

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

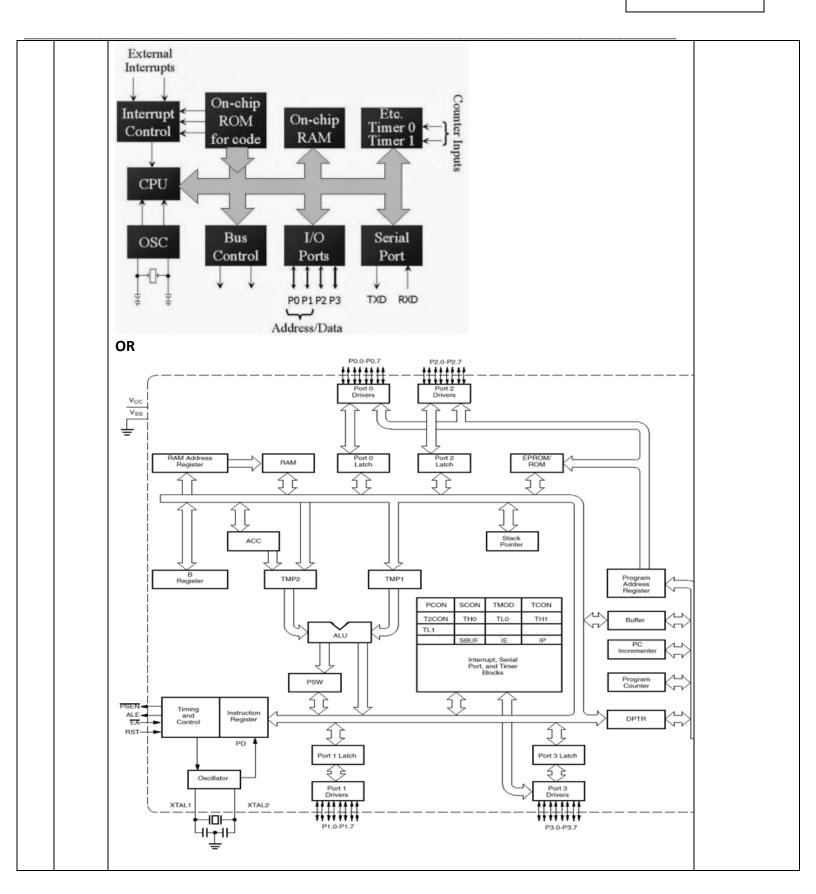
SUMMER-19 EXAMINATION

Subject Name: Micro controller Model Answer Subject Code: 17534

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub	Answers	Marking Scheme
NO .	Q. N.		Scheme
1	а	Attempt any THREE:	12- Total Marks
	i	Draw block diagram of microcontroller.	4M
	Ans:	Block Diagram of Microcontroller:	Block Diagram: 4Marks


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller <u>Model Answer</u>

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 19 EXAMINATION

Subject Name: Micro controller <u>Model Answer</u>

Subject Code:

ii	List different types of buses with their size in 8051 μc	4M
Ans:	BUSES SIZE	List of Bus:
	Address Bus 16 Bits	1M
	Data Bus 8 Bits	
	Control Bus 1 Bit each	Each Size: 2M
	control signal	
iii	Why 8051 is known as Boolean processor?	4M
Ans:	 8051 is known as Boolean processor because: 8051 processor is a CPU that can perform some operation on a data and gives the output. The 8051 processor contains a complete Boolean processor for single-bit operations. The 8051 instruction set is optimized for the one bit operations. So often desired in real world, real time control applications. The Boolean processor provides direct support for bit manipulation and testing of individual bit allows the use of single bit variable to perform logical operations therefore 8051 can be used to solve Boolean expression. Eg: CLR C means clear the carry bit SETB 20h means set the memory bit with bit address 20h Explain any four assembler directive with examples. 	Appropriate four points: 4Marks
Ans:	 ORG:-ORG stands for Origin Syntax: ORG Address The ORG directive is used to indicate the beginning of the address. The number that comes after ORG can be either in hex or in decimal. If the number is not followed by H, it is decimal and the assembler will convert it to hex. Some assemblers use —.ORG (notice the dot) instead of —ORG for the origin directive. DB:- (Define Byte) Syntax: Label: DB Byte Where byte is an 8-bit number represented in either binary, Hex, decimal or ASCII form. There should be at least one space between label & DB. The colon (:) must present after label. This directive can be used at the beginning of program. The label will be used in program instead of actual byte. There should be at least 	Any four, Each directive: 1Mark

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller

Model Answer

Subject Code:

17534

one space between DB & a byte.

E.g. LOOKUP: DB 30h,31h,32h,33h,34h,35h

3. EQU: Equate

It is used to define constant without occupying a memory location.

Syntax: Label EQU Numeric value

By means of this directive, a numeric value is replaced by a symbol.

For e.g. MAXIMUM EQU 99 After this directive every appearance of the label —MAXIMUM in the program, the assembler will interpret as number 99 (MAXIMUM=99).

4. END:

This directive must be at the end of every program meaning that in the source code anything after the END directive is ignored by the assembler. This indicates to the assembler the end of the source file. Once it encounters this directive, the assembler will stop interpreting program into machine code.

e.g. END; End of the program.

5. **CODE:**

The CODE directive is used to assign a symbol to a program memory address. Since the maximum capacity of program memory is 64K, the address must be in the range of 0 to 65535.

Syntax: Start Code

6. DW:

Define a word, puts a word (16 bit number) constant at this memory location.

Syntax: Temp DW 4321H

7. DBIT:

Define a bit, defines a bit constant, which is stored in the bit addressable section of Internal RAM.

