SUMMER- 19 EXAMINATION

Model Answer Subject Code:

Subject Name: Control system and PLC

17536

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any THREE of the following:	12- Total Marks
	(a)	Foe a control system, characteristics equation is given by	4M
		S ⁵ +S ⁴ +3S ³ +9S ² +16S+10 =0.	
		Determine stability using Routh criteria.	
	Ans:	The routh array is,	Array : 3M
		S ⁵ 1 3 16	Stability
		S ⁴ 1 9 10	: 1M
		S ³ -6 6 0	
		S ² 10 10 0	
		S ¹ 12	
		S ⁰ 10	
		One element in first column of routh array is negative	

Subject Name: Control system and PLC

17536

(b)	Draw the block diagram of PLC and state the function of each block.	4M
Ans:		Block
	Input field devices (Process devices) (Process devices)	diagran : 2M
	Programming device Supply	
	Power supply: - It converts AC line voltages to DC voltage	
	 Processor: - This is microprocessor that controls and supervises the entire process. It is the controller of a PLC. 	Explanation : 2N
	 Memory: - It contains the program of logic, sequencing and other input & output operation. System program is stored in ROM and application program is stored in RAM. 	
	• Programming Device : - The basic elements of programming device are keyboard, visual display, and microprocessor and communication cable. The most common programming devices are:- Handle held programming unit, Industrial Programming terminal and Personal Computer.	
	 Input Module: - It serves link between input field devices and PLC's CPU. Output Module: - It serves as the link between PLCs CPU and hardware output field devices 	
(c)	Give classification of control system & define linearity in control system.	4M
Ans:	Control system are classified as	Classifi ation
	1. Depending on hierarchy	(any 3)
	i) Open Loop System	ЗМ
	ii) Closed Loop System	Definit
	2. Depending on number of inputs and outputs	n : 1M
	i) SISO control system	
	ii) MIMO control system	
	3. Depending on type of damping	

rtified)

MAHARASHT

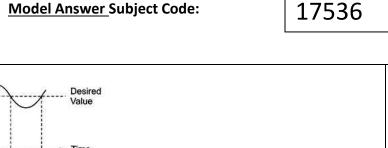
(Autonomous) (ISO/IEC - 2700

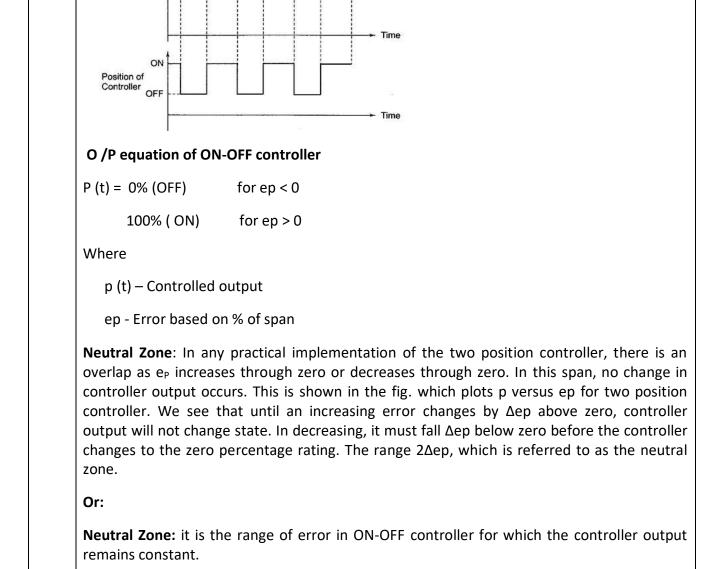
SUMMER- 19 EXAMINATION

nd PLC <u>Model Answer</u> Subject Code:

Subject Name: Control system and PLC

1	7	5	3	6
_	-	-	_	-

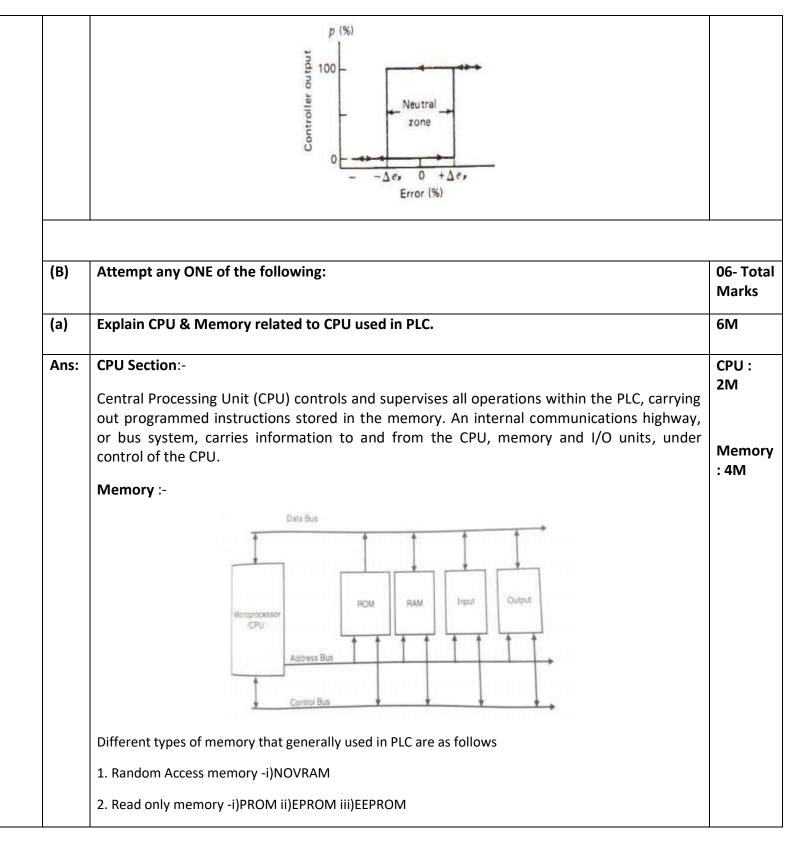

			Neutral Zone : 1M
	measu	red variable is above the set point, the controller is OFF and output is zero.	Equatio n : 1M
	set po	n Off Controller or two position controller. When the measured variable is below the int, the controller is ON and the output signal has maximum value. When the	: 2M
Ans:	Princip	ple of ON-OFF control :	Principle
(d)	State 1	the principle of ON-OFF control. Write it's standard equation & define neutral zone.	4M
	Linear	system is one which obeys superposition theorem.	
	Or:		
		ar system is one whose differential equation consisting of the dependent variables and lerivatives in first degree.	
	Linear	ity:	
	•	Time varying/time in varying	
	•	Open loop/closed loop	
	Contro	bl systems are classified as Linear/nonlinear	
		Or	
	iii)	Temperature control system	
	i) ii)	Position control system Velocity control system	
		Depending on main purpose of application	
	iii)	Overdamped control system	
	ii)	Underdamped control system	


