

Subject Name: Design of Automobile Components

Subject Code:

17525

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q.		Scheme
1	N. (A)	Attempt any THREE:	12
*	(a)	What is factor of safety? How it is selected?	04
	. ,		04
	Ans.	(Definition 02 Marks and Selection Factor any four 02 Marks)	
		Factor of Safety: Factor of safety is defined as the ratio of the maximum stress to	
		the working stressor design stress. Mathematically,	
		Maximum Stress	
		Factor of Safety = $\frac{Working or design stress}{Working or design stress}$	
		In case of ductile materials-	
		Factor of Safety = $\frac{\text{Yield Point Stress}}{\text{Working or design stress}}$	
		Working or design stress	Definition
		In case of brittle materials-	02 Marks
		Factor of Safety – Maximum Stress	and
		Factor of Safety = $\frac{Maximum Stress}{Working or design stress}$	Selection
		Selection of factor of safety depends on (Any Four)	Factor
		1. The reliability of the properties of the material and change of these	any four
		properties during service.	02 Marks
		2. The reliability of test results and accuracy of application of these results to	
		actual machine parts.	
		3. The reliability of applied load.	
		4. The certainty as to exact mode of failure.	
		5. The extent of simplifying assumptions.	
		6. The extent of localized stresses.	
		7. The extent of initial stresses set up during manufacture.	
		8. The extent of loss of life if failure occurs.	
		9. The extent of loss of property if failure occurs.	

Subject Name: Design of Automobile Components

Subject Code:

17525

(b)	Explain role of ergono	mics in automobil	e design.			04
Ans.	(Correct Answer 04 Ma	· ·				
	Role of Ergonomics In					
	Anthropometry, Physio	logy and psycholog	y are the compor	nents of ergono	omics	
	Anthropometry: With	the help of anthrope	ometry dimensio	ns of the comp	ponents are	
	finalized so that they a	an be easily handl	ed by operator v	without fatigue	e and with	
	consistence efficiency	for e.g. diameter o	f steering wheel	, distance from	m chair to	
	pedals.	-	-			C
	Physiology: With the	help of physiology	components are	designed to b	e operated	Correct
	by hand or foot force.	For e.g. Gear shift	ting, Steering w	heel are desig	gned to be	Answer
	operated by hand beca	use they require sp	beed and accurac	cy which is in	nparted by	04 Mark
	hand and brake pedal					
	because they require gr					
	Psychology: Psycholog		-	•	and push	
	operation of emergency					
	is made large and paint					
	are push operated. All					
	user friendly.	•	C		1	
(c)	State two applications	of spigot type cott	er joint and tur	n buckle.		04
Ans.	(Any two Applications	of Each 01 Mark ea	ach)			
	i) Applications of Cott	er joint:				
	• Connecting a pi	ston rod to cross hea	ad of steam engin	ne		Any
		d with piston rod of				two
	• Valve rod and it	s stem.				Applicat
	ii) Applications of Tur	n Buckle:				ns
	• Tie rod of steeri	ng system				of
		partments of locom	otives			Each
	• Tie strings of el					01 Mar
	0	springs in multi axl	e vehicles			each
	 Link fod of fear Linkages of gear 		e venieres			
		veen brake pedal an	d master cylinde	r		
(d)	State types of keys wit			1		04
Ans.	(Types of Keys 02 Mar)		
1115.	Types of Keys:	is and men Applied	<i>uions 02 marks</i> ,	/		
	Common types of keys	are.				-
	1. Sunk keys	2.Saddle keys	3.Tangent	4.Round	5. Splines	Types o
	1. Sum negs	2. Suudie Reys	keys	keys	ci opinico	Keys
	A C	- C - 1' -1 IZ	KEYS	ксуб		02 Mark
	A. Square sunk key	a.Solid Key				and thei
	B. Parallel sunk key	b. Hollow Key				Applicati
						ns 02 Mark
	C. Gib-head key					
	C. Gib-head key					02 mark
	C. Gib-head key D. Feather key: E. Woodruff key					02 Mark

Subjec	t Name: Design of Automobile Components Subject Code: 17525	
	(3) Stress in full Length Leaves:	
	$\sigma_f = \frac{18WL}{b t^2 (2n_a + 3n_f)}$	
	(4) Stress in Graduated Leaves:	
	$\sigma_g = \frac{12WL}{b t^2 (2n_g + 3n_f)}$	
	$o_g = \frac{1}{b t^2 (2n_g + 3n_f)}$	
	(5) Deflection in Full Length and Graduated Leaves:	
	$\delta = \frac{12WL^3}{E b t^3 (2n_q + 3n_f)}$	
	Design steps for calculating length of Leaf Spring: Length of Smallest Leaf = $(L \times 1)/(n-1) + 1$	
	Length of second smallest leaf = $(L \times 1)/(n-1) + 1$	
	Length of $(n-1)^{th}$ leaf = $(L \times (n-1))/(n-1) + 1$	
	Length of master leaf = $2L1 + (\pi (d+t) \times 2)$	
	Where d = diameter of Eye. $d = (32M/ \pi \sigma_b)^{1/3}$	
(b)	$\mathbf{a} = (32 \text{M} / \pi \sigma_b)$ Describe the procedure to design of fulcrum pin of Rocker Arm.	06
Ans.	(Correct Design Procedure 06 Marks)	00
	Forked end Forked end Forke	Correct Design Procedur 06 Marks