8. DATA:

By means of this directive an address with internal RAM is designated as a symbol (address must be in the range of 0-255). In other words, any selected register may change its name or be assigned a new one.

Syntax: Name Data Data-address

For e.g. TEMP 12 DATA 32:- register at address 32 is named as "TEMP 12".

V Compare linear and absolute decoding techniques.

4M

Ar	_	Sr. No.	Linear Decoding	Absolute Decoding	Each Point: 1M.
		1	It is also called as partial decoding as all address lines are not used for decoding	It is also called as full decoding as all the address lines are used for decoding.	Consider Any other relevant
		2	It is used in small systems	It is used in large memory systems	point
		3	Hardware used for decoding logic is eliminated.	Hardware required for decoding logic is more	

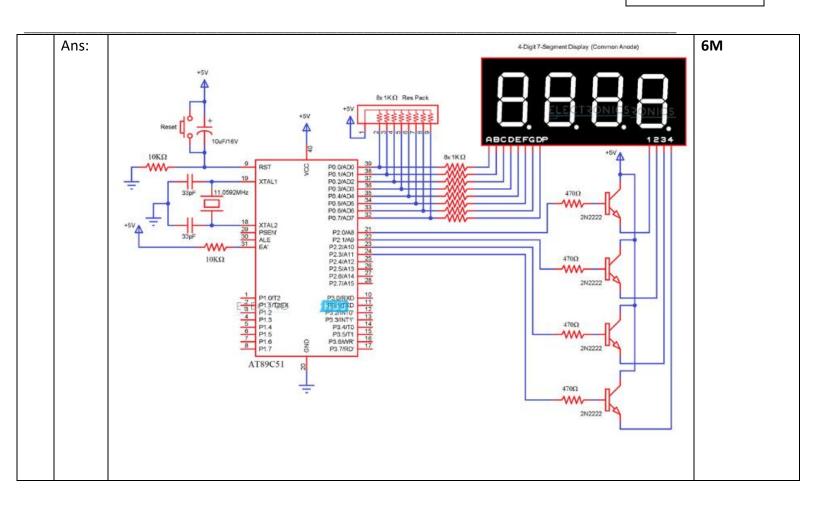
(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller

Model Answer

Subject Code:


	4 Multiple add	esses are generated	Multiple addresses are not generated		
В	Attempt any ONE:				
I	Write an ALP to find 40h onwards.	smallest number from	given array of 10 bytes in internal RAM	6M	
Ans:	MOV R1, #0AH;	Initialize Byte Co	unter	4M- corre	
	MOV R0, #40H;	Initialize source p	ointer R0 to 40H	prog, 2M comment	
	DEC R1;	decrement counter	by one		
	MOV 60H, @R0	Read First Byte			
	UP: INC R0;	Increment the cont	Increment the contents of R0		
	MOV A, @R0;	Read second num	ber		
	CJNE A, 60H, DN	compare the first	two numbers, if not equal go to DOWN		
	AJMP SMALL	else go to small			
	DN: JNC SMALL	check carry			
	MOV 60H, A	Store smallest nur	mber to 60H		
	SMALL: DJNZ R1,	UP decrement the cou	unter by one, if count $\neq 0$, then go to UP		
	END				
	Smallest No. is saved	in memory 60H			
li	Interface 4- digit .7-9	segment display (CA) w	ith 8051 uc.	6M	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller Model Answer Subject Code:

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

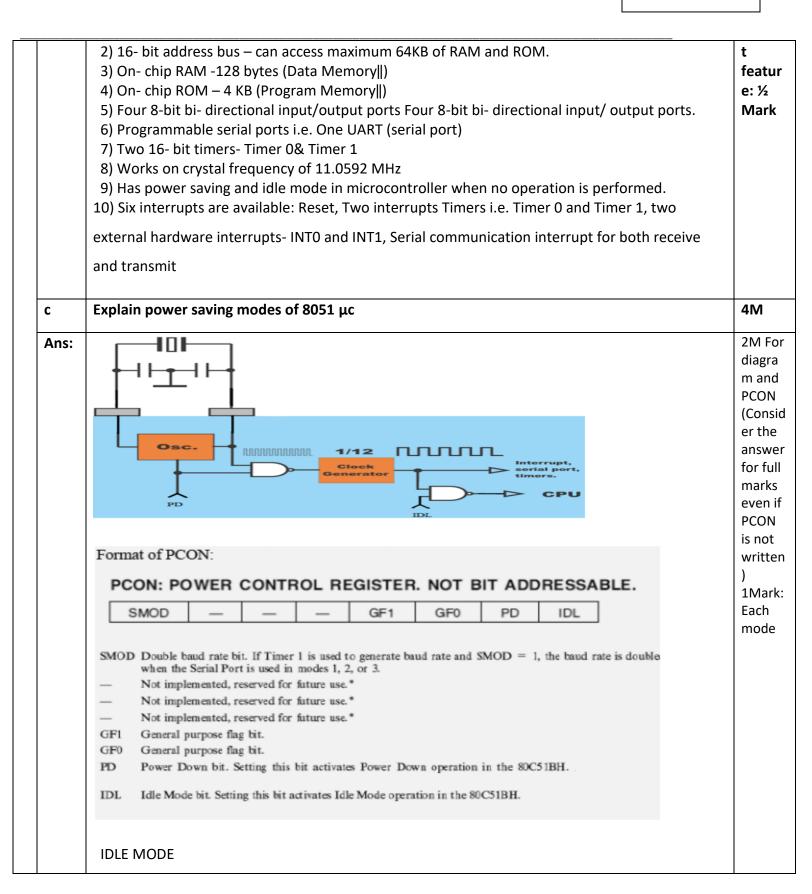
(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller <u>Model Answer</u>

