not need pump for moving the	Need pump for moving the solution	
		solution from effect to effect.	from effect to effect.	
		As all heating of cold feed solution	Solution is heated in each effect	
		is done in first effect, less vapour is	result in better economy.	
		produced, so lower economy.		
		The most concentrated liquor is in	The most concentrated liquor is in th	
		the last effect where temperature is	first effect where temperature	
		lowest and viscosity is highest,	highest and viscosity is lowest, Thu	
		leads to reduction in capacity.	high overall coefficient.	
		Maintenance charges and power cost	Maintenance charges and power con	
		are low	are more.	
		Most common as it is simple to	Not very common as it need pump.	
		operate		
		More economical in steam.	At low values of feed temperatur	
			higher economy.	
4b	(ii)	120mm OD, 1 st layer 50mm, K ₁ =0.06	2W/mK, 2 nd layer 30mm,K ₂ =0.872	
		W/mK, OT=235 C, lag=38C, T of JO	INT ?	

(150/120 - 27001 - 2005 Certific

ct: Heat Transfer Operation			Subject code: 17560	Page 18 of 2 3
		= 123.1	162 W/m	
		Let T be the temperature between two laye	ers of Insulation.	1
		$\therefore \mathbf{Q} = (\mathbf{T}_1 \text{-} \mathbf{T}_2)$	$\Gamma)/\mathbf{R}_1$	
		123.16 = (508 -	-T ₀) / 1.56	1
		T = 315.93	K	
5		Answer any two		16
5	a	Heat lost by hot fluid		
		$Q_h = m_h Cp_h (T_{hi}-T_{ho})$		2
		= 5000 * 2.72*(423-363) = 816000 kJ/	h	
		Heat gained by cold fluid		
		$Q_{c}=m_{c}\ Cp_{c}\left(T_{co}-T_{ci}\right)$		2
		= 15000*4.187*(Tco - 303)		
		$Q_{\rm h}=~Q_{\rm c}$		2
		816000 = 15000*4.2*(Tco - 303)		
		Outlet temperature of water = 316 K		2
5	b	LMTD for co current flow,		
		$\Delta T_1 = T_{hi} - T_{ci}$	= 423 – 311 = 112 K	2
		$\Delta T_2 = T_{ho} - T_{co}$	= 367 – 339 = 28 К	
		$LMTD = \frac{\Delta T1 - \Delta T2}{\ln(\frac{\Delta T1}{\Delta T2})} =$	$\frac{112 - 28}{\ln(\frac{112}{28})} = 60.6 \mathrm{K}$	2
		LMTD for counter current flow,		
		$\Delta T_1 = T_{hi} - T_{cc}$	$_{0} = 423 - 339 = 84 \text{ K}$	2
		$\Delta T_2 = T_{ho} - T_{ci}$	= 367 – 311 = 56 K	

ect: Heat T	Fransfer Operation		Subject code: 17560	Page 19 of 2 3
		$LMTD = \frac{\Delta T1 - \Delta T2}{\ln(\frac{\Delta T1}{\Delta T2})} = \frac{84}{\ln(\frac{\Delta T1}{\Delta T2})}$	$\frac{-56}{1(\frac{84}{56})} = 69.06$ K	1
	LMTD for cocur	rent flow = 60.6 K		
	LMTD for count	er current flow = 69.06 K		
	Since LMTD for	r counter current is more,	the fluid must be directe	ed in
	counter current	fashion.		1
5 c	e Basis: 2000 kg/h	r feed is fed to the evaporate	or.	
	Material balance	of solids:		
	Solids in feed= s	olids in the thick liquor		1
	0.05x2000=0.2 x	. m'		
	m'=500kg/h.			
	overall Material	balance:		
	kg/h feed= kg/h	water evaporated + kg/h thic	ck liquor	
	water evaporated	$(m_v)=2000-500=1500$ kg/h		1
	Energy balance i	s		
	$m_s \lambda_s = m^* c_{pf} * (T)$	$(T-T_f) + m_v \lambda_v$		1
	$m_s 2185 = 2000*$	4 *(380-298) + 1500 *2257	7	
	steam fed(m_s)= 1	849.66 kg/h		1
	steam economy=	kg/h water evaporated/kg/ł	1 steam consumed	
	= 1:	500/1849.66= 0.811		2
	Heat load Q= m	$_{\rm s} \lambda_{\rm s}$		
	Q = 1849.66 * 2	2185 kJ		1
	$Q = 4041507.1^{\circ}$	*1000 / 3600		
	= 1122641 W	7		1
6	Answer any two	,		16
6 a	a Dropwise and fi	Imwise condensation:		2 marks
	Points	Dropwise condensation	Filmwise	each for

