

Model Answer

Subject Title: Plant Safety & Maintenance

Subject code

17558

Page **1** of **30**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer

Subject Title: Plant Safety & Maintenance

Subject code

17558

Page **2** of **30**

Q	Sub	Answer	marks		
No	q.no				
1	-A	Answer any 3	12		
1A	а	Importance and Objectives of safety in chemical industry :	1 mark		
		1) To increase the rate of production	each		
		2) To reduce the cost of production.			
		3) To reduce the damage to equipment and machinery			
		4) To protect the life and limbs of the workers.			
1A	b	Effects of radiation hazard:			
		1 .Ultraviolet radiation: Short term – sunburn conjunctivitis			
		Long term- premature skin aeging, skin cancer and	1		
		cataract			
		2. Infra red radiation: Burns to skin and eye tissues.			
		3. X rays: X rays are ionizing radiation. Ionizing radiation can affect human			
		cells by stripping one or more electrons from an individual atom and forming	2		
		an electrically charged particle called an ion. These ions can disrupt the			
		machinery of cells, kill them or harm the genes that pass human traits from one			
		generation to the next. Sometimes a damaged DNA molecule instructs a cell to			
		mobilize all its resources and the resources of all its neighbours to produce as			
		many copies of itself as possible. The offspring preserve the mandate, and a			
		chain reaction takes place that crashes the system. This runaway reproductive			
		zeal of a misguided cell is known as cancer and it is the worst hazard of			
		radiation exposure.			

Model Answer

Subject Title: Plant Safety & Maintenance

Subject code

Page **3** of **30**

1A	с	Factors to be considered for selection of proper respiratory devices	1 mark			
		i) The nature of the hazardous operation or process.	each for			
		ii) Type of the contaminant and its properties.	any 4			
		iii) Duration for which the protection will be needed.				
		iv) Location of the hazardous area.				
		v) State of health of the personnel involved .				
		vi) Functional and physical characteristics and limitation of the				
		protective devices available.				
1A	d	Self - Contained Breathing Apparatus : Self contained breathing apparatus is	2			
		used intermittently, often for rescue purpose. A high efficiency face mask is				
		supplied with clean fresh air from air cylinders worn on the operator's back.				
		Self- Contained Breathing Apparatus will need adequate maintenance and				
		cleaning. It should also have warning systems to indicate when the cylinder is				
		running empty. Extensive training is needed for operators using self - contained				
		breathing apparatus and it is rarely used in normal work. These are designed to				
		supply complete respiratory protection is any concentration of toxic gases or				
		even in environment deficient of oxygen.				
		Blasting helmet :				
		Blasting helmets are used when operators are carrying out blast cleaning of				
		structures, castings etc. A full protective suit made in rubberized canvas is	2			
		donned by operator, and then an independent blasting helmet is applied over the				
		head and fixed to be full suit. External clean air is supplied via a compressor				
		with a filter, or from a compressed air supplied again with a suitable filter.				
		Work inside a full blasting suit is very difficult work efficiency will be low,				

Model Answer

Subject Title: Plant Safety & Maintenance

Subject code

17558

Page **4** of **30**

		fatigue will be high and such suit should only be used when all other					
		precautions can not be reasonable applied.					
1-B	I	Any one	6				
1B	а	Chemical hazards due to Ammonia:	6				
		Heat from fire can cause a rapid build up of pressure inside the cylinders.					
		Explosive rupture and a sudden release of large amounts of gas may result. In a					
		fire hazardous material like flammable hydrogen may be generated.					
		Increased risk of fire and explosion on contact with oxidizing agents, strong					
		acids, halogens.					
		1.Inhalation: Very toxic, can cause death., can cause severe irritation of the					
		nose and throat, can cause life threatening accumulation of fluid in the lungs,					
		coughing, shortness of breath.					
		2.Skin contact: the gas irritates or burns the skin, permanent scarring can					
		result, can chill or freeze the skin, burning sensation and stiffness, skin becomes					
		waxy white or yellow.					
		3.Eye contact : corrosive, the gas irritates or burns the eye, blindness can result,					
		can freeze the eye,					
1B	b	Non respiratory equipment used for personal protection in plant.	1 mark				
		1. Gloves for hand and arm protection: To safeguard workers there will be	each				
		purpose-made gloves, supplied by manufacturers specializing in					
		products, capable of protecting them from the hazards.					
		2. Helmets, hard cap for head protection. : Industrial safety helmet can					
		protect the worker against following objects or impact with fixed					
		objects. Caps and helmets protect the head of contamination with toxic					