Subject Code:

Sub	Answers	Mark
Q. N.		g
		Scher
		e
	Attempt on FOLID	16-
	Attempt any FOUR:	
		Total
		Mark
а	Draw the structure of internal Ram of 8051 μc.	4M
Ans:	Byte	1½M
	Address Bit address	for
	b7 b6 b5 b4 b3 b2 b1 b0	Bank
	7Fh	area
	General purpose	aica
	RAM area. 80 bytes	1½M
	SU Dyles	for B
	30h	addr
	2Fh 7F 78	sable
	2Eh 77 70	
	2Dh 6F 68 2Ch 67 60 Internal Memory	area,
	2Ch 67 60 Internal Memory 2Bh 5F 58	1M fo
	2Ah 57 50 FFh	Gen.
	29h 4F 48 SFRs	
	2Ch 67 60 2Bh 5F 58 2Ah 57 50 29h 4F 48 28h 47 40 27h 3F 38 26h 37 30 25h 2F 28 24h 27 20 23h 1F 18 22h 17 10	purp
	27h 3F 38 80h 7Fh	e RAI
	25h 2F 28 7Fh	area
	24h 27 20 Internal	
	23h 1F 18 08 RAM	
	21h 0F 08 20h 07 00	
	1Fh Regs 07 (Bank 1)	
	18h 17h Regs 0 - 7 (Bank 1) Register Bank 0	
	10h	
	0Fh Regs 07 (Bank 1) 07h Reg. 7 06h Reg. 6 05h Reg. 5	
	07h Regs 07 (Bank 0) 04h Reg. 4 03h Reg. 3	
	02h Reg. 2 01h Reg. 1 00h Reg. 0	
b	List any eight features of 8051 μc.	4M
Ans:	Features of 8051 micro controller are as follows:-	Each
	1) 8- bit data bus and 8- bit ALU.	corre


(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 19 EXAMINATION

Subject Name: Micro controller

Model Answer

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 19 EXAMINATION

Subject Name: Micro controller Model Answer

Subject Code:

d	Draw the $$ pin diagram of 8051 $$ μ c.	4M
	reset. Reset defines all SFRs but doesn't change on chip RAM	40.0
	· ·	
	and PSEN are held low. Termination from power down mode: an exit from this mode is hardware	
	Register are maintained held. The port pins output the values held by their respective SFRS. ALE	
	With the clock frozen, all functions are stopped, but the on-chip RAM and Special Function	
	going into the Power Down mode. In the Power Down mode, the on-chip oscillator is stopped.	
	An instruction that sets PCON.1 causes that to be the last instruction executed before	
	POWER DOWN MODE	
	this time, CPU resumes the program execution from where it left off.	
	ii) Hard ware reset: that is signal at RST pin clears IDEAL bit IN PCON register directly. At	
	terminated.	
	i) Activation of any enabled interrupt will cause PCON.O to be cleared and idle mode is	
	There are two ways to terminate the idle mode.	
	PSEN hold at logic high levels.	
	port pins hold the logical state they had at the time idle mode was activated. ALE and	
	Status Word, Accumulator, and all other registers maintain their data during Idle. The	
	The CPU status is preserved in its entirety, the Stack Pointer, Program Counter, Program	
	Timer, and Serial Port functions.	
	In the Idle mode, the internal clock signal is gated off to the CPU, but not to the Interrupt,	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 19 EXAMINATION

Subject Name: Micro controller Model Answer Subject Code: 17534

Ans:			_ ,		7				4M
	P1.0	1		40	□ Vcc				
	P1.1			39		(AD0)			
	P1.2	3		38		(AD1)			
	P1.3		8051	37		(AD2)			
	P1.4			36	Tr 10 10 10 10 10 10 10 10 10 10 10 10 10	(AD3)			
	P1.5 P1.6			35 34		(AD4)			
	P1.7			33		(AD5) (AD6)			
	RST			32		(AD7)			
	(RXD) P3.0	10		31					
	(TXD) P3.1			30		PROG			
	(INT0) P3.2 (INT1) P3.3			29	-				
	(T0) P3.4			27		(A15) (A14)			
	(T1) P3.5			26		(A13)			
	(WR) P3.6			25	P2.4	(A12)			
	(RD) P3.7			24	The second second	(A11)			
	XTAL2			23		(A10)			
	GND			21					
				-		(, 10)			
e	Compare 8031	.,8032,80	51,8052, 87	751, 8752	and 89C51				4M
				·			0.774		
e Ans:	Compare 8031 Parameter	8031	51,8052, 87 8032	8051	8052	8751	8752	89C51	Any
				8051 4K (mask	8052 8K (EPRO		8752 64K	89C51 4k	
	Parameter ROM	8031	8032	8051 4K	8052 8K	8751 4K (UV-			Any para eter
	Parameter ROM (bytes) RAM	8031	8032 64K	8051 4K (mask ROM)	8052 8K (EPRO M)	8751 4K (UV- EPROM)	64K	4k	Any para eter Eac
	Parameter ROM (bytes) RAM (bytes) Timers	8031 0 128	8032 64K 256	8051 4K (mask ROM) 128	8052 8K (EPRO M) 256	8751 4K (UV- EPROM) 128	64K 256	4k 128	Any para eter Eac
	Parameter ROM (bytes) RAM (bytes) Timers (16 bit)	8031 0 128 2	8032 64K 256	8051 4K (mask ROM) 128	8052 8K (EPRO M) 256	8751 4K (UV- EPROM) 128	64K 256 3	4k 128 2	Any para eter Eac
	Parameter ROM (bytes) RAM (bytes) Timers (16 bit) I/O pins	8031 0 128 2 32 1:UAR	8032 64K 256 3	8051 4K (mask ROM) 128 2 32 1:UAR	8052 8K (EPRO M) 256 3	8751 4K (UV- EPROM) 128 2 32	64K 256 3	4k 128 2 32 1:UART program	Any para eter Eac
	Parameter ROM (bytes) RAM (bytes) Timers (16 bit) I/O pins Serial Port	8031 0 128 2 32 1:UAR T	8032 64K 256 3 32 1:UART	8051 4K (mask ROM) 128 2 32 1:UAR T	8052 8K (EPRO M) 256 3 32 1:UART	8751 4K (UV- EPROM) 128 2 32 1:UART	64K 256 3 32	4k 128 2 32 1:UART program mable	Any para eter Eac

