

SUMMER – 19 EXAMINATION

Subject Name: Operating System Model Answer Subject Code: 17512

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
1	a)	Attempt any THREE of the following	12
	(i)	Describe 2 nd and 3 rd generation of operating system.	4
	Ans:	Second generation: 1955-1965	Description
		Around 1955, transistors were introduced. The transistor was far superior to	of each
		the vacuum tube, allowing computers to become smaller, faster, cheaper,	generation-
		more energy-efficient and more reliable than their first-generation	2M
		predecessors. Second-generation computers relied on punched cards for input	
		and printouts for output. Assembly language which allowed programmers to	
		specify instructions in words, introduced as second generation Language	
		Then IBM-7094-a faster and larger computer came into picture. In that, control	
		cards were in use. In this system, cards were arranged as a stack to save CPU time. All these cards were then read one by one and copied onto a tape using	
		a 'card to tape' utility program. The prepared tape was taken to the main	
		computer and processed.	
		Technology used: Transistor	
		Memory: Magnetic core technology	
		Programming: Assembly level language	
		 Example: IBM-1401, IBM-7094, IBM 1620, CDC 3600 	
		Advantages:	
		 Smaller in size as compared to first generations computers. 	
		More reliable.	
		Less heat generated as compared to first generation machine.	

 These computers were able to reduce computational times from milliseconds to microseconds. Better portability. Wider commercial use. 	
Better portability.	
Less prone to hardware failure.	
 Other components are invented like printers, tape storage, memory, 	
OS, stored program.	
less expensive than vacuum tube	
Magnetic disk and magnetic tapes used as secondary storage devices.	
High level languages such as FORTRAN, COBOL, ALGOL were used for	
programming.	
Third generation: 1965-1980	
Third generation came with introduction of Integrated Circuits(IC). Transistors	
were placed on silicon chips, called semiconductors, which drastically	
increased the speed and efficiency of computers. With ICs, the cost and the size	
of the computer reduced and the performance improved. The systems of the	
1960's were also batch processing systems, but they were able to take better	
advantage of the computer's resources by running several jobs at once. So	
operating systems designers developed the concept of multiprogramming in which several jobs are in main memory at once; a processor is switched from	
job to job as needed to keep jobs advancing while keeping the peripheral	
devices in use.	
Technology used: Integrated Circuits	
Memory: Disk	
Programming: Job Control Language	
• Example: IBM 360 mainframe, IBM-370, PDP-8, VAX 750	
Advantages:	
Smaller in size as compared to previous.	
 More reliable and easily portable. Lower heat generated the second-generation computers. 	
 Reduce computational times from microseconds to nanoseconds. 	
 Maintenance cost is low because hardware failure is rare. 	
Widely used for various commercial applications all over the world.	
Less power requirement.	
Commercial production was easier and cheaper.	
language used are BASIC (Beginners all-purpose symbolic instruction	
code), PASCAL, RPG (Report Program Generator)	
Keyboard used as input and VDU used as output devices.	
 Capable of multiprogramming. Increase Processing Speed 	

(ii)	Describe Layered Structure of Operating System	4
Ans:	The modules of the operating system are divided into several layers stacked one above the other, thus forming a hierarchical structure. The lowest layer (Layer 0) interacts with the underlying hardware and the topmost layer (Layer N) provides an interface to the application programs/ users. Only adjacent layers can communicate with each other. A layer N can request for services only from a layer immediately below it (layer N-1). A layer N can provide services only to the layer immediately above it (layer N + 1). A Layer only needs to know what services are offered by the layer below it. In this structure any request that requires access to hardware has to go through all layers. Bypassing of layers is not allowed.	Description 2M Structure Diagram- 2M
	Advantage: This approach makes it easy to build, maintain and enhance the operating system. Locating an error is easy as system can start debugging from 0th layer and proceed further covering entire system if required. Disadvantage: Overall performance speed is slow as requests pass through multiple layers of software before they reach the hardware. Image: The performance of the performance speed is slow as requests pass through multiple layers of software before they reach the hardware. Image: The performance of the performance of the performance speed is slow as requests pass through multiple layers of software before they reach the hardware. Image: The performance of the	
	LAYERED OPERATING SYSTEM	