Subject Name: Control system and PLC

SP

Controlled

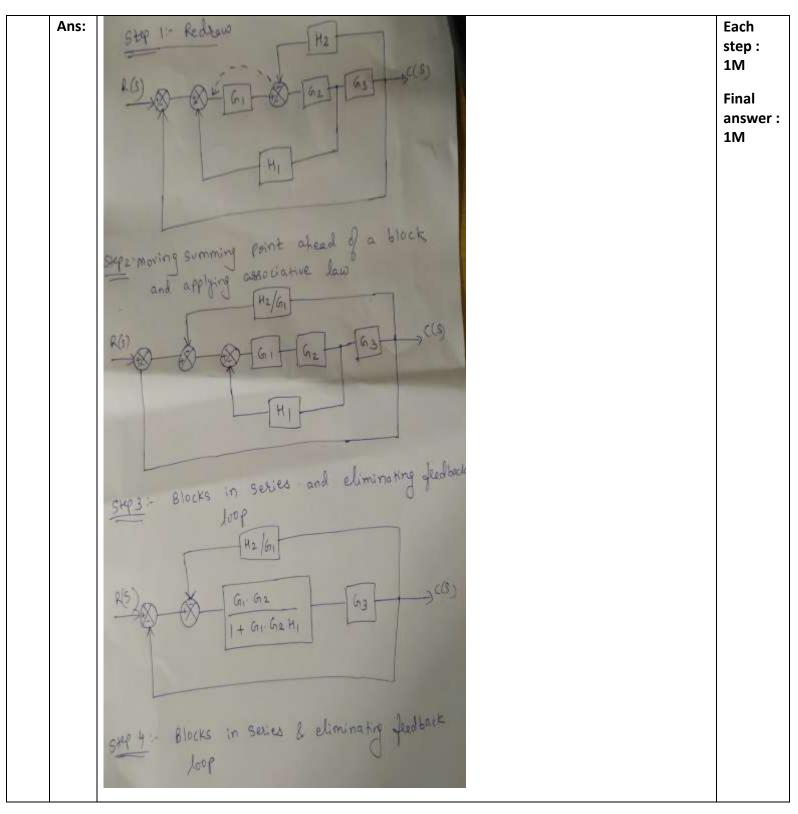
Variable



Subject Name: Control system and PLC

MAHARASHT (Autonomous) (ISO/IEC - 2700

SUMMER- 19 EXAMINATION Subject Name: Control system and PLC Model Answer Subject Code:


17536

	$\begin{array}{c} H_2 \\ H_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
(b)	 a PROM that can be erased. The data in the EPROM can be erased by focusing the UV light for a few minutes on the top of EPROM. Thus it is also called as UVPROM. iii) EEPROM- It is the type of ROM. The electrically erasable programmable read only memory is similar to the EPROM .Instead of UV light exposure for erasure, an electrical signal is applied to the chip. The speed of erasing of EEPROM is greater than EPROM. Determine the transfer function of the given block diagram using block reduction rules. 	61
	 i) PROM-It is the type of ROM .It is similar to ROM except that it may be programmed once and once only by the user. To change the program in a programmed PROM, throw it away and replace it with a new unprogrammed PROM. ii) EPROM- It is the type of ROM. The erasable programmable read-only memory (EPROM) is 	
	2. ROM -It is non volatile memory, and used for storing users program so that the program can retain during power failure.	
	i) NOVRAM - It is one of the type of RAM. NOVRAM is the combination of EEPROM and RAM. When power is go off, the contents of RAM memory are quickly stored in the EEPROM. And the stored data can be read from RAM when power is again restored.	
	1. Random Access memory -RAM is volatile memory means as the power is lost, it's memory erased. But if CPU has battery backup, the information in RAM can not be erased. RAM memory is used to save input data and output information.	

Subject Name: Control system and PLC

17536

MAHARASHT (Autonomous) (ISO/IEC - 2700 Control Control

SUMMER– 19 EXAMINATION I PLC <u>Model Answer</u> Subject Code:

Subject Name: Control system and PLC

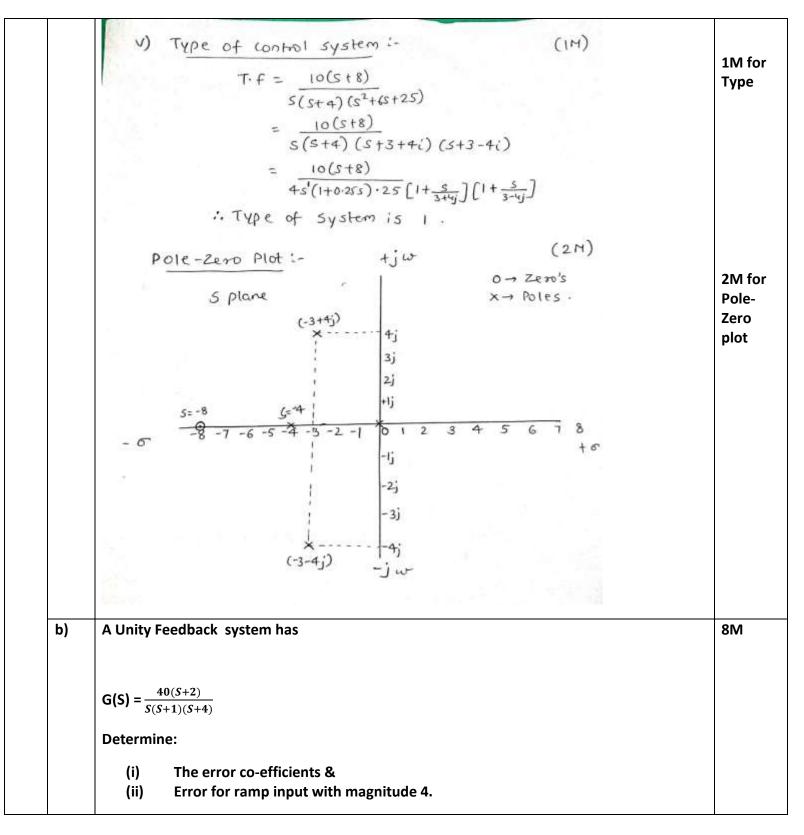
17536

Subject Name: Control system and PLC

17536

Q. No.	Sub Q. N.	Answers	Marking Scheme
2		Attempt any TWO of the following:	16- Total Marks
	(a)	For given transfer function T.F.= $\frac{10(S+8)}{S(S+4)(S^2+6S+25)}$ Find: (i) Poles (ii) Zeros (iii) Characteristic equation (iv) Order of system (v) Type of control system and Plot the S-plane with poles, zeroes for the system.	8M