ject T	itle: Pla	ant Safe	ty & Maintenance	Subject code	17558	
						┘ Page 5
			substance.			
		3.	Safety boot or shoes for foot prot	ection. : The safety boot or	shoe is the	
			most common type of safety foot	wear, and would normally h	nave a steel	
			toe cap. It helps to protect the feet	t from corrosive or toxic ma	terials.	
		4.	Goggles for eyes protection: Ge	oggles projects the eyes fi	rom dust ,	
			gases, welding arc , lesser light, to	oxic or chemical substances.		
		5.	Apron/ lab coat for body protection	on		
		6.	Ear plug/ ear muff for ear protection	on		
2		Answ	er any 4			1
2	a	Plant	safety provision in an industry			1 mar
		1.	Safe work place layout: The layo	ut should be such that ever	y workman	each fo
			has enough space to move and op	erate.		any
		2.	Design of control facilities: Dike	es of liquid storage tanks ar	e normally	
			sized to contain the volume of th	e largest tank plus 10% of	the volume	
			of the remaining tanks within a co	ommon enclosure.		
		3.	Proper working conditions: Air t are controlled for comfort	emperature, purity, velocity	, humidity	
		4	Safe material handling. Careles	ss handling of heavy ma	terials and	
			components is a major source of h	back and foot injuries.	unu unu	
		5.	Use of personnel protective devic	es: Personal protective devi	ces such as	
			breathing apparatus. helmet. hard	l hat, ear plug, ear muff, sa	fety shoes.	
			apron, goggles etc should be used		- , ,	
		6.	Safety activities in the organizat	tion: Provide wire mesh gu	ards to all	
			· · · · · · · · · · · · · · · · · · ·			

Model Answer

Subject Title: Plant Safety & Maintenance

Subject code

17558

Page **6** of **30**

		guarded should be fenced.	
2	b	Air Purifier type Respirator:	2 marks
		a. Mechanical filter respirators: These give protection against dust and	each for
		particulate matters only and do not provide any protection against	any 2
		harmful vapours, gases or oxygen deficient atmospheres. Several	type
		types of mechanical filters are available, each designed for a specific	
		class of air borne particulate matter, depending upon size, range,	
		concentration and toxicity.	
		b. Canister gas masks: This consists of a full face mast connected to a	
		canister through corrugated hose. The canister contains certain	
		neutralizing chemicals, which can absorb a particular contaminant.	
		Universal canisters capable of absorbing 3 or 4 different	
		contaminants are also available. The life of these universal canisters	
		is much less than the canisters designed for one particular	
		contaminant.	

gect Title:	Plant Safety & Maintenance	Subject code	17558	Page 7 c
	 c. Chemical Cartridge Respirator masks with the difference that used with a half face mask. The low concentration and cannot be concentration and cannot be concentration and cannot be concentration. 	rs: These are similar to c t one or two chemical can hese masks are effective of be used in emergency.	canister gas rtridges are only at very	
2 c	Safety audit is a proactive process by continually evaluate and monitor the prog	which and organization ress of its safety and health	is able to n programs.	4