Subject Name: Design of Automobile Components

2

Subject Code: 17525

Attempt any FOUR: 16 Describe design procedure for fully floating rear axle. 04 (a) (Correct Design Procedure 04 Marks) Ans. Wheel lousing car axel shaft apered roller bearing **Figure: Fully Floating Rear Axle Design procedure of a Fully Floating Rear Axle:** The rear axle is designed on the basis of shaft design. By using the torsional equation, $\frac{T_{RA}}{J_{RA}} = \frac{\tau}{r}$ *Correct* Design TRA = Torque transmitted by rear axle shaft. Procedure J_{RA} = Polar Moment of Inertia $J_{RA} = \frac{\pi}{32} d^4$ $J_{RA} = \frac{\pi}{32} (d_0^4 - d_i^4)$ 04 Marks τ = Torsional shear stress r = distance from neutral axis to outer most fiber $r = \frac{d}{d}$ for Solid shaft) $r = \frac{d_o}{2}$ (for Hollow shaft) $T_{RA} = T_e \times G_1 \times G_d$ $P = \frac{2\Pi \text{ N T}_{\text{e}}}{60}$ $T_e = Engine Torque.$ G_1 = Maximum gear Ratio in Gear Box G_d = Final gear reduction in differential After simplifying the equations, $T_{RA} = \pi/16 \text{ x } \tau \text{ x } d^3 \text{ (for Solid shaft)}$ = $\pi/16 \text{ x } \tau \text{ x } d_o^3 (1-k^4) \text{ (for Hollow shaft)}$ $k = d_i/d_o$ d_i = Inner diameter of shaft d_o = Outer diameter of shaft From this equation we can find diameter of fully floating rear axle

(b)	Draw stress, strain diagram for ductile material and state its importance.	04
Ans.	(Importance 02 Marks, Neat Labelled Diagram 02 Marks)	04
лпэ.	Importance of Stress-Strain diagram for ductile material:	
	The most important properties of materials are strength, elasticity, stiffness, ductility	
	etc. From stress-strain diagram, material properties like ultimate strength, elastic	
	limit, ductility etc. can be found out. Hence, these values can be used for designing	
	and selection of proper material for machine design.	Important
		e
		02 Marks
	Ultimate tensile stress	Neat
	E stress-strain curve	Labelled
	F P	Diagram
		02 Marks
	A : Proportional limit B : Elastic limit	
	B : Elastic limit C, D : Upper and lower yield points	
	E : Ultimate stress point F : Breaking point	
	F. Dicaking point	
	Strain e	
	Figure: Stress - Strain Diagram for Ductile Material	
(c)	Design the knuckle joint is required to withstand a tensile load of 20 kN if	04
	permissible stress are σ_t = 56 N/mm ² , τ = 40 N/mm ² , σ_c = 70 N/mm ² .	04
Ans.	(Correct Ans.04 Marks)	
	Given Data:	
	$\mathbf{P} = 20 \times 103 \mathrm{N}$	
	$\tau = 40 \text{ N/mm}^2$	
	$\sigma_t = 56 \text{ N/mm}^2_2$	
	$\sigma_c = 70 \text{ N/mm}^2$	01
	i. Find Diameter of rod:-	
	$P = \frac{\pi}{4} d^2 \cdot \sigma_t$ 20 X10 ³ = $\frac{\pi}{4} d^2 \cdot 56$	
	$20 \times 10^3 = \frac{\pi}{2} d^2 56$	
	d= 21.33mm say 22 mm	
	ii. Find dimensions of fork end, eye end and knuckle pin by empirical	01
	relations:- 1. Diameter of knuckle pin d1=d = 22 mm	Ŭ1
	2. Outer diameter of eye end $d2=2d = 44 \text{ mm}$	
	3. Diameter of knuckle pin head or collar $d3=1.5d = 33 \text{ mm}$	
	4. Thickness of eye end $t=1.25d = 27.5 \text{ mm}$	
	5. Thickness of forked end $t=1.25d = 27.5$ mm	
	6. Thickness of collar or head $t2=0.5d = 10.5$ mm	
	iii. Induced stress in knuckle pin:-	
	π π π π π π π	
	$P = 2 X \frac{\pi}{4} d_1^2 \cdot \tau$ 20 X10 ³ = 2 X $\frac{\pi}{4} 22^2 \cdot \tau$	
	$20 X 10^3 = 2 X - 22^2 \tau$	

Subject	t Name: Design of Automobile Components Subject Code: 17525		
	N		
	$\tau = 26.30 \frac{\text{N}}{\text{mm}^2} < 40 \text{ N/mm}^2$		
	Therefore Design is safe.		
	iv. Induced stresses in eye end:-		
	1. Failure in tension:		
	\therefore P = (d2 - d1)t × σ t	01	1
	$\therefore 20 \times 10^3 = (44 - 22) \text{ X } 27.5 \text{ X } \text{ ot}$		
	$\sigma t = 33.05 \frac{N}{mm^2} < 56 N/mm^2$		
	Therefore Design is safe. $mm^2 < 50 \text{ W/mm}^2$		
	2. Failure in shear:		
	\therefore P = (d2 - d1)t × τ	01	1
	$\therefore P = (d2 - d1)t \times t$ $\therefore 20 \times 10^3 = (44 - 22) \text{ X } 27.5 \text{ X } \tau$	01	I
	$\tau = 33.05 \frac{\text{N}}{\text{mm}^2} < 40 \text{ N/mm}^2$		
	Therefore Design is safe.		
	3. Failure in crushing:		
	$\therefore P = d1 t \times \sigma c$		
	$\therefore 20 \times 103 = 22 \times 27.5 \times \sigma c$		
	$\sigma_c = 33.05 \frac{N}{mm^2} < 70 \text{ N/mm}^2$		
	Therefore Design is safe.		
	Induced stresses in forked end:-		
	1. Failure in tension:		
	$\therefore \mathbf{P} = 2 \mathbf{x} (d2 - d1)t1 \times \sigma t$		
	$\therefore 20 \times 10^3 = 2 \text{ x} (44 - 22) \text{ X } 27.5 \times \text{st}$		
	$\sigma_t = 16.52 \text{ N/mm}^2 < 56 \text{ N/mm}^2$		
	Therefore Design is safe		
	2. Failure in shear:		
	$\therefore P = 2(d2 - d1)t1 \times \tau$		
	$\therefore 1 - 2(42 - 41)t1 \times t$ $\therefore 20 \times 10^3 = 2(44 - 22) \times 16.5 \times \tau$		
	$\tau = 27.54 \text{ N/mm}^2 < 40 \text{ N/mm}^2$		
	Therefore Design is safe		
	3. Failure in crushing:		
	$\therefore \mathbf{P} = 2(d2 - d1)t1 \times \sigma \mathbf{c}$		
	$\therefore 20 \times 103 = 2 \times (44-22) \times 16.5 \times \sigma c$		
	$\sigma_c = 27.54 \text{ N/mm}^2 < 70 \text{ N/mm}^2$		
	Therefore Design is safe		
(d)	Define Lever. Describe three basic types of lever.	04	4
Ans.	(Definition 01 Mark and Each Type of Lever 01 Mark)	Defin	itior
	Definition:-	Οľ Μ	
	A lever is a rigid rod or a bar capable of turning about a fixed point called fulcrum.	and H	
	Types of lever:	Туре	
	a) First Type Lever:	Leve	•