SUMMER- 19 EXAMINATIONSubject Name: Control system and PLCModel Answer Subject Code:


17536

Ans:	$\frac{c(s)}{c(s)} = \frac{10(s+8)}{c(s+3)}$	
	$R(s) = s(s+4)(s^2+6s+2s)$	2M for
	i) Poles :- Poles are the roots of the Equ?	Poles
	obtained by equating denominator to zero i.e. (2N)	
	S(S+4) (S*+6S+25)	
	: S=0, S+4=0, S ² +6S+25=0	
	$S = -4$, $S = -6 \pm \sqrt{6^2 - 4(1)(25)}$	
	2(1)	
	= -6 = -136-100	
	$= -\frac{6\pm 8i}{2} = -3\pm 4j$	
	$\therefore s = 0, -4, -3 \pm 4j$	
	i) Zeros: - Zeros are the roots of the equation	
	obtained by equaling numerator to zero	
	ie, S+8=0 (IM)	
	5=-8.	1M for
	iii) Characteristic Equ":- (IM)	Zeros
	It is given by	
	$s(s+4)(s^2+6s+25)=0$	
	$(s^{2}+4s)(s^{2}+6s+25)=0$	
	$s^{2}(s^{2}+6s+25) + 4s(s^{2}+6s+25) = 0$ $s^{4}+6s^{3}+25s^{2}+4s^{3}+ 24s^{2}+100s = 0$	1M for
	$s_{+6s_{+2}s_{-1}}^{+10s_{+2}s_{-1}} + s_{+10}^{-1} = 0$	Chkt Equ
		Equ
	iv) Order of system:- (IM)	
	It is the highest power of 's' in the	
	denominator of World Loop T.F i.e childs Equin	
	:. Order = 4.	
		1M for
		Order
	Раде	

MAHARASHT (Autonomous) (ISO/IEC - 2700 Control Control

SUMMER– 19 EXAMINATION Subject Name: Control system and PLC <u>Model Answer</u> Subject Code:

17536

MAHARASHT Autonomous)

""" rtified)

(Autonomous) (ISO/IEC - 2700

SUMMER- 19 EXAMINATION

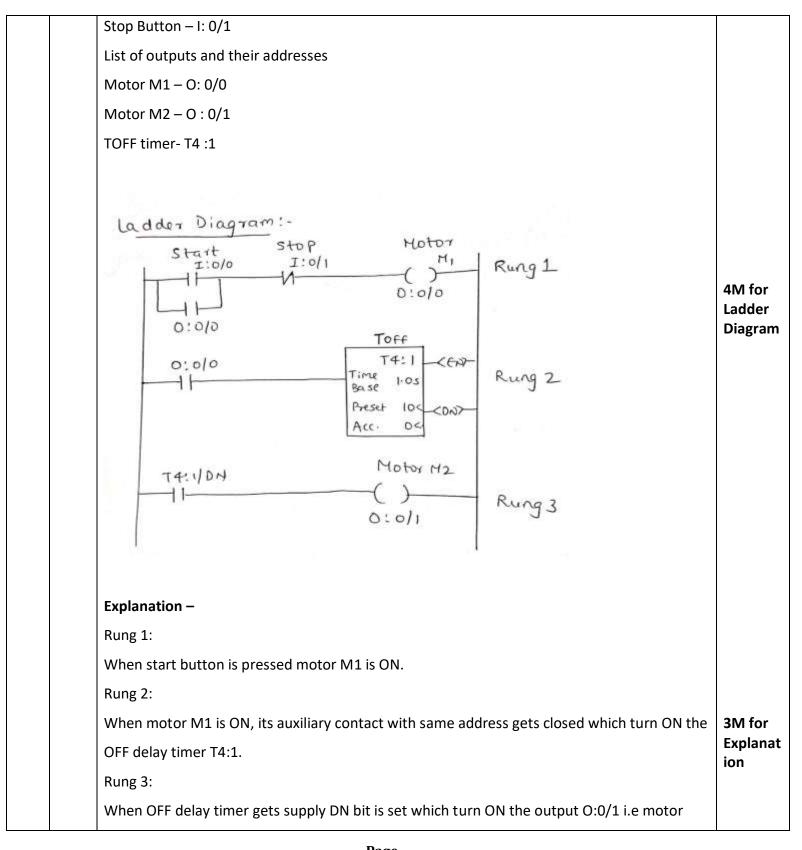
Subject Name: Control system and PLC <u>Model Answer Subject Code</u>:

17536

Ans: $G_1(s) = 40(s+2)$ s(s+i)(s+4)4M for (i) Error coefficients: - (4M for Error Weffi cients) Error Coefficie $Kp = \lim_{s \to 0} G(s) H(s) = \lim_{s \to 0} \frac{40(s+2)}{s(s+1)(s+4)} = \infty$ nts $K_V = \lim_{S \to 0} G(s) H(s) = \lim_{S \to 0} \frac{40(s+2)}{s(s+1)(s+4)} = 20$ $K_{\alpha} = \lim_{s \to 0} s^{2}G(s)H(s) = \lim_{s \to 0} \frac{5}{s(s+1)(s+2)} = 0$ (ii) Error for ramp input with magnitude 9 (4 M) steady state error for unit Ramp input Ess = A 4M for steady state where, $K_V = \lim_{S \to 0} S \cdot G(S) + G(S) = 20$ & A = ... = 4Error $e_{ss} = 04$ 20 $- e_{ss} = 0.2$ Draw ladder diagram for 2 motor operation for following condition : c) **8M** (i) Start push button start motor M₁ & M₂. (ii) Stop push button stop motor M₁ first & after 10 seconds motor M₂. Ans: Input/output address description -1M for address List of inputs and their addresses Start Button – I: 0/0

BOARD OF TECHNICAL EDUCATION

rtified)