Model Answer

Subject code Subject Title: Plant Safety & Maintenance 17558 Page 8 of 30 identify it's strength and weakness, show where improvement are needed, and obtain commitment and target dates for correcting problems. **Objectives are:** 1. Confirm that safety, health, fire and environmental program activities and controls are in place and functioning. 2. Verify that the facility is in compliance with internal benchmarks and government regulations. 3. Assess past and current practices to identify and correct safety impediments which may result in personal injuries, property damage or business interruption. 2 d Different methods for liquid storage are: **Underground storage:** *Liquids are stored underground in porous media between impervious rocks. Cavities are formed in salt domes by dissolving the salt and pumping it out. This method has application for storing petroleum product, both liquid and gasses. Hazardous or radioactive materials are stored in underground tunnels or storage tanks **Open atmospheric tanks:** 2 mark *Open atmospheric tanks are used for storing liquids that will not harmed by each for water, weather or atmospheric pollution. any 2 The closed tanks: *The closed tanks have fixed or floating roof. Fixed roofs are either domed or coned with intermediate supports. *Fixed roof atmospheric tanks require vents to prevent pressure changes which

Model Answer

Subject Title: Plant Safety & Maintenance

Subject code

17558

Page **10** of **30**

3		Answer any 4	16
3	a	Classes of explosive are :	4
		1. Category X: Those explosives which have a fire or a slight	
		explosion risk.	
		2. Category Y: Those explosives which have a mass fire risk or	
		moderate explosion risk, but not the risk of mass explosion.	
		3. Category Z: Those explosives which have a mass explosion risk and	
		major missile effect.	
		4. Category ZZ: Those explosives which have a mass explosion risk	
		and minor missile effect.	
		OR	
		Classification of explosives :	
		Explosives are divided in to eight classes.	
		1. Class 1 – Gun powder (KNO ₃ , C&S)	
		2. Class 2 – Nitrate mixture	
		3. Class 3 – Nitro compound class	
		4. Class 4- Chlorate mixture class	
		5. Class 5 – Fulminate class (with C, N_2 & O_2)	
		6. Class 6 – Ammunition class	
		7. Class 7 – Firework class	
		8. Class 8 – Liquid oxygen explosive class	
3	b	Belt Conveyor	

ject T	Title: Pl	ant Safety & Maintenance Subject code 17558	3
			Page 11 c
		Solids feed Head end Return idlers Carrying idlers	
		Construction and Working: Conveyors are gravity or power devices commonly used to move uniform load	s
		continuously from point to point over fixed paths. Belt conveyor as shown in	4
		figure consists of an endless moving belt of flexible material, stretched betwee	n
		two drums / pulleys and supported at intervals on idler rollers. The pulley that	
		drives conveyor belt rotating is called drive pulley or transmission drum; the	
		other oneonly used to change conveyor belt movement directions called bend	
		pulley. Drive pulley is driven by the motor through reducer and conveyor belt	
		dragging relies on the friction drag between the drive pulley and the conveyor	
		belt. The drive pulleys are generally installed at the discharge end in order to	
		increase traction and be easy to drag. Material is fed on the feed-side and	
		landed on the rotating conveyor belt, then rely on the conveyor belt friction to	
		be delivered to discharge end.	
		Belt Conveyors are the most commonly used type of equipment for the	ie
		continuous transport of solids. They can carry wide range of materia	ls
		economically over long & short distances, both horizontally and at a	n
		appreciable angle.	
3	c	On line maintenance of Rotameter:	
		In a chemical plant, it is a normal practice to do on line maintenance work. Th	is 2
		avoids total shutdown of the equipment or plant. This is possible, if proper pip	be l

Model Answer

Subject Title: Plant Safety & Maintenance

Subject code

17558

Page **13** of **30**

3	d	Advantage of preventive maintenance:	¹ / ₂ mark
		1. Reduced break down and connected down time.	each for
		2. Lesser odd time repairs and reduced over time to be maintenance work	any 4
		force.	
		3. Greater safety for workers.	
		4. Fewer large scale and repetitive repairs.	
		5. Low maintenance and repair cost.	
		6. Less stand by or reserve equipment and spare parts.	
		7. Identification of equipment requiring high maintenance cost.	
		8. Lower unit cost of manufacture.	
		9. Increased equipment life.	
		10. Better product quality.	
		Applications of preventive maintenance:	
		1. Bearing surfaces	¹ / ₂ mark
		2. Parts under excessive vibrations	each for
		3. Reactors	any 4
		4. Compressors and pumps	
		5. Heat exchangers	
		6. Valves	
		7. Pipings	
3	e	Importance of record keeping in preventive/Plant maintenance:	2
		It is very essential to keep records as they are the only reliable guides to	
		measure the effectiveness of the preventive maintenance programme. Records	
		give an idea regarding situation at present and where it is going. Good, updated	