04 (Correct Answer 04 Marks) Ans. Given Data: $P = 5 \times 10^{3} W$, N=5000rpm G1=16:1, fs =45 N/mm² Now torque produced by the engine, $P = \frac{2 \pi N T_e}{60}$ $5 X 10^3 = \frac{2 \pi x 5000 x T_e}{60}$ $fs = 45 \text{ N/mm}^2$ Correct Answer 04 Marks Te = 9.549 N - m $Te = 9.549 X 10^{3} N$ -mm Torque transmitted by the propeller shaft, $Tp=Te \times G1$ Tp=9.549×103×16

Mark

	Subject	Name: Design of Automobile Components Subject Code: 17525		
		Tp=152.78×103 N-mm Diameter of propeller shaft, $T_p = \frac{\pi}{16} \sigma_s d^3$ $152.78 \times 10^3 = \frac{\pi}{16} 45 d^3$ d=25.86mm		
		d= 26 mm		
3		Attempt any FOUR:	1	6
	(a)	With neat sketch of socket and spigot cotter joint, write procedure to design of cotter only.	0	4
	Ans.	(Correct Answer 04 Marks) $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	Ans	rect wer Iarks

	t Name: Design of Automobile Components Subject Code: 17525	
(c)	Calculate cylinder bore diameter and stroke length for four stroke six cylinder engine developing 90kW at 3000 rpm. The brake mean effective pressure is 11 X 10^5 N/m ² and L/D=1.2.	04
Ans.	(Correct Answer 04 Marks) (Correct Answer 04 Marks) Given: Nos. of Cylinder, n = 6 Power Developed, P _{mb} = 90kW Engine Speed, N= 3000 r.p.m. Brake Mean Effective Pressure, Pm=11 N/m ² Length of Stroke, L= 1.2D For Four Stroke Cycle, k =1/2 Bore and length of cylinder: Let D= Bore of the cylinder in mm A= across section area of the cylinder = $\frac{\pi}{4}D^2$ Brake Power Developed, BP = $\frac{n x P_{mb} x L x A x Nk x 10}{6}$ $90 = \frac{6x 11 x 1.2 D x \pi D^2 x 3000 x 10}{6}$ $D^3 = \frac{4320}{7464204}$ $D^3 = 0.0005787$ D = 0.083356m D = 83.35mm \therefore Stroke Length, L = 1.2 x D \therefore Stroke Length, L = 1.2 x 83.35 \therefore Stroke Length, L = 100.02 mm	Correct Answer 04 Mark
(d)	Draw a labelled sketch of a knuckle joint.	04
Ans.	(Neat Labelled Sketch 04 Marks)	Neat Labellea Sketch 04 Mark

Г

	Subjec	t Name: Design of Automobile Components Subject Code: 17525		
		J = Polar moment of inertia of the shaft about the axis of rotation r = Distance from neutral axis to the outer most fibre = d/2 So dimensions of the shaft can be determined from above relation for a known value of allowable shear stress, [τ]. Muff Design Following relations are used to calculate the dimensions. D = 2d + 13 L = 3.5d Then the torsional shear stress in the sleeve is checked considering it as a hollow shaft. Shear stress, $\tau = \frac{T r}{J} \le [\tau]$ where, T = Twisting moment (or torque) to be transmitted J = Polar moment of inertia about the axis of rotation r = Distance from neutral axis to the outer most fibre = D/2 Design of Key Cross-section of the key is taken from the table corresponding to the shaft diameter or relations (square key) or and (for rectangular key) are used to find the cross- section, where w is width and h is the height of the key. Length of key in each shaft, The keys are then checked in shear and crushing		
		Shear stress, $\tau = \frac{P}{wl} \le [\tau]$ and Crushing stress, $\sigma_{crushing} = \frac{P}{l h/2} \le [\sigma_c]$		
4	(A)	Attempt Any Three:	1	
	(a)	Explain concept of nipping.	0	4
		Answer: Nipping: The initial gap "C" between the extra full length leaf and graduated length leaf before the assembly is called as "Nip". Such pre-stressing, achieved by a difference in radii of curvature is known as " Nipping ". It is seen that, stress in full length leaves is 50% greater than the stress in graduated leaves. In order to make best use of material; it is necessary that all the leaves must be equally stressed. This can be achieved by in following two ways: i) By making full length leaves of smaller thickness than graduated leaves. In this way the full length leaves will induce a smaller bending stress due to small distance from neutral axis to edge of the leaf. ii) By giving a greater radius of curvature to the full length leaves than graduated leaves before leaves are assembled to form a spring. By doing so, gap or clearance will be left between the leaves.	0	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified) SUMMER – 19 EXAMINATION Model Answer Subject Name: Design of Automobile Components Subject Code: 17525 W W_b 02 Full Length Leaf C = NipGraduated Leaf Fig. Nipping in springs **(b)** State design procedure for piston ring and skirt length 04 Answer: Design of Piston Rings: (02 marks) Thickness Width - Gap Diameter Fig. Piston rings. The radial thickness (t1) of the ring may be obtained by considering the radial pressure between the cylinder wall and the ring. From bending stress consideration in the ring, the radial thickness is given by $t_1 = D \sqrt{\frac{3p_w}{\sigma_t}}$ 01 Where, D = Cylinder bore in mm, p_w = Pressure of gas on the cylinder wall in N/mm². σ_t = Allowable bending (tensile) stress in MPa. The axial thickness (t_2) of the rings may be taken as 0.7 t_1 to t_1 . The minimum axial thickness (n_2) may also be obtained from the following empirical relation:

	wodel Answer		
Su	bject Name: Design of Automobile Components Subject Code: 1752	5	
	$t_2 = \frac{D}{10 n_P}$		
	Where, $n_{\rm R}$ = Number of rings.		
	Width of top land,		
	$b_1 = t_{\rm H}$ to 1.2 $t_{\rm H}$		
	Width of other ring lands,		01
	$b_2 = 0.75 t_2$ to t_2		
	The gap between the free ends of the ring is given by 3.5 t_1 to 4 t_1 .		
	2. Design of Skirt Length :		
	R = Normal side thrust acting on piston skirts		
	Maximum gas load $F = P_{max} \times \frac{\pi}{4} D^2$		01
	R = Normal side thrust acting on piston skirts		
	\therefore Side thrust = 10%		
	\therefore R = 0.1 F		
	Let,		
	$l_1 = $ length of piston skirt		
	The piston skirt act as a bearing inside the liner		01
	We have , $\mathbf{R} = l_1 \times \mathbf{D} \times \mathbf{P}_{\mathbf{b}}$		U1
	Where P_{b} = allowable bearing pressure on the piston skirt		
	where $T_b =$ anowable bearing pressure on the piston skirt		

(c)	Design the turn hughle. Find the diameter of red and counter nut toith-tod	A
(c)	Design the turn buckle. Find the diameter of rod and coupler nut to withstand $a \log d \approx 1400$ N Given norminable strenges are 70 N/mm ² and 60 N/mm ² in	0
	a load of 1600N. Given permissible stresses are 70N/mm ² and 60 N/mm ² in	
	tension and shear respectively.Solution: Given: $P= 1600 \text{ N}, \sigma_t = 70 \text{N/mm}^2, \tau = 60 \text{ N/mm}^2$	
	We know that the design load for the threaded section, $\mathbf{P} = 1 \cdot 2 \cdot \mathbf{V} \cdot 1 \cdot 0 0 = 2 \cdot 0 \cdot 0 \cdot 0$	0
	$P_d = 1.3 P = 1.3 X 1600 = 2080 N$ (i) 1. Diameter of tie rod	0
	Let $d =$ diameter of the rod, and d = core diameter of thread on the tip rod	
	d_c = core diameter of thread on the tie rod	
	considering tearing of the threads on the tie rod at their roots, We know that design $\log d(\mathbf{D})$	
	We know that design load(P_d),	
	$2080 = \frac{\pi}{4} (d_c)^2 X \sigma_t = \frac{\pi}{4} (d_c)^2 X 70 = 54.97 (d_c)^2$	
	$\therefore (d_c)^2 = 37.84$	0
	$d_c = 6.15 \text{ mm}$ (ii)	0
	As $d_c = 0.84 d$	0
	$\therefore d = \frac{6.15}{0.84} = 7.32 = 8 \text{ mm.}(iii)$	U
	2. Outside diameter of Coupler Nut	
	Let $D =$ outer diameter of the coupler nut	
	Considering tearing of the coupler nut. We know that axial load (P);	
	$1600 = \frac{\pi}{4} (D^2 - d^2) X \sigma_t$	
	$\therefore 1600 = \frac{\pi}{4} (D^2 - (8)^2) X 70$	
	$\therefore (D^2 - (8)^2) = \frac{1600 X 4}{\pi X 70}$	
	$\therefore (D^2 - 64) = 29.10$	
	$\therefore D^2 = 29.10 + 64$	
	$\therefore D^2 = 93.10$	
	\therefore D = 9.65 mm say 10mm(iv)	0
	Since the minimum outside diameter of coupler nut is taken as 1.25d (1.25 X	
	8 = 10 mm) therefore the value of D is satisfactory.	
(d)	A multiplate disc clutch has 6 active friction surface, power transmitted is	0
(u)	20kW at 400 rpm. Inner and outer radius of the friction surfaces are 90mm	Ū
	and 120mm respectively. Assuming uniform wear with a co-efficient of friction	

:	Subjec	ct Name: Design of Automobile Components Subject Code: 17525	
		0.25. Find the maximum axial intensity of pressure between the discs.	
		Answer: Given Data: $n = 6$, $N = 400$ rpm, $r_1 = 120$ mm, $r_2 = 90$ mm, $\mu = 0.25$ Maximum axial intensity of pressure = $P_{max} = ?$ $P = 20kW = 20 \times 10^3$ W.	
		For uniform wear, Mean radius $R = \frac{(r1+r2)}{2} = \frac{(90+120)}{2} = 105 \text{ mm}$ (i) We know that power transmitted is given by $P = \frac{2\pi NT}{60}$	01
		$\therefore 20 \text{ X}10^3 = \frac{2\pi X 400 X T}{60}$	
		$\therefore T = 477.46 \text{ N-m} = 477.46 \text{ X } 10^3 \text{ N-mm} \dots (ii)$ Torque transmitted is given as $T = n \mu \text{ W R}$ $477.46 \text{ X } 10^3 = 6 \text{ X } 0.25 \text{ X W X } 105$ $\therefore W = 3031.49 \text{ N} \dots (iii)$	01 01
		We know that Axial force required to engage the clutch, $W = 2\pi C (r1 - r2)$ $\therefore 3031.49 = 2 X \pi X C X (120-90)$ $\therefore 3031.49 = 2 X \pi X P_{max} X r_2 (30)$ $\therefore 3031.49 = 2 X \pi X P_{max} X r_2 (30)$ $\therefore 3031.49 = 2 X \pi X P_{max} X 90 X (30)$ $\therefore P_{max} = 0.1786 N/mm^2$	01
4	(B)	Attempt any ONE.	06
	(a)	State stepwise procedure for component design.	06
		Answer: (design procedure 06 marks) The general procedure to solve a design problem is as follows : <i>I.</i> Recognition of need. First of all, make a complete statement of the problem, indicating the need, aim or purpose for which the machine is to be designed.	
		 Synthesis (Mechanisms). Select the possible mechanism or group of mechanisms which will give the desired motion. Analysis of forces. Find the forces acting on each member of the machine and the energy transmitted by each member. Material selection. Select the material best suited for each member of the 	06
		 5. Design of elements (Size and Stresses). Find the size of each member of the machine by considering the force acting on the member and the permissible stresses for the material used. It should be kept in mind that each member 	