(iii)	Explain concept of Virtual Memory with Diagram	4
Ans:	Virtual memory is the separation of user logical memory from physical memory. This separation allows an extremely large virtual memory to be	Explanation 2M
	provided for programmers when only a smaller physical memory is available.	Diagram 2M
	Virtual memory makes the task of programming much easier, because the programmer no longer needs to worry about the amount of physical memory	2111
	available for execution of program. It is the process of increasing the apparent	
	size of a computer's RAM by using a section of the hard disk storage as an	
	extension of RAM.As computers have RAM of capacity 64 or 128 MB to be used	
	by the CPU resources which is not sufficient to run all applications that are used by most users in their expected way and all at once.	
	page 0	
	page 1	
	page 2	
	memory map	
	page v physical memory	
	virtual memory	
	Example: Consider, an e-mail program, a web browser and a word processor is loaded	
	into RAM simultaneously; the 64 MB space is not enough to store all these	
	programs. Without a virtual memory, a message "You cannot load any more	
	applications. Please close an application to load a new one." would be	
	displayed. By using a virtual memory, a computer can look for empty areas of	
	RAM which is not being used currently and copies them on to the hard disk device. Thus RAM is freed to load new applications. Actually it is done	
	automatically, the user do not even know that it is happening, and the user	
	feels like RAM has unlimited space even though the RAM capacity is 32 MB. It	
	is a process of increasing computer's RAM by using a section of the hard disk	
(1)	storage as an extension of RAM. Explain Real Time Operating System. Explain its types	4
(iv) Ans:	Real time system has well defined fixed time constraints. Processing should be	4 Explanation
	done within the Defined constraints. A primary objective of real-time systems	2M
	is to provide quick event response time and thus meet the scheduling	Types:
	deadlines. User convenience and resource utilization are of secondary concern	1M each
	to real-time system designers. In Real time systems, processor is allocated to	
	the highest priority process among those that are ready to execute. Higher priority processes preempt execution of the lower priority processes. This form	
	is called as 'priority-based preemptive scheduling'.	
	The primary functions of the real time operating system are to:	

	 requirements of an application Synchronize with and respond Move the data efficiently coordination among these processory Types of real time system: Hard Real Time: - Hard real time mean deadline. When an event occurs, it slittime at all times in a given hard real time transferred at fixed rate. 2. Soft Real Time: Soft real time mean for the task operations are defined, i latencies are small. There can be few or solutions and the second stransferred at fixed rate. 	d to the system events. among processes and to perfor- ocesses. Heans strict about adherence to each ta hould be serviced within the predictal ime system. h picture frame and audio must h picture frame and audio must h s that only the precedence and sequen nterrupt latencies and context switchi deviations between expected latencies traints and a few deadline misses a	rm ask ble be nce ng of
1 b)	Attempt any ONE of the following		6
(i)	Difference between Segmentation a	nd Paging (Any 6 points)	6
	PagingIt divides the physical memory into frames and program's address space into same size pages.Page is always of fixed block size.The size of the page is specified by the hardware.It may lead to internal fragmentation as the page is of fixed block size.Page table is used to map pages with frames from memory.Page table contains page number and frame number.Invisible to Programmer Paging consist of Static linking & dynamic loading A page is of physical unit	SegmentationIt divides the Computer's physical memory and program's address space into segments.Segment is of variable size.The size of the segment is specified by the user.It may lead to External fragmentation as the memory is filled with the variable sized blocks.Segment table is used to map segments with physical memory.Segment table contains segment number, length of segment and base address of segment from memory.Visible to programmerSegment consist of Dynamic Linking & Dynamic Loading A page is of logical unit	Any Six relevant points: 1 M each