Subject Title: Plant Safety & Maintenance	Subject code	17558	
			Page 14 of 30

		records is very important in preventive maintenance programme.			
		Record keeping is also helpful (Benefits):			
		1. When budgeting for major overhauls.			
		2. For finding equipment reliability	each for		
		3. For determining frequency of inspection			
		4. To prepare maintenance schedule			
		5. To predict equipment life			
		6. For equipment replacement analysis			
		7. To carry out cost reduction studies			
4- A		Answer any 3	12		
4A	a	Solids are packed in different ways as:- (any 2)	2 marks		
		1) Bags: The multiwall paper bags made from piles of Kraft paper are used	each		
		for packaging of most palleted or powdered material. There are two			
		commonly used bag designs, the open mouth type and the valve type.			
		The Open-mouth bags have one end closed, while the other end is			
		closed after filling the material. These bags are closed after filling the			
		material mainly by sewing. The valve bags has both ends closed during			
		the fabrication, the filling being done through a small opening in one			
		coener of the bag.			

Model Answer

Subject Title: Plant Safety & Maintenance

Subject code

17558

Page 15 of 30

Model Answer

Subject Title: Plant Safety & Maintenance

Subject code

17558

Page 17 of 30

ect Ti	tle: Pl	lant Safety & MaintenanceSubject code17558	
			Page 1
		enclosures. Wherever possible, flammable liquids should be	
		transported in rugged pressure resistant safety cans.	
		iv) Freight elevators: used where hazardous chemicals are to be transported.	
		v) Conveyors: For transporting solid chemicals.	
		OR	
		Four modes transportation of solids :	
		1. Conveyors are employed to transport materials over fixed path mostly	
		horizontally. Screw conveyors consist of helical steel flights cut from	
		flat sheet. As screw rotates in the material to be conveyed, the flight	
		advances horizontally and thus material is transported. Belt conveyor	
		can operate over short distances at speed slow enough for manual	
		picking with low capacity.	2marks
		2. Bucket elevators: Bucket elevators are the simplest and the most	each
		dependable unit for making vertical lifts. They are available in wide	for an
		range of capacities and may operate entirely in the open or be totally	tw
		enclosed.	poir
		3. Pneumatic conveyor: Pneumatic conveying is the transportation of	
		granular solids through a pipe line by a stream of air or gas. It consist of	
		the sources of compressed air, a feeder and a receiving hopper fitted	
		with a means of separating the conveyed product from the conveying	
		air.	
		4. Trucks : Trucks are used for transporting solids over a long distance.	
4A	c	Functions and duties of plant maintenance department(any 8)	$\frac{1}{2}$ mar

Model Answer

Subject Title: Plant Safety & Maintenance

Subject code

17558

Page **19** of **30**

1)Inspection 2)Engineering 3) Maintenance 4) Repair 5) Overhaul	each
6)Construction 7) Salvage 8) Clerical work	
1)Inspection:	
i) Inspection of the plant facilities to examine their condition and to check for	
repairs needed.	
ii) Inspection to ensure the safe and efficient operation of plant equipment and	
machinery.	
2)Engineering :	
i) Engineering involves alternations and improvement in existing plant	
equipment to minimize breakdown.	
ii) Engineering and consulting services to production supervision.	
3) Maintenance :	
i) Maintenance of existing plant equipment.	
ii) Engineering and execution of planned maintenance, minor installations of	
equipment building and replacements.	
4) Repair:	
i) To carry out corrective repair to alleviate unsatisfactory conditions found	
during preventive maintenance inspection.	
5) Overhaul:	
i) Overhaul is a planned, scheduled reconditioning of plant facilities such as	
machinery etc.	
ii) Overhaul involves replacement, reconditioning, reassembly, etc.	
6)Construction :	
i) In some organization, maintenance department is provided with equipment	