MAHARASHT

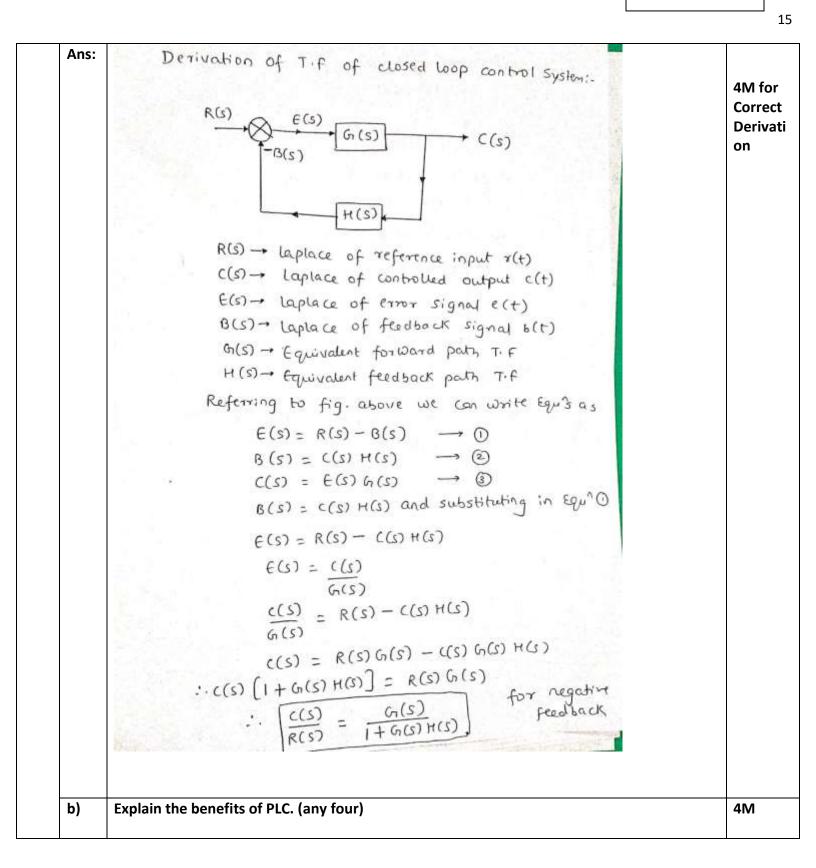
(Autonomous) (ISO/IEC - 2700

SUMMER- 19 EXAMINATION PLC <u>Model Answer</u> Subject Code:

Subject Name: Control system and PLC

SUMMER- 19 EXAMINATIONSubject Name: Control system and PLCModel Answer Subject Code:

17536


	M2. When stop button is pressed then main motor M1 shutdown immediately &its contact	
	get open. Therefore supply of OFF delay timer goes OFF but its DN bit gets open after 10 sec	
	so motor M2 remains ON for 10 sec even though motor M1 is OFF.	

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any FOUR of the following:	16- Total Marks
	a)	Find the transfer function of closed loop control system with negative feedback.	4M

MAHARASHT (Autonomous) (ISO/IEC - 2700 : tified)

> SUMMER- 19 EXAMINATION PLC <u>Model Answer</u> Subject Code:

Subject Name: Control system and PLC

BOARD OF TECHNICAL EDUCATION

" rtified)

Subject Name: Control system and PLC

MAHARASHT

(Autonomous) (ISO/IEC - 2700

SUMMER- 19 EXAMINATION

Model Answer Subject Code:

17536

 Reduce human efforts Maximum efficiency through machine and logic is controlled by human Higher productivity Superior quality of end products 	1M fo correc point
3. Higher productivity	
4. Superior quality of end products	
5. Efficient uses of energy and raw material	
6. Eliminate the high costs associated with inflexible, relay-controlled systems	
7. Improved safety in working conditions.	
8. Easily programmed and have an easily understood programming language.	
Determine the stability of the closed loop unity feedback system using Routh criteria:	4M
$G(S) = \frac{2}{S(S+1)(S+2)}$	
	 Eliminate the high costs associated with inflexible, relay-controlled systems Improved safety in working conditions. Easily programmed and have an easily understood programming language. Determine the stability of the closed loop unity feedback system using Routh criteria:

MAHARASHT (Autonomous) (ISO/IEC - 2700

> SUMMER– 19 EXAMINATION em and PLC <u>Model Answer</u> Subject Code:

Subject Name: Control system and PLC

17536

Ans:	Characteristic Equation is,	2M For
	1+G(S)H(S)=0	Routh'
	1 + 2 = 0 s(s+i)(s+2) = 0	Array
	$\therefore s(s^2+3s+2)+2=0$	
	$S^{3}+3s^{2}+2s+2=0$	
	Routh's array is :-	
	$5^{3} 12^{2}$	2M Fo
	s ² 3 2	condit n
	5° 2	
	As there is no sign change, system	
	is stable.	
d)	Define control system. Compare open loop & closed loop control system. (any six)	4M

SUMMER- 19 EXAMINATION Subject Name: Control system and PLC <u>Model Answer</u> Subject Code:

17536

Sr.	Open Loop Control System	Close Loop Control System
No.		
1	It is simple and economical	It is complex and costlier.
2	It is easier to construct, as it requires	It is not easy to construct, as it requires
	less number of components	more number of components
3	It consumes less power	It consumes more power
4	It is more stable	It is less stable
5	It does not require feedback path element	It requires feedback path element
6	It has poor accuracy	It has better accuracy
7	It does not give automatic correction	It gives automatic correction for external
	for external disturbances	disturbances
8	It is more sensitive to noise	It is less sensitive to noise
9	It is dependent on operating condition	It is not dependent on operating conditions
10	Its operation is degraded if non linearity	Its operation is not independent on
	is present	conditions
11	It has slow response	It has fast response
12	It has high bandwidth	It has low bandwidth

BOARD OF TECHNICAL EDUCATION

rtified)