(ii)	Explain any six services of Operating System. Draw diagram of services of OS	6
Ans:	 1. User Interface: All operating systems have a user interface that allows users to communicate with the system. Three types of user interfaces are available: a. Command line interface (CLI) b. Batch interface c. Graphical user interface (GUI) 	Services: 4M Diagram: 2M
	2. Program execution: The operating system provides an environment where the user can conveniently run programs. To run a program, the program is loaded into the main memory and then CPU is assigned to that process for its execution. It also performs other important tasks like allocation and deallocation of memory, CPU scheduling etc. It also provides service to end process execution either normally or abnormally by indicating error.	
	3. I/O operations : When a program is running, it may require input/output resources such as a file or devices such as printer. For specific devices, special functions may be required such as recording to a CD drive. For efficiency and protection users usually cannot control I/O devices directly. So the operating system provides a service to do I/O.	
	4. File system manipulation: - Programs may need to read and write data from and to the files and directories. Operating system manages the secondary storage. User gives a command for reading or writing to a file. Operating system makes it easier for user programs to accomplish their task such as opening a file, saving a file and deleting a file from the storage disk. It also provides services for file permission management to allow or deny access to files or directories based on file ownership.	
	5. Communication: In the system, one process may need to exchange information with another process. Such communication may occur between processes that are executing on different computer systems tied together by a computer network. Communication can be implemented via shared memory or through message passing, in which packets of information are moved between processes by the operating system.	
	 6. Error detection: The operating system needs to be constantly aware of possible errors. Errors can occur in: a) CPU and memory hardware such as a memory error or power failure b) I/O devices such as parity error on tape, a connection failure on a network or lack of paper in the printer. c) The user program such as an arithmetic overflow, an attempt to access an illegal memory location or a too-great use of CPU time. 	

Ans:	The Unix file system is a methodology for logically organizing and storing large quantities of data such that the system is easy to manage. A file can be informally defined as a collection of related data, which can be logically viewed as a stream of bytes (i.e. characters). A file is the smallest unit of storage in the Unix file system. The Unix file system has a hierarchical (or tree-like) structure with its highest level directory called root (denoted by /, pronounced slash). Immediately below the root level directory are several subdirectories, most of which contain system files. Below this can exist system files, application files, and/or user data files. Similar to the concept of the process parent-child relationship, all files on a UNIX system are related to one another. That is, files also have a parent-child existence. Thus, all files (except one) share a common parental link, the top-most file (i.e. /) being the exception.	Explanation: 3M Diagram: 1M
	Below is a diagram of a "typical" Unix file system. The top-most directory is / (slash), with the directories directly beneath being system directories.	
b)	Describe Multiprocessor Operating System with its two advantages	4
 Ans:	Multiprocessor systems are also known as parallel systems or tightly coupled systems. These systems have two or more processors in close communication and they share computer resources such as bus, clock, memory and peripheral devices. The whole task of multiprocessing is managed by the operating system, which allocates different tasks to be performed by the various processors in the system. Applications designed for the use in multiprocessing are said to be threaded, which means that they are broken into smaller routines that can be run independently. This allows the operating system to let these threads run on more than one processor simultaneously, which is multiprocessing that results in improved performance. Generally, the parallel processing is used in the fields like artificial intelligence and expert system, image processing, weather forecasting etc.	Description: 2M Two Advantages: 2 M

	CPU 1 CPU 1 CPU	
	MEMORY PERIPHERALS	
	Advantages:	
	 Increased throughput: Increase in number of processors requires less 	
	time for more work. Number of processes completing their task for a	
	particular duration is more.	
	 Economy of scale: Cost is less than multiple single processor systems. If several programs operate on the same set of data, then it is cheaper 	
	to store those data on one disk and to have all the processors share	
	them.	
	Increase reliability: Functions can be distributed properly among	
	several processors and then the failure of one processor will not halt the system.	
 (c)	List different directory structure and explain any one in detail	4
Ans:	List of directory structures:	List: 1M
	Single level directory structure	Explain One
	Two level directory structure	Structure: 2M,
	Single level directory structure: It is the simplest form of directory structure, having one directory containing all the files, and each file must have a unique name. Software design is simple. The advantages of this scheme are its simplicity and the ability to locate files quickly. Since all files are in the same directory, they must have unique names. If there are two users who call their data file "test", then the unique-name rule is violated. Even with a single-user, as the number of files increases, it becomes difficult to remember the names of all the files in order to create files with unique name.	Diagram: 1M
	directory cat bo a test data mail cont hex records files files	
	Two level directory structure: In this structure, each user has its own user file directory (UFD). The UFD lists only files of a single user. System contains a master file directory (MFD) which is indexed by user name or account number. Each entry in MFD points to the UFD for that user. When a user refers to a particular file, only his own UFD is searched. Different users can have files with the same name, as long as all the file names within each UFD are unique. When we create a file for a user, operating system searches only that user's UFD same name file already present in the directory.	