ect Ti	itle: Pl	ant Safety & Maintenance Subject code 17558	
			Page 22
		In spaced bucket centrifugal discharge elevator, buckets are mounted on a belt	
		or a chain and are spaced to prevent interference in loading or discharging. In	2
		spaced bucket positive discharge elevator, the buckets are mounted on two	
		strands of chain and are snubbed back under the head sprocket to invert them	
		for positive discharge. In continuous bucket elevators, buckets are closely	
		spaced with back of the preceding bucketserving as a discharge chute for the	
		bucket which is dumping as it rounds the head pulley.	
		Working:	
		Buckets are loaded partly by material flowing directly into them and partly by	
		scooping material from the boot. As the bucket reaches top, these will be	2
		inverted and the material will be off loaded. The empty bucket will again be	
		loaded with material and so on.	
4B	b	Procedure of safety Auditing :	
		Safety audit is carried out by a team whose members are not involved in the	
		plant or activity being audited. The expertise of the team should be compatible	
		with the type of audit. It is beneficial to include the managers of other plants or	
		units in an audit team as well as one previous auditor of the same unit. Audits	
		are carried out in a formal way using a carefully drawn up checklist of items	
		and descriptive standards for each item. A line manager or supervisor of the	03
		plant under audit should be asked to accompany the auditor inspecting it. He	
		should be informed of all corrections and improvements required by the	
		auditors so that he can start taking the necessary steps before the audit report is	
		submitted to management. The main object of inspection should be to	
		determine whether the layout design and condition of equipment and protective	

] Page 2
		features are up to standard and to ensure that the protective features will work in	
		an emergency. The auditing should give a verbal report to the management on	
		completion of audit followed by a clear and concise written report within two	
		weeks.	
		Various records to be examined during safety auditing:	
		1. Operational safety and health policy.	
		2. Safety organization chart.	
		3. Training records on safety, fire and first aid.	
		4. Records of plant safety inspection.	
		5. Accident investigation reports	
		6. Accident and dangerous occurrences, statistic and analysis.	
		7. Records of test and examination of equipment and structure.	03
		8. Safe operating procedures for various operations.	
		9. Record of work permit.	
		10. Record of monitoring of flammable and explosive substances at work	
		place.	
		11. Medical records of employees.	
		12. Records of waste disposal.	
		13. Maintenance procedure records.	
		14. House keeping inspection records.	
		15. Record of previous audits.	
5		Answer any 2	1
H	-	Fire buckets: For immediate firefighting the fire buckets are to be leasted in	02

Model Answer

Subject Title: Plant Safety & Maintenance

17558

Page 24 of 30

5 b Startup of a plant: A chemical plant is started at two different times, 1. When it is constructed, erected and to be commissioned first time for 02	25 of :	17558 P	oject Title: Plant Safety & Maintenance Subject code 17558		
5 b Startup of a plant: A chemical plant is started at two different times, 1. When it is constructed, erected and to be commissioned first time for	25 of 3	P;			
production. The procedure here to be followed is to take water in the		time for er in the	 Startup of a plant: A chemical plant is started at two different times, 1. When it is constructed, erected and to be commissioned first time for production. The procedure here to be followed is to take water in the started of the followed is to take water in the started of take water in tak	5	