Subject	n Subject code: 17560 Page			
	condensation	any 4		
In case of drop-wise condensation	In case of film-wise	points		
the condensate (condensed liquid)	condensation the			
does not wet the surface and	condensed liquid wets			
collects to grow for a while and	the surface and forms a			
then fall from the surface, leaving	continuous film of			
bare metal surface for further	condensate through			
condensation.	which heat transfer			
	takes place. This			
	condensate flows down			
	due to action of gravity			
Heat transfer coefficient are very	Heat transfer	-		
high in case of drop-wise	coefficients are			
condensation since the heat does	relatively very low in			
not have to flow through film by	case of film-wise			
conduction	condensation since the			
	heat does have to flow			
	through film by			
	conduction			
Oily or greasy surfaces seem to	Smooth, clean surfaces	-		
tend towards drop-wise	seem to tend towards			
condensation	film-wise condensation			
Drop-wise condensation is very	Film-wise	1		
difficult to achieve and unstable	condensation is easily			
	obtainable and stable			
If the students write equations for	If the students write			
_	Subject In case of drop-wise condensation the condensate (condensed liquid) does not wet the surface and collects to grow for a while and then fall from the surface, leaving bare metal surface for further condensation. Heat transfer coefficient are very high in case of drop-wise condensation since the heat does not have to flow through film by conduction Oily or greasy surfaces seem to tend towards drop-wise condensation Drop-wise condensation is very difficult to achieve and unstable	Subject code: 17560 Pa In case of drop-wise condensation the condensate (condensed liquid) does not wet the surface and collects to grow for a while and then fall from the surface, leaving bare metal surface for further condensation. In case of film-wise condensed liquid wets the surface and forms a continuous film of condensate through which heat transfer takes place. This condensate flows down due to action of gravity Heat transfer coefficient are very high in case of drop-wise condensation since the heat does not have to flow through film by conduction relatively very low in case of film-wise condensation since the heat does not have to flow through film by conduction Oily or greasy surfaces seem to tend towards drop-wise condensation Smooth, clean surfaces seem to tend towards film-wise condensation Drop-wise condensation is very difficult to achieve and unstable Film-wise condensation is easily obtainable and stable		

ect: He	at Trans	fer Operation	Subject	code: 17560	Page 21 of 2	
			film coefficients on vertical and	equations for film		
			horizontal surfaces marks should	coefficients on vertication	al	
			be given	and horizontal surface	es	
				marks should be give	n	
6	b	N _{Re} = Dup/ μ			1	
		D = 20 mm = 0	0.02 m, u=3 m/s			
		$\mu = 485 \times 10^{-6}$ Pa.s or (N.s)/m ² = 485 × 10 ⁻⁶ Kg/(m.s)				
		$\rho = 984.1 \text{ Kg/m}^3$ at arithmetic mean bulk temperature				
		N _{Re =} 0.02 x 3x 984.1/485x $10^{-6} = 121744$				
		Npr = Cp μ/k =				
		k = 0.657 W/(m.K)				
		Cp= 4187J/kg	.k			
		Npr = $4187 \times 485 \times 10^{-6} / 0.657 = 3.09$				
		The Dittus –Boelter equation for cooling is				
		$N_{Nu} = 0.023 (N_{Re})^{0.8} (Npr)^{0.3}$				
		$hD/k=0.023 (N_{Re})^{0.8} (Npr)^{0.3}$				
		$h = 0.023 (N_R)$	$_{e})^{0.8}$ (Npr) $^{0.3}$ x k/D		1	
		h= 0.023 (121	744) ^{0.8} (3.09) ^{0.3} X 0.657/0.02		1	
		h = 12398.6 V	$V/m^2 K$		1	
6	c	Long tube vertical	l evaporator:			

Subject: Heat Transfer Operation	Subject code: 17560	Page 23 of 23
mixture of vap. an	nd liquid comes out from the top of the tubes and	
finally impinges a	at high velocity on a deflector. The deflector acts both	
as a primary sepa	rator and foam breaker. The separated liquid enters the	3
bottom of the exc	hanger and parts of this liquid is taken out as a	
product.		
This type of e	vaporator is widely used for handling of foamy, frothy	
liquids.		
It is typically used	d for the production of condensed milk and	
concentrating bla	ck liquor in the pulp and paper industry.	