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER- 19 EXAMINATION

Subject Name: Micro controller <u>Model Answer</u>

Subject Code:

f	Compa	re microproce	essor and microcontroller (any eig	ht points).	4M
Ans:	Sr. No.	Parameter	Microprocessor	Microcontroller	Each corre
	1	No. of instruction s used	Many instructions to read/write data to/ from external memory	Few instruction to read/ write data to/ from external memory	point ½ Mark
	2	Memory	Do not have inbuilt RAM or ROM.	Inbuilt RAM /or ROM	
	3	Registers	Microprocessor contains general purpose registers, Stack pointer register, Program counter register	Microcontroller contains general purpose registers, Stack pointer register, Program counter register additional to that it contains Special Function Registers (SFRs) for Timer, Interrupt and serial communication etc.	
	4	Timer	Do not have inbuilt Timer.	Inbuilt Timer	
	5	I/O ports	I/O ports are not available requires extra device like 8155 or 8255.	I/O ports are available	
	6	Serial port	Do not have inbuilt serial port, requires extra devices like 8250 or 8251.	Inbuilt serial port	
	7	Multifuncti on pins	Less Multifunction pins on IC.	Many multifunction pins on the IC	
	8	Boolean Operation	Boolean operation is not possible directly.	Boolean Operation i.e. operation on individual bit is possible directly	
	9	Application s	General purpose, Computers and Personal Uses	Single purpose(dedicated application), Automobile companies, embedded systems, remote control devices.	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller

Model Answer

Subject Code:

Q. No	Sub Q. N.	Answers	Markin g Scheme
3		Attempt any FOUR:	16- Total Marks
	a	Write addressing modes for following instructions: (i) ADD A, R0 (ii) ADD A, #20h (iii) ADD A, 50h (iv) ADD A, @R0	4M
	Ans:	i) ADD A,R0 Register addressing mode ii) ADD A,#20h Immediate addressing mode iii) ADD A,50h Direct addressing mode iv) ADD A,@R0 Indirect addressing mode	1 Mark for each correct answer
	b	Explain the following instructions:	4M
		(i) MOVC A, @ A+DPTR	
		(ii) RRC A	
		(iii) SWAP A	
		(iv) XCHD A, @RO	
	Ans:	i) MOVC A, @A +DPTR Copy the contents of the external ROM address formed by adding A and the D Accumulator(A). No flags are affected.	DPTR, to for each correct
		ii) RRC A Rotate the byte right through the carry bit. Bit 0 moves into the carry flag; the value of the carry flag moves into the 7^{th} position. No flags are affected. $D_n \rightarrow D_{n-1}$ $D_0 \rightarrow Cy$ $Cy \rightarrow D_7$	explana tion
		iii) SWAP A	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller Model Answer Subject Code:

	SWAP A interchanges the low and high order nibbles of the Accumulator. No flags are affected. [A _{low}] ←→ [A _{high}] iv) XCHD A,@R0 XCHD exchanges the lower order nibble of the Accumulator with that of internal RAM location indirectly addressed by the specified register. The higher order nibbles of each register are not affected, No flags are affected.	
C	What is content of A after execution of following program: CLR A CPL A ANL A,# C0h RR A	4M
Ans:	CLR A (A)=00 h CPL A (A)=FF h ANL A,#0Ch (A)=[A] AND C0 h = C0h RR A (A)=60h	1 mark for each correct t answe
d	Write an ALP to add array of 10 bytes stores at 50h onwards. Store result in external RAM location 2000h (LSB) and 2001h (MSB).	4M
Ans:	ORG 0000h Start: MOV R0, #0AH ; Initialize byte counter MOV R1, #50H ; Initialize memory pointer MOV R7,#00H ; Initialize higher byte counter MOV DPTR, 2000H ;Initialize external memory pointer MOV A, # 00H ; Clear Accumulator	4M for correct to programme Consider any
	UP: ADD A @R1; Add accumulator with number from array JNC Next; if Cy=0,then go to next INC R7; increment R7 (for carry)	other progra m which

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

17534 Subject Code: **Subject Name: Micro controller Model Answer**

	Next: INC R1 ; Increment memory pointer DJNZ RO, UP ; Decrement byte counter, if not zero add again MOVX @DPTR, A ; Store lower byte of result in External memory INC DPTR ; Increment DPTR MOV A, R7 ; Mov the higher byte to accumulator MOVX @DPTR, A ; Store higher byte of result in internal memory HERE: SJMP HERE ; Stop END	is logical y correct
е	Draw internal structure of port 1 pin.	4M
Ans:	Read Latch Bit Lateral FET Pull up	4 Mark for corre
	Unternal Bus DQ Pin 1.X Write to Latch Port SFR Latch	t diagr m