	Subject	Name: Design of Automobile Components Subject Code: 1752	:5	
		 should not deflect or deform than the permissible limit. 6. Modification. Modify the size of the member to agree with the parexperience and judgment to facilitate manufacture. The modification manufactor by consideration of manufacturing to reduce overall cost. 7. Detailed drawing. Draw the detailed drawing of each component and the assembly of the machine with complete specification for the manufacturing processes suggested. 8. Production. The component, as per the drawing, is manufactured in the workshop. 	ay he ng	
	(b)	A single plate (clutch) with both side effective has outer and inner diameter 300mm and 200mm respectively. The maximum intensity of pressure at any point of contact is not to exceed 02 N/mm ² . If the co-efficient of friction is 0.3. Determine the power transmitted by clutch at shaft speed 3000 rpm.	06	
		Given Data: $d1 = 300$ mm, $r1 = d1/2 = 150$ mm $d2 = 200$ mm, $r2 = d2/2 = 100$ mm, $P_{max} = 0.2 \text{ N/mm}^2$, $\mu = 0.3$, N = 3000 rpm Since the intensity of pressure is maximum at inner radius, therefore, for uniform wear, Pmax × r2 = c c = 0.2 × 100		
		c = 20 N/mm(i) We know that, axial thrust, $W = 2\pi c (r1 - r2)$	01	
		$W = 2\pi \times 20 \times (150-100)$ W = 6284 N(ii) And mean radius of friction, R = (r1 + r2)/2	01	
		R = $(150+100)/2$ R = 125 mm	01	
		T = 471300 N-mm T = 471.3 N-m (iv) Power transmitted by clutch, $P = (2\pi \text{ N T})/60$ $P = (2 \times \pi \times 3000 \times 471.3)/60$ P = 148063.26 W	01	
		P = 148.06 kW(v)	02	
5	;	Attempt any TWO:	16	
	(a)	Describe the theories of failure of maximum principal stress theory and	08	
		maximum shear stress theory.		
		Answer: i) Maximum Principal or Normal Stress Theory (Rankine's Theor According to this theory, the failure or yielding occurs at a point in a member who	• /	

the maximum principal or normal stress in a bi-axial stress system reaches the limiting strength of the material in a simple tension test. $\sigma_{t1} = \frac{\sigma_{yt}}{F.S.} \dots \text{for ductile material}$ $\sigma t1 = \frac{\sigma_{ut}}{F.S.} \dots \text{for brittle material}$ Where	04
$\sigma t1 = \frac{\sigma_{ut}}{F.S.}$ for brittle material	04
	04
Where	
σ_{yt} = Yield point stress in tension as determined from simple tension test, and σ_{ut} = Ultimate stress. F.S. = factor of safety	
Since the maximum principal or normal stress theory is based on failure in tension or compression and ignores the possibility of failure due to shearing stress, therefore it is not used for ductile materials. However, for brittle materials which are relatively strong in shear but weak in tension or compression, this theory is generally used.	
ii) Maximum Shear Stress Theory (Guest's or Tresca's Theory) According to this theory, the failure or yielding occurs at a point in a member when the maximum shear stress in a bi-axial stress system reaches a value equal to the shear stress at yield point in a simple tension test. Mathematically,	04
$\tau_{max} = \frac{\tau_{yt}}{F.S.}$ (<i>i</i>) where $\tau_{max} =$ Maximum shear stress in a bi-axial stress system, $\tau_{yt} =$ Shear stress at yield point as determined from simple tension test, F.S. = Factor of safety.	
Since the shear stress at yield point in a simple tension test is equal to one-half the yield stress in tension, therefore the equation (<i>i</i>) may be written as $\tau_{\max} = \frac{\sigma_{yt}}{2 X F.S.}$ This theory is mostly used for designing members of ductile materials.	
An automobile gearbox gives three forward and a reverse speed with top gear of unity and bottom and reverse gear ratio 3.3:1, the center distance between the shaft is 110mm approximately. Gear teeth of module 3.25mm are to be employed. Determine different gear ratios of various gears and number of teeth.	08
	σut = Ultimate stress. F.S. = factor of safety Since the maximum principal or normal stress theory is based on failure in tension or compression and ignores the possibility of failure due to shearing stress, therefore it is not used for ductile materials. However, for brittle materials which are relatively strong in shear but weak in tension or compression, this theory is generally used. ii) Maximum Shear Stress Theory (Guest's or Tresca's Theory) According to this theory, the failure or yielding occurs at a point in a member when the maximum shear stress in a bi-axial stress system reaches a value equal to the shear stress at yield point in a simple tension test. Mathematically, $ $

Subjec	t Name: Design of Automobile Components	Subject Code:	17525	
	Centre distance between shafts =110 mm , Since the pitch is same for all wheels and the centre dis meeting the wheels, the total no. of teeth must be same Therefore TA + TB= TC+ TD= TE+ TF = T $T = (2 \times C.D.) / M$ $T = (2 \times 110) / 3.25=67.8$ T = 68 teeth In general practice for better results gear ratios are kept G1,G2,G3 are gear ratios in first, second and third gear	for each pair (i) t in geometric progre		01
	$\begin{aligned} \frac{G_1}{G_2} &= \frac{G_2}{G_3} \\ \therefore & \mathbf{G}_2 &= \sqrt{G_1 X G_3} \\ \therefore & \mathbf{G}_2 &= \sqrt{1 X 3.3} \\ \therefore & \mathbf{G}_2 &= 1.817. \end{aligned}$	(ii)		01
	In general practice, while designing a gear box it is design be minimum possible in all cases, so that the sizes of the minimum. To achieve this, the maximum reduction request gear) is achieved in two equal steps. Now	ne gear box can be ke	ept	
	$G_1 = \frac{T_B}{T_A} \times \frac{T_D}{T_C}$			
	Let X be the reduction in one step			
	therefore $G_1 = X \times X$			
	$3.3 = X^2$			
	X = 1.817			
	$\frac{T_B}{T_A} = \frac{T_D}{T_C} = 1.817$			