MAHARASHT

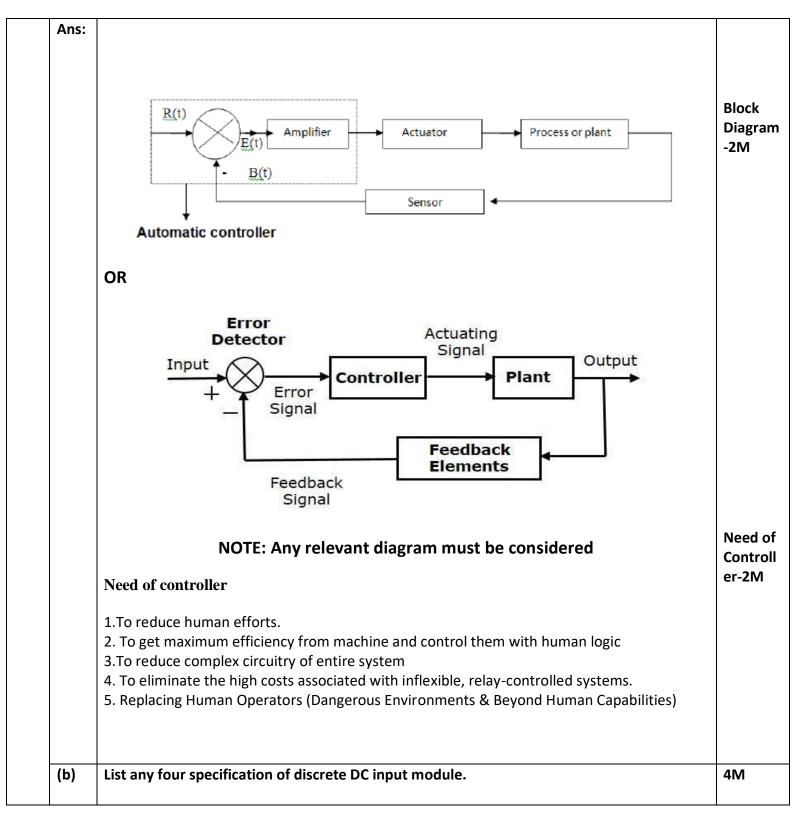
(Autonomous) (ISO/IEC - 2700

SUMMER- 19 EXAMINATION C <u>Model Answer</u> Subject Code:

Subject Name: Control system and PLC

17536

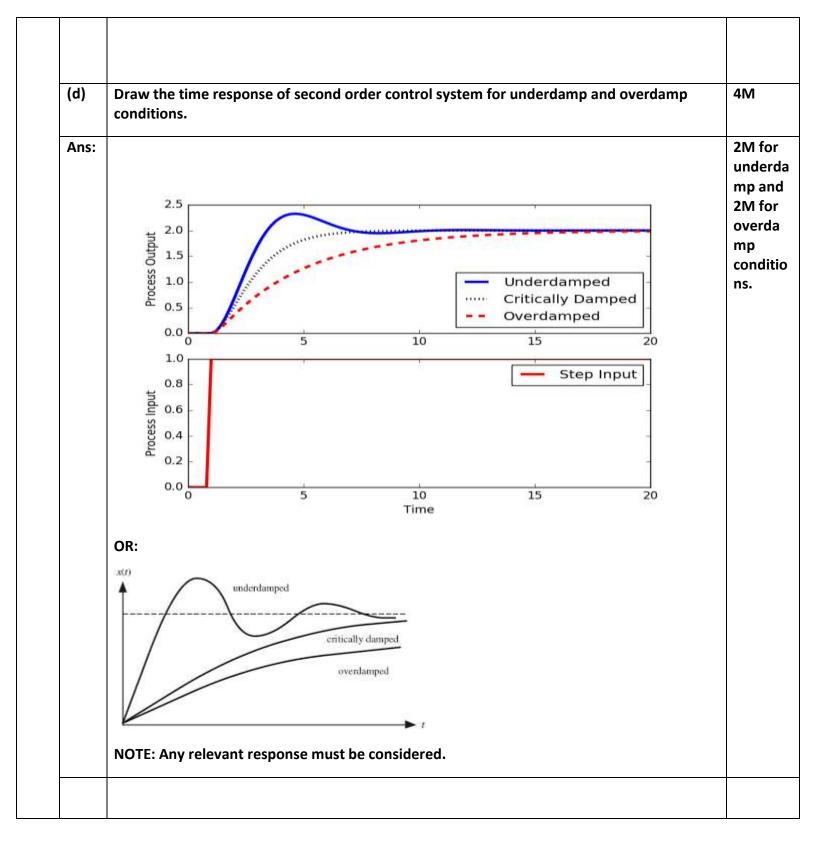
e)	Explair	n:	4M
	(i) (ii)	Scanning cycle Speed of execution	
Ans:	(i)	Scanning Cycle :-	
	1.	It is number of states/steps which the controller follows when it is put in RUN mode.	2M for
	2.	It is also called as operating cycle and is defined as "the number of states through which the controller scan the program before execution"	each explanat ion
	3.	The loaded program is kept in memory of PLC and every time the program will be scan by the PLC.	
	4.	The significance of scan cycle in PLC is to test the program and make it error free by going through above four states i.e. self test, input scan, program scan and output scan.	
	(ii)	Speed of execution:	
		The speed at which PLC scans memory and executes the program is	
		referred as a speed of execution. Higher CPU speeds provide faster performance	
		that shortens task time.	


Q. No.	Sub Q. N.	Answers	Marking Scheme
4	(A)	Attempt any THREE of the following:	12- Total Marks
	(a)	Draw block diagram of process control system & describe the need of controller.	4M

MAHARASHT (Autonomous) (ISO/IEC - 2700 Contract Contract

> SUMMER– 19 EXAMINATION C <u>Model Answer</u> Subject Code:

Subject Name: Control system and PLC


Subject Name: Control system and PLC

17536

Ans:	Specification of discrete DC input	module.	
	Inputs per module	8 (sink/source)	
	Commons per module	8 (isolated)	
	Input voltage range	20-52.8VDC	
	Peak voltage	52.8VDC	
	ON voltage level	>18 V	
	OFF voltage level	< 7V	
	Input impedance	4.8 Κ Ω	Any Four
	Input current @ 24 / 48 VDC	5 mA / 10 mA	Specific
	Minimum ON current	3.5 mA	tions
	Maximum OFF current	1.5 mA	
	Base power required 5V	100 mA max	
	OFF to ON response	3–10 ms	
	ON to OFF response	3–12 ms	
	Terminal type	Removable	
	Status indicators	Logic Side	
	Weight	8.8 oz. (250 g)	
(c)	List different input devices & out	put devices used in PLC.	4M
Ans:	Input device:		02
Ans:			
	1. Push button.		marks
	 Push button. Temperature switches. 		for inpu
	 Temperature switches. Limit switches. 		for inpu devices
	 2. Temperature switches. 3. Limit switches. 4. Pressure switches. 		for inpu devices (Any four)
	 2. Temperature switches. 3. Limit switches. 4. Pressure switches. 5. Level Switches. 		for inpu devices (Any four)
	 2. Temperature switches. 3. Limit switches. 4. Pressure switches. 		for inpu devices (Any four) 02
	 2. Temperature switches. 3. Limit switches. 4. Pressure switches. 5. Level Switches. 6. Proximity Switches. 		for inpu devices (Any four)
	 2. Temperature switches. 3. Limit switches. 4. Pressure switches. 5. Level Switches. 6. Proximity Switches. Output devices: 		for inpu devices (Any four) 02 marks
	 2. Temperature switches. 3. Limit switches. 4. Pressure switches. 5. Level Switches. 6. Proximity Switches. Output devices: Motor. 		for inpudevices (Any four) 02 marks for output devices
	 2. Temperature switches. 3. Limit switches. 4. Pressure switches. 5. Level Switches. 6. Proximity Switches. Output devices: Motor. Display. 		for inpudevices (Any four) 02 marks for output devices (Any
	 2. Temperature switches. 3. Limit switches. 4. Pressure switches. 5. Level Switches. 6. Proximity Switches. Output devices: Motor. Display. Heater coil. 		for inpudevices (Any four) 02 marks for output devices
	 2. Temperature switches. 3. Limit switches. 4. Pressure switches. 5. Level Switches. 6. Proximity Switches. Output devices: Motor. Display. 		for input devices (Any four) 02 marks for output devices (Any