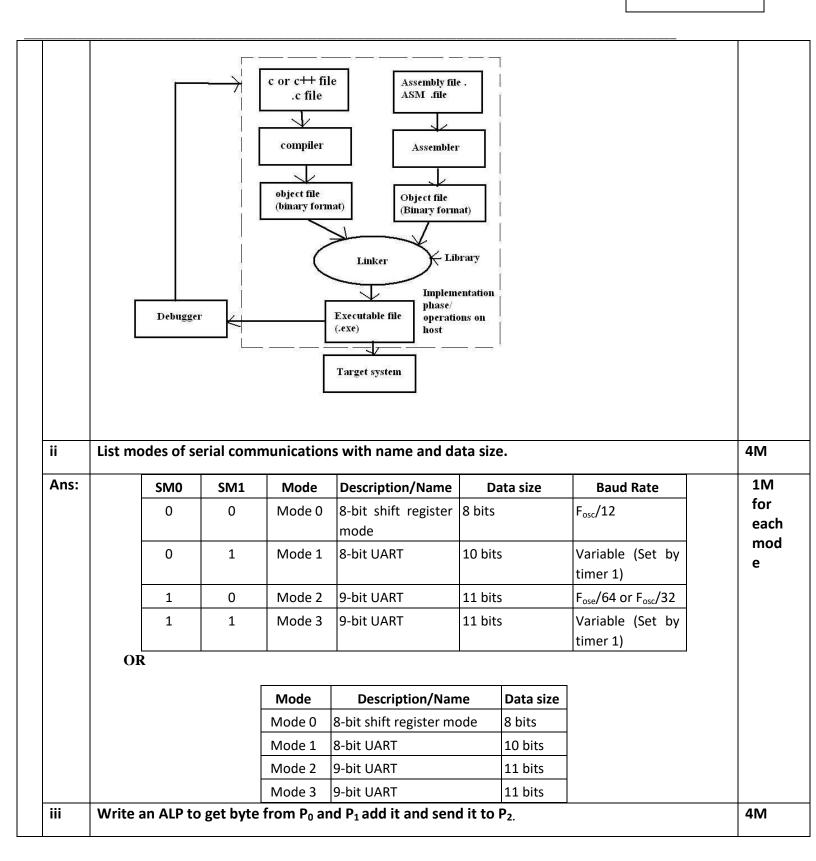
(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 19 EXAMINATION

Subject Name: Micro controller <u>Model Answer</u>

Subject Code:

. Q. N. N. O.	Answers	Marking Scheme
4 a	Attempt any THREE:	12- Total Marks
i	Draw software development cycle.	4M
Ans:	Define processor Define version Define source code window Define registers window Define ports & targer system Edit initial data files Edit data and table Software development cycle	Marks for correct diagra m


(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller

Model Answer

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller

Model Answer

Subject Code:

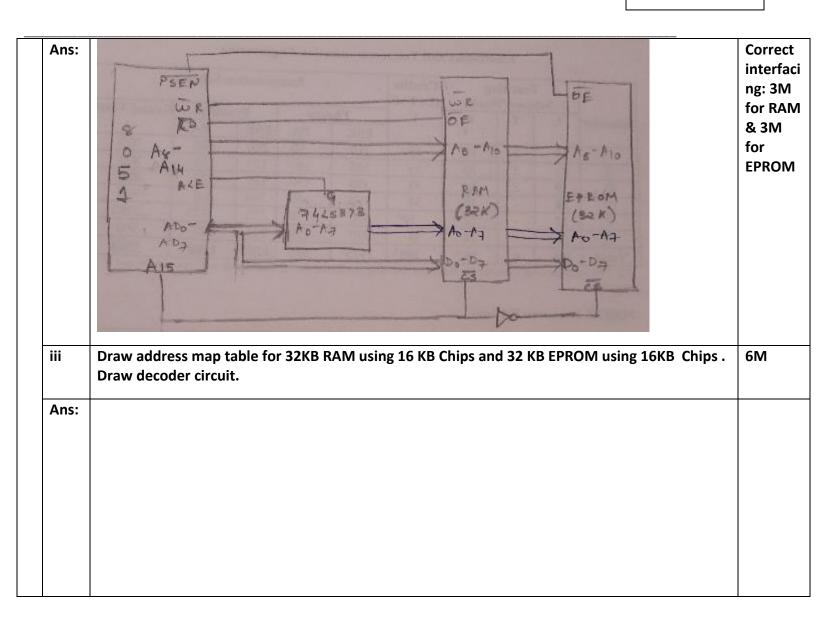
Ans:			4
	MOV A,PO	Get a byte from P0	Mark s fo
	MOV B,A	Transfer the byte to B register	corre
	MOV A,P1	Get the second byte from P1 to A	ct
	ADD A,B	Add both the bytes	prog
	MOV P2,A	Send the result to P2	am
iv	Write an ALP to send, MSBTE on TXD 9600 baud rate.	line with crystal frequency = 11.0592 MHz and to have	4M
Ans:	MOV TMOD, #20H	; timer 1, mode2	3M-
	MOV TH1,#-3	; 9600 baud rate	logicall correct
	MOV SCON, #50H	; 8-bit data,1 stop bit, REN enabled	Prog,
	SETB TR1	; Start timer 1	1M-
	AGAIN: MOV A, #"M"	; transfer "M"	comme nts
	ACALL MESSAGE	; Some delay	
	MOV A, #"S"	; transfer "S"	
	ACALL MESSAGE		
	MOV A, #"B"	; transfer "B"	
	ACALL MESSAGE		
	MOV A, #"T"	; transfer "T"	
	ACALL MESSAGE		
	MOV A, #"E"	; transfer "E"	
	ACALL MESSAGE		
	SJMP AGAIN		
	MESSAGE: MOV SBUF, A;		
	JNB T1, HERE;		