	Model Answer			
Subjec	t Name: Design of Automobile Components	Subject Code:	17525	
	$T_B = 1.817 T_A$ and $T_D = 1.817 T_C$			
	$T_A + T_B = 68$, $T_A + 1.817 T_A = 68$, $T_A = 68$	3/2.817		
	$T_A=24$ teeth	(ii		01
	$T_{B} = 68-24$ $T_{B} = 44$ teeth			
	Similarly $T_C=24$ teeth and $T_D=44$ teeth			
	Actual gear ratio $G_1 = \frac{T_B}{T_A} \times \frac{T_D}{T_C}$			
	$G_1 = \frac{44}{24} \times \frac{44}{24}$			
	G ₁ =3.36:1	(iv		01
	Second gear ratio $G_2 = \frac{T_B}{T_A} \times \frac{T_F}{T_E}$			
	$1.817 = \frac{44}{24} \times \frac{T_F}{T_E}$			
	T _F =0.991 T _E			
	$T_{E} + T_{F} = 68$			
	$T_E + 0.991 T_E = 68$			
	$T_E = 34$ teeth			
	$T_F = 68 - 34 = 34$ teeth	(v)		01
	Actual gear ratio in second gear = $G_2 = \frac{44}{3}$		(vi)	

	Model Answer	
Subjec	t Name: Design of Automobile Components Subject Code: 17525	
	Top gear ratio G3 =1:1 is obtained by directly coupling the main shaft to engine shaft. Now reverse gear and idler is fitted due to presence of which the direction is reversed also it is required that $T_D + T_i < 68$ to avoid interference of gear C and D	
	Therefore $T_{\rm c} < 69$ T	
	Therefore $T_i < 68 - T_D$	
	$T_i < 68 - 44$	01
	T _i < 22(vi)	
	Exact gear ratio $G_R = \frac{T_B}{T_A} \times \frac{T_D}{T_I} G_R = \frac{44}{24} \times \frac{44}{20}$	
	$G_{R} = 4.03:1$ (vii)	01
	Exact center distance =	
	$C.D. = \frac{M(TA + TB)}{2}$	
	$C.D. = \frac{2}{2}$	
	$=\frac{3.25(68)}{2}$	
	= 110.5 mm ()	01
	– 110.5 mm	Ŭ1
(c)	Explain the design procedure for cylinder head thickness and bolts.	08
	Answer:	
	Design of cylinder head: The cylinder head is designed by considering it a flat circular plate. The thickness is	
	determined by following relation.	
	C B	01
	$t = D \sqrt{\frac{C - P_{max}}{\sigma_c}}$	
	t = thickness of cylinder head	
	D = diameter of cylinder	

	Subject	Name: Design of Automobile Components Subject Code: 17525	
		c) This load is acting as tensile load on bolts or stud and this load is resisted by 'Z' numbers of bolts.	01
		$P_{\max} \times \frac{\Pi}{4} (D+3d)^2 = Z \times \frac{\Pi}{4} d_c^2 \times f \dots (iii)$	
		d)Numbers of bolts 'Z' is taken between	01
		$Z = \left(\frac{D}{100} + 4\right) to \left(\frac{D}{50} + 4\right) \dots \dots$	
		Generally even value is selected for 'Z'	01
		e) Value of 'd' is taken as	
		$d = \frac{d_c}{0.84} \dots \dots \dots (v)$	
		f) Putting value from (iv) in equitation (iii) values of d, d _c and Z are calculated	
		g)For a leak proof joint, value of 'd' greater than 16 should be used.	
		h) The circular pitch of stud is calculated as	
		$Pitch'p' = \frac{\Pi D_p}{Z}$	
		For a leak proof joint m inimum value of 'P' should be 3 d and maximum value of 'P' line between $19\sqrt{d}$ to $28\sqrt{d}$. If value of P is coming less decrease value of 'Z' and recalculate.	01
		If value of P is coming more increase value of 'Z' till condition is satisfied.	
6		Attempt any TWO:	16
	(a)	Design the piston pin with following data (i) $P_{max} = 4.5 \text{ N/mm}^2$, (ii) Diameter of piston =70mm. Allowable stresses due to bearing , bending and shear are given	
		30N/mm ² , 80 N/mm ² and 60 N/mm ² respectively.	
		Answer: Given data, Dia. of piston = $D = 70$ mm.	
		Max. pressure = $Pmax = 4.5 \text{ N/mm}^2$	
		Bearing pressure $Pb = 30 \text{ N/mm}^2$	
		Bending stress = $\sigma_b = 80$ N/mm ² Shearing stress = $\tau = 60$ N/mm ²	
		Maximum Gas Load,	
		$F = \frac{\pi D^2}{4} X P_{max}$	

	Model Answer			-
Subjec	t Name: Design of Automobile Components	Subject Code:	17525	
	: $F = \frac{\pi (70)^2}{4} X 4.5$: $F = 17318.02 N.$	(i)		01
	(a) Design the piston pin on the basis of bearing pressu Let, dpo = outer dia. of piston pin lp = length of piston pin in small end of connecting rod lp = 0.45xD = 0.45x70 lp = 31.5 mm.			01
	Now $F = d_{po} X l_p X P_b$ $17318.02 = d_{po} X 31.5 X 30$ $\therefore d_{po} = \frac{17318.02}{31.5 X 30}$ $\therefore d_{po} = 18.32 \text{ mm say } 20 \text{ mm} \dots$	(iii)		01
	(b)Designing the piston pin on the basis of bending. 'Bending moment 'M' is calculated as $M = \frac{F \times D}{8}$ $\therefore M = \frac{17318.02 \times 70}{8}$ $\therefore M = 151.53 \times 10^{3} \text{ N-mm}.$	(iv)		01
	We know that $M = \frac{\pi}{32} X \sigma_b X (d_{po})^3$ $\therefore \sigma_b = \frac{M X 32}{\pi X (d_{po})^3}$ $\therefore \sigma_b = 192.93 \text{ N}.$	(v)		01
	The induced bending stresses are greater than permissible Hence redesign is necessary. Now redesign value of dpo $M = \frac{\pi}{32} X \sigma b X (dpo)3$ $\therefore 151.53 X 103 = \frac{\pi}{32} X 80 X (dpo)3$ $\therefore (dpo)3 = 19293.39$	bending stress 80	N/mm2	
	 ∴ dpo = 26.82 ∴ dpo = 28 mm c) Designing piston pin on the basis of shear stress, due 			01