Subject Name: Control system and PLC

17536

Subject Name: Control system and PLC

17536

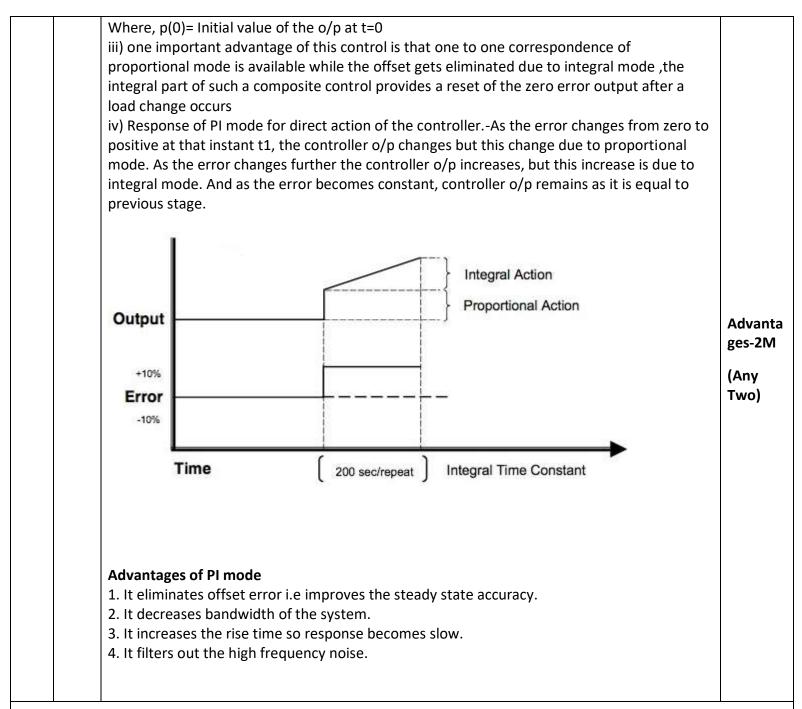
23

(B)	Attempt any ONE of the	e following:			06- ⁻ Mar	
(a)	List the timer instruction	n of PLC. Ex	plain any one of them	in details.	6M	
Ans	Depending on the time de PLC timer- (i) ON delay	•	ration, there are two type	s of timers	Tim inst on li	truc list-
	(ii) OFF delay timer				2M	
	Description (i) ON delay timer				Expl ion-	
	 This instruction counts an output when accumula Use T_{on} instruction to interval. The T_{on} instruction true. 	tted reaches t turn an outpu	the preset value.	r has been on for a pres	et time one	-
	3) The accumulated value the timer has timed out. Instruction parameter -			false regardless of whe	ther	
		15	14 13 12 11 10 9 8 2 1 0	876543		
	word 0	TT\EN	TT'EN DN	16 bit		
	word 1	preset value		16 bit		
	word 2	Accumulato r value		16 bit		
			set.			
	Description (ii) OFF delay timer 1)This instruction counts	time interva	l when conditions preced	ling it in the rung are pr	oduces low	
	(ii) OFF delay timer 1)This instruction counts	time interva	l when conditions preced Page	ling it in the rung are pr	oduces low	-

23/34

MAHARASHT (Autonomous) (ISO/IEC - 2700

SUMMER- 19 EXAMINATION Subject Name: Control system and PLC Model Answer Subject Code:

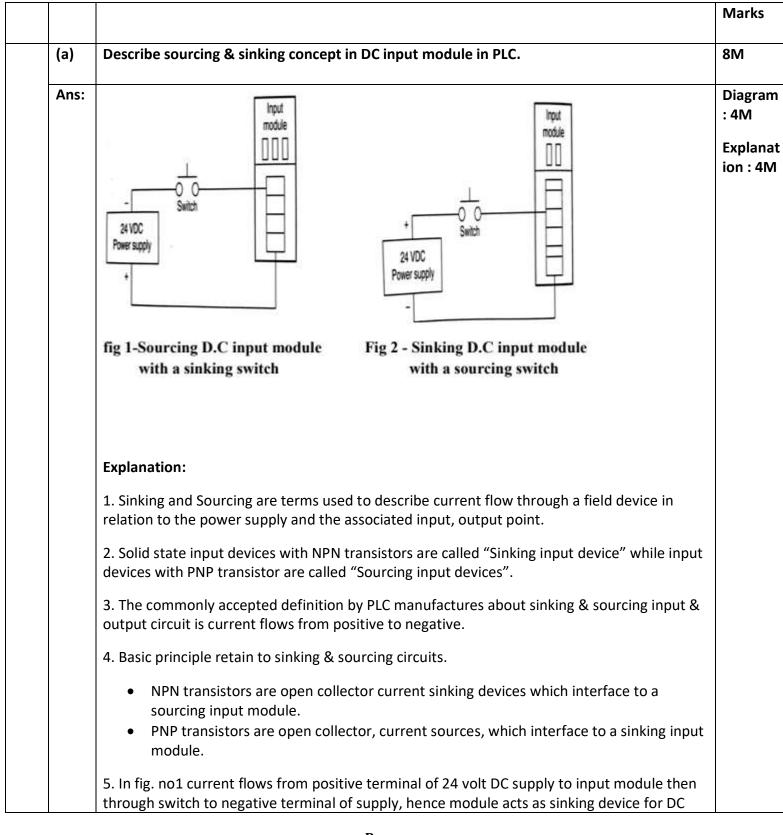

17536

	Instruction parameter []ima	or TOFF is ?	S word alama	nt			
	Instruction parameter- Time		word cicilic	11t.			
	15		4 13 12 2 1 0	2 11 10 9 8 7 6 5 4]	
	word		TEN DN		16		
	0 TT word	T'EN TT	I'EN DN		bit 16	-	
	1. S.	eset value			bit		
		cumulat			16		
	2 or v	value			bit		
	 ii) Timer enable bit(bit 1 iii) Timer timing bit(bit15)-⊤ less than the preset value. It 	cond IT is set whe	lition become en rung cond	e false. itions are false 8	the a	ccumulated value is	
(b)	Explain PI control action. Sta	ate its equa	ation. State	advantages of F	Pl cont	rol. (any two)	6M
(6)							

MAHARASHT (Autonomous) (ISO/IEC - 2700 CBOARD OF TECHNICAL EDUCATION rtified)

SUMMER– 19 EXAMINATION Subject Name: Control system and PLC <u>Model Answer Subject Code</u>:

17536


Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	16- Total
		Page	

Subject Name: Control system and PLC

17536

26

Page 26/34

Subject Name: Control system and PLC

17536

	6. In fig.2 current flows from positive terminal of 24 volt DC supply to switch then input module to negative terminal of supply, as far as input module is concern it act as sinking device for DC switch and sourcing device for 24 volt DC supply.	
b)	A unity feedback control system has	8M
	G(S)= $\frac{26}{S(S+5)}$ if step input is given to the system.	
	Calculate:	
	(i) Rise time (ii) Damping ratio	
	(iii) Peak overshoot (iv) Settling time	
Ans:	The open loop transfer function for unity feedback system is given by,	Each
	$\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)}$	poin 2M
	$= \frac{\frac{26}{s(s+5)}}{1+\frac{26}{s(s+5)}}$ $= \frac{26}{s^2+5s+26}$	
	$s^{2}+5s+26$	
	Comparing with standard equation,	
	$\frac{Wn^2}{s^2 + 2\xi Wn. s + Wn^2}$	
	We get,	
	Wn ² = 26	
	Therefore Wn = 5.099 rad/sec	
	2 ξ Wn = 5	
	ξ= 0.49	
	i) Rise time	

BOARD OF TECHNICAL EDUCATION

rtified)

MAHARASHT (Autonomous) (ISO/IEC - 2700

> SUMMER- 19 EXAMINATION C <u>Model Answer</u> Subject Code:

Subject Name: Control system and PLC

17536

		$t_r = \frac{\pi - \beta}{Wd}$	
		Where $\beta = \tan^{-1} \frac{\sqrt{(1-\xi_2)}}{\xi}$ $\beta = \tan^{-1}(0.8712/0.49) = \tan^{-1}(1.777) = 60.53^{\circ} = 1.055 \text{ radians}$ Wd = Wn $\sqrt{1-\xi_2}$	
		= 5.099 * 0.8712 = 4.434 rad/sec	
	Thus	tr= (π – 1.055)/4.434	
	Ther	efore, tr = 0.47 sec	
	ii)	Damping ratio	
		2 ξ Wn = 5	
		ξ= 0.49	
	iii)	Peak overshoot	
		Mp%=100 x $e^{-\frac{\pi c}{\sqrt{1-c^2}}}$	
		$= 100 \times e^{-1.766} = 10 \times 0.171$	
	iv)	%Mp= 17.10 Settling time	
		$ts = \frac{4}{\zeta Wn}$	
		$= \frac{4}{0.49*5.099}$	
		Therefore ts = 1.601 sec	
c)	A systen	n has G(S)= $\frac{K(s+13)}{S(S+3)(S+7)}$	8M
	Where I	K is positive.	
	Determi	ne the range of K value for system stability.	
Ans:	The char	racteristic equation is given by,	Charact eristic

rtified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION Model Answer Subject Code:

Subject Name: Control system and PLC

17536

	1+G(s) H(s) = 0 $1 + \frac{K(S+13)}{S(S+3)(S+7)} = 0$	equatio n :3M
	s(s+3)(s+7) + k(s+13) = 0 $s^{3} + 10s^{2} + 21s + ks + 13k = 0$ $s^{3} + 10s^{2} + (21+k)s + 13k = 0$	Routh array : 2M
	from this equation, $a_0 = 1$, $a_1 = 10$, $a_3 = (21+k)$ and $a_4 = 13k$	
	s ³ 1 21+k 0	
	s ² 10 13k	
	s ¹ (210-3k)/10 0	
	s ⁰ 13k	
ł	for stability all elements in the first column of routh array must be positive	2M
1	therefore from row of s ⁰ row ,	
	13k > 0	
-	Therefore k > 0	
+	therefore from row of s ¹ row,	
	(210-3k)/10 = 0	
	210 > 3k	
	K < 70	Range :
	Since k must be positive , the range of values of k for stability is $0 < k < 70$.	1M

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
6.		Attempt any FOUR of the following:	16- Total