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

17534 Subject Code: **Subject Name: Micro controller Model Answer**

	CLR T1;		
	KEI		
b	Attempt any ONE:		6- Tota Marks
i	Write an ALP to arrange	e 10 bytes starting from 50h onwards, in descending order.	6M
Ans:	ORG 0000h MOV R0,#50H MOV R2, #0AH UP2: MOV R1, #50H MOV R3,#0AH UP1: MOV A, @R0 MOV 0F0H, @ R1 CJNE A,0F0H,DOWN DOWN:JC A_SMALL	; Initialize memory pointer ;initialize counter 1 ;Initialize the memory pointer ; initialize counter 2 ;get the first byte from memory pointer R0 ;get the first byte from memory pointer R1 ;compare the two bytes ;if carry is 1, ie R0 data is smaller go to A_SMALL	6N
	MOV @R0,0F0H MOV @R1,A A_SMALL: INC R1 DJNZ R3,UP1 INC R0 DJNZ R2,UP2 SJMP \$; if Carry =0, get smaller data to R0 from R1 ; increment R1 ; decrement R3 and repeat till it is 0 ; increment R0 ; decrement R2 and repeat till it is 0	

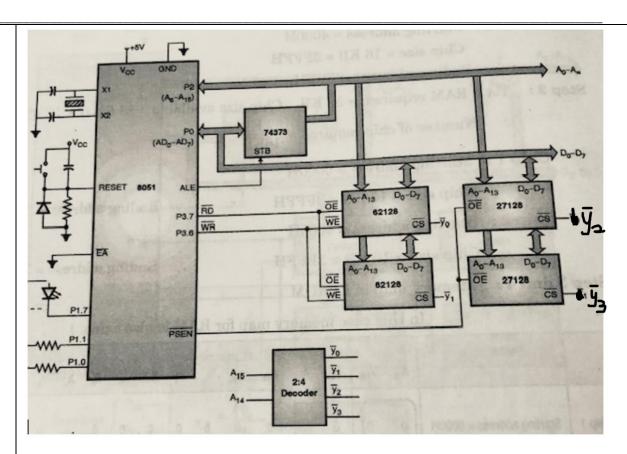

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller Model

Model Answer

Subject Code:


(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller <u>Model Answer</u>

Subject Code:

17534

Memory map for EPROM and RAM is same

	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	
Start address of 1 st RAM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0000H
End address of 1 st RAM	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3FFFH
Start address of 2 nd RAM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4000H
End address of 2 nd RAM	0	1	1	1	1	1	1	1	. 1		1 :	1 :	1 1	1	1	1	7FFFH
Start address of 1 st EPROM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8000H
End address of 1 st EPROM	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	BFFFH
Start address of 2 nd EPROM	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С000Н
End address of 2 nd EPROM	1	1	1	1	1	1	1	1	. 1		1 :	1	1 1	1	1	1	FFFFH

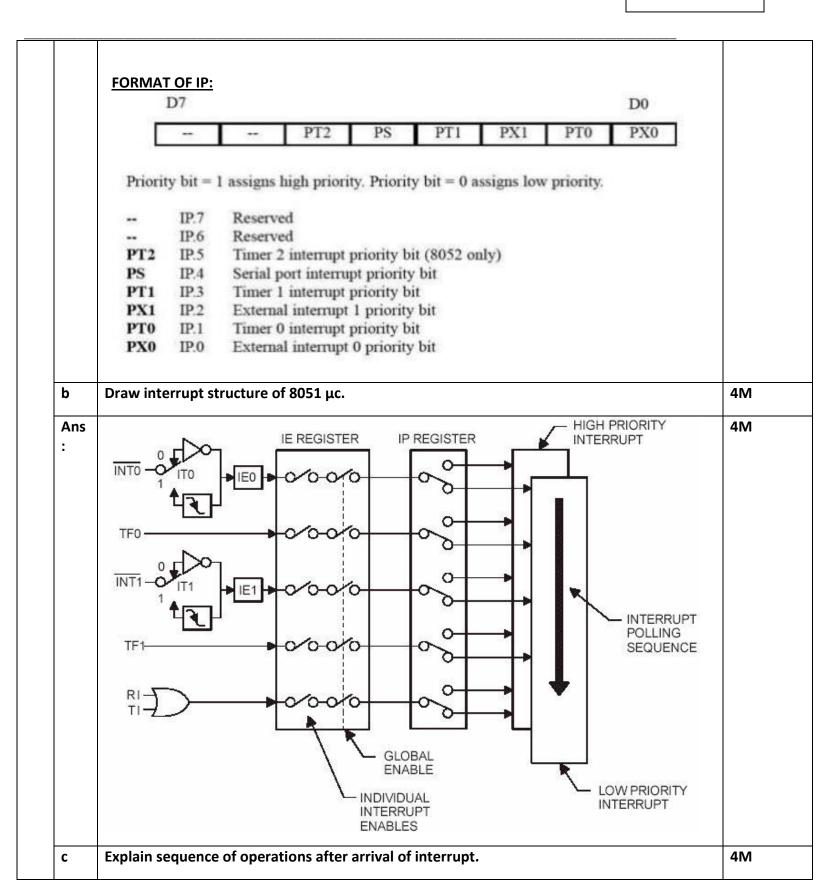
(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 19 EXAMINATION