Subject Name: Design of Automobile ComponentsSubject Code:17525 $F = 2 X \frac{\pi}{4} X (d_{po})^2 X \tau$ $\therefore 17318.02 = 2 X \frac{\pi}{4} X (28)^2 X \tau$ $\therefore 17318.02 = 2 X \frac{\pi}{4} X (28)^2 X \tau$ $\therefore \tau = \frac{17318.02 X 4}{2 X \pi X 28^2}$ $\therefore \tau = 14.06 \text{ N/mm}^2$ (vii)The induced shear stress is less than the permissible shear stress. Therefore design is safe.d) the total length of piston pin is taken as $L_{pt} = 0.9 D = 0.9 X 70 = 63mm$ (viii)(b)Design the connecting rod cross section with the following data $P_{max} = 5 \text{ N/mm}^2$, piston diameter = 70mm, stroke length =80 mm, effective length of connecting rod = 140mm, maximum allowable stress in the connecting rod in clipping is 110 N/mm^2. Take Rankine constant for steel $\frac{1}{6000}$.	01 01 08
$\therefore 17318.02 = 2 X \frac{\pi}{4} X (28)^2 X \tau$ $\therefore \tau = \frac{17318.02 X 4}{2 X \pi X 28^2}$ $\therefore \tau = 14.06 \text{ N/mm}^2 \dots (vii)$ The induced shear stress is less than the permissible shear stress. Therefore design is safe. d) the total length of piston pin is taken as $L_{pt} = 0.9 D = 0.9 X 70 = 63 \text{mm} \dots (vii)$ (b) Design the connecting rod cross section with the following data $P_{max} = 5 \text{ N/mm}^2$, piston diameter = 70 mm, stroke length = 80 mm, effective length of connecting rod = 140 mm, maximum allowable stress in the connecting rod in clipping is	01
(b)Design the connecting rod cross section with the following data $P_{max} = 5 \text{ N/mm}^2$, piston diameter = 70mm, stroke length =80 mm, effective length of connecting rod = 140mm, maximum allowable stress in the connecting rod in clipping is	08
Answer: Given Data Max. pressure inside $P_{max} = 5 \text{ N/mm}^2$ Piston Dia D=70 mm Stroke length= l = 80mm Effective Length of connecting rod mm L= 140 mm Maximum allowable stress in the connecting rod in crippling is 110 N/mm² Rankine constant for steel is $=\frac{1}{6000}$	
Step I : Max gas load acting on the connecting rod $W = P_{max} X \frac{\pi}{4} X D^2$ $\therefore W = 5 X \frac{\pi}{4} X (70)^2$ $\therefore W = 19242.25 N(i)$ Area of cross section A = 11 t ² Where t = thickness of flange a = Rankine constant = $\frac{1}{6000}$ $K_{xx} = \sqrt{3.18 t^2}$ $\therefore K_{xx} = 1.78 t(ii)$	01

Subj	ect Name: Design of Automobile Components Subject Code: 17525	
	Step II: Critical Buckling load acting on connecting rod	
	As factor of safety is not given, assuming factor of safety as 1,	
	We know that	01
	Critical buckling load = $W X FOS$	01
	∴ Critical buckling load = 19242.25 X 1= 19242.25 N(iii)	
	Assuming I section, Max. Crippling load is,	
	$W_{cr} = \frac{\sigma_{crp} X A}{1 + a[\frac{L}{K_{rr}}]^2}$	
	$\therefore 19242.25 = \frac{110 X 11 t^2}{1 + \{\frac{1}{6000} X [\frac{140}{1.78 t}]^2\}}$	
	$\therefore 19242.25 = \frac{110 X 11 t^2}{1 + \frac{19600}{19010.4 t^2}}$	
	$\therefore 19242.25 = \frac{110 X 11 t^2}{\frac{19010.4 t^2 + 19600}{19010.4 t^2}}$	
	$\therefore 19242.25 = \frac{110 X 11 t^2}{19010.4 X t^2 + 19600} X 19010.4 t^2$	
	$\therefore 19242.25 \ (19010.4 \ t^2 + 19600) = 110 \ x \ 11 \ X \ 19010.4 \ t^4$	
	$365802869.4 t^{2} + 377148100 = 23002584 t^{4}$	
	$0 = 23002584 t^{4} - 365802869.4 t^{2} - 377148100$	
	$0 = t^4 - 15.90 t^2 - 16.40$	
	Let $x = t^2$	
	$\therefore 0 = x^2 - 15.90x - 16.40$	
	We know that	
	$\mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$\therefore x = \frac{-(-15.90) \pm \sqrt{(-15.90)^2 - (4X \ 1 \ X \ (-16.4))}}{2 \ X \ 1}$	
	$\therefore x = \frac{15.90 \pm \sqrt{318.41}}{2}$	
	$\therefore \mathbf{x} = \frac{15.90 \pm 17.84404}{2}$	
	∴ x =16.8720	
	$\therefore t^{2} = 16.8720(x = t^{2})$	01
	∴ t= 4.107556 mm(iv)	