ject Title:	Plant Safe	ty & Maintenance	Subject code	17558	
					[–] Page 26
		without any leakage, at the desire	ed flow rate, pressure and to	emperature.	
		If any leakage is observed, it ca	an be rectified. This is the	safest and	
		cheapest way of checking the f	unctioning of the plant eq	uipment in	
		total.			
	2.	When plant is stopped for annual	l major shutdown, then the	e procedure	
		to be followed for start- up of a pl	ant is		
	i)	To take water in the plant to chec	ck the fluid flowing through	equipment	
		and pipelines without any leakag	e, at the desired flow rate, p	ressure and	2
		temperature. If any leakage is ob	oserved, it can be rectified.	Thus is the	
		safest and cheapest way of ch	necking the functioning of	f the plant	
		equipment in total.			
	ii)	Once it is assured that fluid flow	v takes place without any p	roblem, the	
		total plant water is drained off a	and water is removed and t	then slowly	
		loaded in stepwise and retched	to desire capacity in step	owise. It is	
		always advisable to operate the	plant with 50% capacity for	or few days	
		and after full satisfaction of p	lant working, it is taken	up to full	
		capacity.			
5 c	Corre	ective or breakdown maintenance	:		
	This r	nethod of maintenance implies that	t repairs are made after the	equipment	
	is out	of order and it cannot perform its	s normal function any long	ger. In such	
	situati	on, production department calls on	the maintenance department	nt to rectify	
	such	defect. The maintenance people of	checks into the difficulty	and makes	
	necess	sary repairs. After rectifying the fa	ult, maintenance people do	o not attend	
	the eq	uipment again until another failure	or breakdown occurs.		

Subject Title: Plant Safety & Maintenance

SUMMER-19 EXAMINATION

Model Answer

Subject code

17558

0	u	Diagram:	
<u> </u>	а	Positive Pressure Pneumatic conveyor:	
6		Answer any 2	16
		vessels	
		which are regulated by statutory provision eq. Cranes lifts and pressure	
		7 Breakdown maintenance cannot be employed for those plant items	
		6) Direct loss of profit	
		5) More speilt meterial	
		4) increased chances of accidents and less safety to both workers and	
		 a) Faster plant deterioration b) Increased changes of accidents and loss sofety, to both workers and 	any 5
		2) Reduction of output.2) Easter about deterioretien	each for
		hurried maintenance and excessive delays in production.	I mark
		1) Breakdown generally occurs at in opportunate time. This leads to poor,	1 1
		Disadvantages of breakdown maintenance:	
		4. Requires small staff.	
		3. Requires few records	any 2
		2. It involves less administrative work	each for
		costs are less this way than any other type of maintenance.	1 mark
		1. It is economical for non critical equipments whose down time and repair	
		Advantages of breakdown maintenance:	

Model Answer

Subject Title: Plant Safety & Maintenance Subject code 17558 Page 29 of 30 shut down of the plant, maintenance work like changing of parts, lubrication, overhauling of all the equipment in the plant, cleaning of equipment and plant are done. Maintenance department and process plant people are involved in the process. Important steps in shutdown process are : 1) Identify material storage and laydown areas. 4 2) Designate equipment wash areas. 3) Establishing crew- marshalling areas in the event of an emergency. 4) Determine what lunch, lavatory and change room facility requirements are required. Planning and scheduling are concurrent activities for shutdown. 6 **Predictive maintenance:** с Predictive maintenance makes use of human sense or other sensitive 4 instruments such as audio gauges, vibration analyser, amplitude meter, pressure, temperature and resistance strain gauges etc. to predict trouble before the equipment fails. Unusual sounds coming out of a rotating equipment predict a trouble, an electric cable excessively hot at one point predict a trouble. Simple hand touch can point out many unusual conditions and thus predict a trouble. In predictive maintenance, equipment conditions are measure periodically or on a continuous basis and this enables maintenance men to take a timely action such as equipment adjustment, repair or overhaul. Predictive maintenance extends the service life of equipment without fear of failure. Scheduled maintenance: Scheduled maintenance is a stich-in-time procedure which is aimed at avoiding 4

Model Answer

Subject Title: Plant Safety & Maintenance

Subject code

17558

Page **30** of **30**

	breakdowns. Breakdowns can be dangerous to life and hence should be
	minimized.
	This method of maintenance incorporates inspection, lubrication, repair and
	overhaul of certain equipment which if neglected may result in breakdown.
	Scheduled maintenance practice is generally adopted for overhauling of
	machines, cleaning of water and other tanks, white washing of buildings etc.