Subject Name: Micro controller <u>Model Answer</u>

Subject Code:

O	Sub Q. N.	Answers	Marking Scheme
		Attempt any FOUR:	16- Tota Marks
	а	Draw format of IE and IP register.	4M
	Ans		2M- IE,
	:	FORMAT OF IE:	2M-IP
		IE: INTERRUPT ENABLE REGISTER. BIT ADDRESSABLE. If the bit is 0, the corresponding interrupt is disabled. If the bit is 1, the corresponding interrupt is enabled. EA	
		EA	
		IE.6 Not implemented, reserved for future use.*	
		ET2 IE.5 Enable or disable the Timer 2 overflow or capture interrupt (8052 only).	
		ES IE.4 Enable or disable the serial port interrupt.	
		E11 1E.3 Enable or disable the Timer I overflow interrupt.	
		EA1 1E.2 Enable or disable External Interrupt 1.	
		ETO IE.1 Enable or disable the Timer 0 overflow interrupt. EXO IE.0 Enable or disable External Interrupt 0.	
		*User software should not write 1s to reserved bits. These bits may be used in future MCS-51 products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.	
		The state of the s	


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller <u>Model Answer</u>

Subject Code:

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller

Model Answer

Subject Code:

:	2. (3. F 4. E 5. U	CPU saves Fetches th Executes t Jpon RET	the current store ISR address the ISR until it I, the CPU pop	atus of all inter for the interrup reaches the RET	rupts internally. of from IVT and jumps I instruction. C from the stack and	es the PC on the stack. s to that address. continues with whatever	4M
d	Draw th	e format	of SCON regis	ter and explain	it.		4M
Ans	SCO	V : Serial	Port Control R	egister (Bit Add	ressable)		2M-
:	000.			egaver (Dit ride			FORMAT,
		S	M0 SM1	SM2 REN	TNS RBS	Π RI	2M-
	SM0	SCON.7		specifier (NOTE 1).			EXPLANA
	SMI	SCON.6		specifier (NOTE 1).			ON
	SM2	SCON.5	to 1 then RI will	not be activated if t	he received 9th data bit (RI	3. In mode 2 or 3, if SM2 is set 38) is 0. In mode 1, if SM2 = 1 n mode 0, SM2 should be 0 (See	
	REN	SCON.4	Set/Cleared by so	oftware to Enable/Di	sable reception.		
	TB8	SCON.3			modes 2 & 3. Set/Cleared b	75 A 2 C B 3	
	RB8	SCON.2		is the 9th data bit the l. In mode 0, RB8 is		if $SM2 = 0$, RB8 is the stop bit	
	71	SCON.1			re at the end of the 8th bit tin ist be cleared by software.	ne in mode 0, or at the beginning	
	RI	SCON.0			e at the end of the 8th bit tim except see SM2). Must be cl	e in mode 0, or half way through eared by software.	
	Not	e 1 :					
		SM0	SMI	MODE	DESCRIPTION	BAUD RATE	
		0	0	0	SHIFT REGISTER	Fose/12	
		0	1	1	8 bit UART	Variable Fose/64 OR Fose/32	
		1		9.	8 bit UART	Previous conditions to the first transfer and	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 19 EXAMINATION

Subject Name: Micro controller

Model Answer

Subject Code:

SMOD	-	-	-	GF1	GF0	PD	IDL		1M- BAUD
SMOD Double b when the	and rate bi				and rate and S	SMOD = 1	, the band r	ate is double	
 Not imple 	emented, re	served for	future use.	•					
 Not imple 	emented, re	served for	future use.						
 Not impli 	emented, re	served for	future use.						
GF1 General p	urpose flag	bit.							
GF0 General	surpose flag	bit.							
PD Power D	own bit. Se	tting this	bit activate	es Power Do	wn operation	in the 80C	51BH.		
IDL Idle Mod	e bit. Settin	g this bit a	ctivates Id	le Mode oper	ation in the 80	C51BH.			

Q. No.	Sub Q. N.	Answers	Marking Scheme
6		Attempt any FOUR:	16- Total Marks
	а	Write an ALP for 500 msec delay, fosc = 12 MHz .	4M
	Ans:	CALCULATION: Crystal freq=12MHz Timer frequency=12MHz/12=1MHz Timer Time Period=1/1MHz=1µs For 500msec delay, 50msec is repeated 10 times For delay of 50 ms, Count = 50ms/1µs=50000 Therefore count to be loaded in TH1 and TL1 can be calculated as 65536-50000=15535D=3CB0H PROGRAM:	1M - calculation, 3M- Program
		MOV TMOD, #10H ;Timer1, mode 1	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