Subjec		
Jubjet	t Name: Design of Automobile Components Subject Code: 17525	
	Say t=5 mm	
	Say t=5 mm	
	Dimension at the middle or center:	
	(i) Depth or height of section:	01
	$H = 5t = 5x 5 = 25 \text{ mm} \dots (v)$	
	(ii) width of cross section	01
	B = 4 t = 4 x5 = 20 mm(vi)	
	Dimension at the big end (crank end):	
	(i) Depth or height of section:	01
	At the big end H2= $1.2H = 1.2(25) = 30mm$ (<i>vii</i>)	
	(ii) width of cross section	01
	B2=B=20 mm(viii)	01
(c)	Design flange coupling to transmit 15 kW at 900 rpm. The service factor may	08
	be used 1.3. following permissible stress may be assumed, shear stress for for	
	shaft, bolt and key material is 40MPa, crushing stress for bolt and material is	
	80MPa and shear stress for cast iron is 8 MPa.	
	Given : P = 15 kW = 15 X 10 ³ W, N = 900 rpm, Service factor = 1.3, $\tau_s = \tau_k = 40 \text{ N/mm}^2$,	
	$\sigma_{cb} = \sigma_{ck} = 80 \text{ N/mm}^2$, $\tau_c = 8 \text{ N/mm}^2$	
	The flange coupling is designed as follows:	
	The mange coupling is designed as follows.	
	1. Design for hub:	
	-	
	First of all let us find the diameter of the shaft (d).	
	$T = \frac{P \times 60}{2\Pi N} = \frac{15 \times 10^3 \times 60}{2\Pi \times 900} = 159.13N - m$	
	$2\Pi N = 2\Pi \times 900^{-100,100} M$	01
	(i)	
	Since the service factor is 1.3 therefore the maximum torque transmitted by the	
	shaft,	
	$T_{max} = 1.3 \times 159.13$	
	= 206.869 N-m	
	$T_{max} = 206.869 \text{ X } 10^3 \text{ N-mm}$ (ii)	01
	$T_{a} \rightarrow a \rightarrow b \rightarrow b$	
	Torque transmitted by shaft (T _{max}),	

Subject Name: Design of Automo	bile Components	Subject Code:	17525
Outer diameter of the hub $D= 2d = 2 \times 30 = 60 \text{mm}$ Length of hub L= 1.5d = 1 Let us now check the induc Considering hub as a hollow	5328.78 .5 X 30 =45mm ced shear stress for the hub n w shaft. m torque transmitted (T _{max}), $(\frac{D^4-d^4}{D})$ $X(\frac{60^4-30^4}{60})$	naterials which is cas	.(iii) 01 st iron. 01
$\therefore \tau_c = 5.20 \text{ MPa}$ Since the induced shear str permissible value of 8 MP 2. Design for key: Since the crushing stress for square key may be used. Width of key w= 12 mm Thickness of key t=w=12n The length of key(l) is take l = 1.5 d = 1.5 X 30 = 45 mm Let us now check the induce	ess for the hub material (i.e. a therefore the design of hub or the key material is twice it nm en equal to the length of hub	. cast iron) is less that is safe. ts shear stress therefo nsidering it in shearin	ng and
	$X \tau_k X \frac{30}{2}$ shing. We know that the maximum		01 nitted (

	iviodel Answer	
g	Subject Name: Design of Automobile Components Subject Code: 17525	
	$\therefore 206.869 \text{ X } 10^3 = 45 \text{ X } \frac{12}{2} \text{ X } \sigma_{ck} \text{ X } \frac{30}{2}$	01
	$\therefore \ \sigma_{ck} = \frac{206.869 X 10^3 X 2 X 2}{45 X 12 X 30}$	01
	:. $\sigma_{ck} = 51.07 \text{ N/mm}^2$ (vi)	
	Since the induced shear and crushing stresses in the key are less than the permissible stresses therefore the design for key is safe.	
	3. Design for flange:	
	The thickness of flange (tf) is taken as 0.5 d	
	$t_f = 0.5 d = 0.5 X 30 = 15 mm$ Let us now check the induced shearing stress in the flange by considering the flange	
	at the junction of the hub in shear.	
	We know that the maximum torque transmitted (T_{max})	
	$206.869 \text{ X}10^3 = \frac{\pi D^2}{2} \text{ X} \tau_c \text{ X} t_f$	
	$\therefore 206.869 \text{ X}10^3 = \frac{\pi X 60^2}{2} \text{ X } \tau_c \text{ X } 15$	
	$\therefore \ \tau_{\rm c} = \frac{206.869 X 10^3 X 2}{\pi X 60^2 X 15}$	01
	$\therefore \tau_{\rm c} = 2.43 \text{ N/mm}^2 \dots (vii)$	
	Since the induced shear stress in the flange is less than 8 MPa therefore the design is safe.	
	4. Design for bolts:	
	Let d1= nominal diameter of bolts.	
	Since the diameter of the shaft is 30 mm therefore let us take number of bolts N=3	
	And pitch circle diameter of bolts	
	$D_1 = 3d = 3X \ 30 = 90mm$ The bolts are subjected to shear stress due to the torque transmitted. We know that	
	maximum torque transmitted (T_{max})	
	$206.869 \times 10^3 = \frac{\pi}{4} (d_1)^2 X \tau_b X n X \frac{D_1}{2}$	
	$\therefore 206.869 X 10^{3} = \frac{\pi}{4} (d_{1})^{2} X 40 X 3 X \frac{90}{2}$ $\therefore (d1)^{2} = \frac{206.869 X 10^{3} X 4X 2}{\pi X 40 X 3X 90}$ $\therefore (d1)^{2} = 48.77$	
	$\frac{4}{4}$ (11) $\frac{1}{2}$ $\frac{2}{2}$ 206.869 X 10 ³ X 4X 2	01
	$\therefore (dI)^2 = \frac{\pi X 40 X 3X 90}{\pi X 40 X 3X 90}$	
	$\therefore d1 = 6.98 \text{ mm} \dots (viii)$	
	Assuming coarse threads the nearest standard size of bolt is M 8 Other proportion of the flange are taken as follows:	
	Outer diameter of the flange.	
	$D_2 = 4d = 4X \ 30 = 120 \ mm$	
	Thickness of the protective circumferential flange.	
	$t_p = 0.25d = 0.25 X 30 = 7.5 mm say 8mm$	

Subject Name: Design of Automobile Components

Subject Code:

17525