Subject Name: Control system and PLC

17536

				Marks		
(a)	Compare P control action	with PID control action. (any four)	4M		
Ans:	NOTE : Any Relevant Comparison must be considered					
	PARAMETER	P CONTROL	PID CONTROL	Four Point		
	RISE TIME	Decrease	Minor Decrease	1M fo		
	OVERSHOOT	Increase	Minor Decrease	Point		
	SETTLING TIME	TTLING TIME Small change Minor Decrease	Minor Decrease			
	STEADY STATE ERROR	Decrease	No Change			
	STABILITY	Worse	If Kd small Better			
	OFFSET	Creates	eliminates			
b)				4M		
b)	State advantages & disadv			4M		
b) Ans:	State advantages & disadv Advantages:	vantages of Routh's Stabi	lity criteria.	02 Marks		
-	State advantages & disado Advantages: It is a simple algebraic me roots of characteristics equ	vantages of Routh's Stabi thod to determine the sta	lity criteria.	02 Marks each(
-	State advantages & disade Advantages: It is a simple algebraic me roots of characteristics equ It is very useful for single v	vantages of Routh's Stabi thod to determine the sta uation. variable, multivariable and	lity criteria.	02 Marks each(
-	State advantages & disado Advantages: It is a simple algebraic me roots of characteristics equ It is very useful for single v It progresses systematical	vantages of Routh's Stabi thod to determine the sta uation. variable, multivariable and ly.	lity criteria.	02 Marks each(Any tw valid		
-	State advantages & disade Advantages: It is a simple algebraic me roots of characteristics equ It is very useful for single v	vantages of Routh's Stabi thod to determine the sta uation. variable, multivariable and ly. e of k for stable operator.	lity criteria. bility of closed loop without salving for d loop systems.	02 Marks each(Any ty valid		
-	State advantages & disado Advantages: It is a simple algebraic me roots of characteristics equ It is very useful for single v It progresses systematical It can determine the range It can judge very easily the It is not tedious or time co	vantages of Routh's Stabi thod to determine the sta uation. variable, multivariable and ly. e of k for stable operator. e relative stability of a syst onsuming method.	lity criteria. bility of closed loop without salving for d loop systems. tem.	02 Marks each(Any tw valid		
-	State advantages & disade Advantages: It is a simple algebraic me roots of characteristics equ It is very useful for single It progresses systematical It can determine the range It can judge very easily the It is not tedious or time co It helps to determine the	vantages of Routh's Stabi thod to determine the sta uation. variable, multivariable and ly. e of k for stable operator. e relative stability of a syst onsuming method. conditions of absolute and	lity criteria. Ibility of closed loop without salving for I loop systems. tem.	02 Marks each(Any ty valid		
-	State advantages & disade Advantages: It is a simple algebraic me roots of characteristics equ It is very useful for single It progresses systematical It can determine the range It can judge very easily the It is not tedious or time co It helps to determine the	vantages of Routh's Stabi thod to determine the sta uation. variable, multivariable and ly. e of k for stable operator. e relative stability of a syst onsuming method. conditions of absolute and	lity criteria. bility of closed loop without salving for d loop systems. tem.	02 Marks each(Any tw valid		
-	State advantages & disade Advantages: It is a simple algebraic me roots of characteristics equ It is very useful for single v It progresses systematical It can determine the range It can judge very easily the It is not tedious or time co It helps to determine the of It can give the number of the unstable systems. Disadvantages	vantages of Routh's Stabi thod to determine the sta- uation. variable, multivariable and ly. e of k for stable operator. e relative stability of a syst onsuming method. conditions of absolute and roots of the characteristic	lity criteria. Ibility of closed loop without salving for d loop systems. tem. d relative stability of a system. s equation having positive real part in	02 Marks each(Any tw valid		
-	State advantages & disado Advantages: It is a simple algebraic me roots of characteristics equ It is very useful for single It progresses systematical It can determine the range It can judge very easily the It is not tedious or time co It helps to determine the of It can give the number of the unstable systems.	vantages of Routh's Stabi thod to determine the sta uation. variable, multivariable and ly. e of k for stable operator. e relative stability of a syst onsuming method. conditions of absolute and roots of the characteristic	lity criteria. Ibility of closed loop without salving for I loop systems. Item. Item. Is equation having positive real part in	02 Marks each(Any tv		

SUMMER- 19 EXAMINATION Subject Name: Control system and PLC Model Answer Subject Code:

	It is very complex to obtain relative stability of the system	
	It cannot tell whether roots are real or complex	
	It cannot give the exact location of the roots. It is valid only if the characteristics equation is algebraic and all coefficients are real.	
c)	Draw & explain AC discrete output module.	4M
Ans:		
	Logic	
	Output status Power	
	indicator	
	Digital signal Logic Opto-electrical Electronic 120 VAC	
	from processor circuits isolation switch	
	Discrete AC output module block diagram.	Diagra -2M
	Discrete input modules perform four tasks in the PLC control system.	-2111
	They: • Sense when a signal is received from a field device. • Convert the input signal to the	
	correct voltage level for the particular PLC. • Isolate the PLC from fluctuations in the input signal's voltage or current. • Send a signal to the processor indicating which sensor	
	originated the signal.	
	Figure. Shows the block diagram for one output of a typical discrete output module. Like the	
	input module, it is composed of two basic sections: the power section and the logic section,	
	coupled by an isolation circuit. The output interface can be thought of as an electronic	Expla
	switch that turns the output load device on and off. Logic circuits determine the output status. An output LED indicates the status of the output signal.	ion-2l
d)	Explain PD control action. State advantages of PD control.(any two)	4M

MAHARASHT (Autonomous) (ISO/IEC - 2700 CBOARD OF TECHNICAL EDUCATION rtified)

SUMMER- 19 EXAMINATION

Subject Name: Control system and PLC <u>Model Answer Subject Code</u>:

17536

32

is used in industrial mode Explanat Ans: PD control action applications. It uses proportional and derivative modes ion-2M serially. Mathematically it is given by; $\mathbf{P} = \mathbf{K}_{p} \mathbf{e} (\mathbf{t}) + \mathbf{K}_{p} \mathbf{K}_{D} \frac{\mathbf{d} \mathbf{e} (\mathbf{t})}{\mathbf{d} \mathbf{t}} + \mathbf{p} (\mathbf{0})$ Above equation contains three mathematical terms i.e. K_p e (t) indicates the proportional output term, $\frac{de(t)}{dt}$ indicates derivative term and p(0) Kn $\mathbf{K}_{\mathbf{D}}$ controller output with no error. e(t)[%] (+) Controller output Error 0 (-) offset P(%) 100 50 Proportional response Derivative response t Fig- Proportional-Derivative action. Advantage of PD mode 1. It improves the damping & reduces overshoot. 2. It reduces the rise time. Advanta 3. It allows the rise of narrower proportional band with its lesser offset. ges-2M 4. Increases the controller gain during the error changes. (Any 5. Can compensate the rapidly changing error. Four) 6. Can handle the fast processes. 7. Can compensate some of the lag in a process.

Subject Name: Control system and PLC

17536

e)	Define servo system. Draw & label the functional block diagram of DC servo motor.	4M
Ans:	Definition: Servo system is defined as automatic feedback control system working on error signals giving the output as mechanical position, velocity or acceleration.	Defina on-1N
	$\begin{array}{c c} & \bullet & \bullet \\ \hline & \bullet \\ \hline & \bullet & \bullet \\ \hline & \bullet & \bullet \\ \hline &$	Diagra with labelin 3M
	 The servo system consists of error detector, amplifier, motor as controller, load whose position is to be changed. DC servo system consists of potentiometer as a error detector, DC amplifier, DC motor, DC gear system and the DC load whose position is to be changed. (NOTE :Explanation is optional) 	