17534 Subject Code: **Subject Name: Micro controller Model Answer**

	MOV R0,#0A	\H	;Co	unt	er for	500ms(50*10\	DEL/					
	BACK: MOV					count	•						
	MOV TH1, #				•	count v							
	SETB TR1					Timer 1							
	AGAIN: JNB	TF1, AC	IAE	٧	•	until tin		s ove	er				
	CLR TR1	ŕ			; stop								
	CLR TF1				=	timer f	lag						
	DJNZ RO, BA	CK					_) ≠ 0	, reload ti	imer			
	HERE: SJMP	HERE			; repe	eat							
b	Compare Tir	mer an	d Co	oun	ter op	eration	•						4M
Ans:													Any 4
	SR.NO				TIN	MER				COU	NTER		points-1M
	1			1.6						1.			each
	1	It is	use	d to	r delay	y impler	nentati	ion			ıre external even h measurement	ıt	
	2	Exte	rna	l pir	n T0/T:	1 is not	used			-	is monitored		
	3					ented f		th			ented for every		
		of F					·		pulse c	n T0 or T1 p	oin, irrespective	of	
	4	TUV	200	J T1 .	v is los	dod oc				quency	be initially cleare	. d	
	4	requ				ded as	per		for cou		be initially cleare	eu	
	5	C/T=			,				C/T=1				
С	Draw forma	t of CV	VR f	or E	BSR an	d I/O N	lode of	825	55.				4M
Ans:												BSR	2M- BSR
	D7		D6		D5	D4	D3	D2	D1	D0		МО	Mode, 2M-
			00			D4	D3	02	D1			DE:	I/O mode
	0 (0=BSR)		Χ		X	X	B2	B1	во	S/R (1=S,0=	:R)		
	Bit select: (Ta	aking Do	on't	care	e's as U)							
		B2	B1	BO	PC bit	Control	word (9	Set)	Control wo	ord (reset)			
					. 0 0.10			,		(1 00 00)			
					PC0	0000 00	001 = 01	.h	0000 0000) = 00h			
		0	0	0	PCU								
									0000 000	021			
		0	0	1	PC1	0000 00		h	0000 0010) = 02h			
				1)11 = 03		0000 0010				

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller

Model Answer

Subject Code:

	0	1	1	PC3	0000 0111 = 07h	0000 0110 = 06h	
	1	0	0	PC4	0000 1001 = 09h	0000 1000 = 08h	
	1	0	1	PC5	0000 1011 = 0Bh	0000 1010 = 0Ah	
	1	1	0	PC6	0000 1101 = 0Dh	0000 1100 = 0Ch	
	1	1	1	PC7	0000 1111 = 0Fh	0000 1110 = 0Eh	
L/O MODE:							
I/O MODE:							
					D D	D D	
I/O MODE:		06) ₅ D		D ₁ D ₀	
D ₇		T	D		-	D ₁ D ₀ P _B PC _L	
D ₇ 1 I/O mode ✓		T		-		P _B PC _L	
D ₇		T		-		P _B PC _L Group B Port C lower (PC ₃ - PC ₀)	
D ₇ 1 I/O mode Group A Mode selection 00 – Mode 0 01 – Mode 1		T		-		P _B PC _L Group B Port C lower (PC ₃ - PC ₀)	
D ₇ 1 I/O mode Group A Mode selection 00 – Mode 0		T		-		Group B Port C lower (PC ₃ - PC ₀) 1 - Input 0 - Output	
D ₇ 1 I/O mode Group A Mode selection 00 – Mode 0 01 – Mode 1 1X – Mode 2 Group A		T		-		Group B Port C lower (PC ₃ – PC ₀) 1 – Input 0 – Output Group B Port B (PB ₇ – PB ₀)	
D ₇ 1 I/O mode Group A Mode selection 00 – Mode 0 01 – Mode 1 1X – Mode 2 Group A Port A (PA ₇ – P		T		-		Group B Port C lower (PC ₃ – PC ₀) 1 – Input 0 – Output Group B Port B (PB ₇ – PB ₀) 1 – Input	
D ₇ 1 I/O mode Group A Mode selection 00 – Mode 0 01 – Mode 1 1X – Mode 2 Group A		T		-		Group B Port C lower (PC ₃ - PC ₀) 1 - Input 0 - Output Group B Port B (PB ₇ - PB ₀) 1 - Input 0 - Output	
D ₇ 1 I/O mode Group A Mode selection 00 - Mode 0 01 - Mode 1 1X - Mode 2 Group A Port A (PA ₇ - P 1 - Input 0 - Output Group A Group A	A ₀)	GA	Mode	-		Group B Port C lower (PC ₃ - PC ₀) 1 - Input 0 - Output Group B Port B (PB ₇ - PB ₀) 1 - Input 0 - Output	
D ₇ 1 I/O mode Group A Mode selection 00 – Mode 0 01 – Mode 1 1X – Mode 2 Group A Port A (PA ₇ – Paul 1 – Input 0 – Output	A ₀)	GA	Mode	-		Group B Port C lower (PC ₃ – PC ₀) 1 – Input 0 – Output Group B Port B (PB ₇ – PB ₀) 1 – Input	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-19 EXAMINATION

Subject Name: Micro controller

Model Answer

Subject Code:

	List interrupts with their priori	ty and vector addresses.		4M
Ans:	Interrupt Source	Vector address	Interrupt priority	2M- l
	External Interrupt 0 – INT0	0003H	1	1M-ve addre priori
	Timer 0 Interrupt	000BH	2	prior
	External Interrupt 1 – INT1	0013H	3	
	Timer 1 Interrupt	001BH	4	
	Serial Interrupt	0023H	5	
е	Explain selection factor of micr	ocontroller.		4M
	must be considered while sele 1. Word length: The word length:	_	oithor 9 16 or 22 hit As the word	points
	length increases, the cost, power 2. Power dissipation: It dependence voltage, VLSI technology etc. power microcontrollers. 3. Clock frequency: The speed The clock frequency depends to the categories 1. CISC 2. RISC. Clause of the categories	ver dissipation and speed of and speed of an embedded system of a polication. asis of instructions microstations of instructions microstations with a polication of the system of the s	ike clock frequency, speed, supply bedded systems, we must use low depends upon the clock frequency. controllers are classified into two vare flexibility. Hence it is used in tem for the particular applications. RAM, EEPROM, FLASH ROM, UART, interface, wireless interface etc. It	each