(e) Ans:	 6. Login: The login process prompts the user for a password. It validates the login name and the password against the entry in the /etc/passwd file and the /etc/shadow file. The users shell specified in the Home directory. 7. Shell: The shell prints the Unix prompt and executes user commands when user logs out, sh is taken over by login to allow the next user to log in. Explain Process Control Block with suitable Diagram Each process is represented as a process control block (PCB) in the operating system. It contains information associated with specific process. Process State: It indicates current states of a process. Process state can be new, ready, running, waiting and terminated. Process number: Each process is identified by its process number, called process identification number (PID). Program Counter: It indicates the address of the next instruction to be executed for the process. CPU Registers: The registers vary in number and type depending on the computer architecture. Register includes accumulators, index registers, stack pointers and general purpose registers plus any condition code information. Memory Management Information: It includes information such as value of 	4 Explanation: 2M Diagram: 2M
	base and limit registers, page tables, segment tables, depending on the memory system used by operating system. Accounting Information: This information includes the amount of CPU used, time limits, account holders, job or process number and so on. It also includes information about listed I/O devices allocated to the process such as list of open files.	
	process number program counter registers memory limits list of open files	
(f)	Explain Shortest Remaining Time Next (SRTN) scheduling algorithm with example	4
Ans:	SRTN: Shortest Remaining Time Next	Explanation:
	A Shortest remaining Time Next scheduling algorithm is also referred as preemptive SJF scheduling algorithm. When a new process arrives at ready queue while one process is still executing then SRTN algorithm is performed to decide which process will execute next. This algorithm compare CPU burst time of newly arrived process with remaining (left) CPU burst time of currently executing process. If CPU burst time of new process is less than remaining time of current process then SRTN algorithm preempts current process execution and starts executing new process.	2M Example: 2M

		Evenue Consider four processory with any colding and burget time and the	
		Example: Consider four processes with arrival time and burst time mentioned	
		below in table.	
		Process Arrival Time Burst Time	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		P_3 2 9	
		P_4 3 5	
		Gantt chart:	
		$P_1 P_2 P_4 P_1 P_3$	
		0 1 5 10 17 26	
		 As P₁ is the only process in ready queue at time 0,P₁ will start execution first. At time 1, process P₂ arrives. The Burst time of P₂ i.e 4 ms is less than remaining burst time of process P₁ i.e.7 ms, so process P₁ is preempted and process P₂ starts executing. At time 2, process P₃ arrives. The Burst time of P₃ i.e. 9 ms is greater than remaining burst time of process P₂ i.e. 3 ms, so Process P₂ continues its execution. At time 3, process P₄ arrives. The Burst time of P₄ i.e. 5 ms is greater than remaining burst time of process P₂ i.e. 2 ms, so Process P₂ continues its execution. When P₂ process completes its execution, all remaining processes execute with shortest job first algorithm. Waiting time of processes: P₁:9 ms P₂:0 ms P₃:15 ms P₄: 2 ms Average waiting time = (9+0+15+2)/4=26/4=6.5 ms 	
-			
3		Attempt any FOUR of the following	16
	a)	Explain execution of system call with diagram	4
	Ans:	System call is an interface between a running program and operating system.	Explanation:
		It allows user to access services provided by operating system. This system calls	2M
		are procedures written using C, C++ and assembly language instructions. Each	Diagram:
		operating system has its own name for each system call.	2M
		1. Each system call associated with a particular number.	
		 System call interface maintains a table indexed according to these numbers. 	
		3. The system call interface invokes intended system call in operating	
		system kernel and returns status of the system call and any return values.	
L	1		

b) Ans:	 4. The caller needs to know nothing about how the system call is implemented. Just needs to obey API and understand what OS will do as a result call. 5. Most details of operating system interface hidden from programmers by API. It is managed by run-time support library. 	4 Explanation of any 4 file attributes: 1 mark each
	 within file system and which is used to refer files internally. Type: This information is needed for those systems that support different types. 	
	 Location: This information is a pointer to a device and to the location of the file on that device. Size: The current size of the file (in bytes, words or blocks) and possibly 	
	the maximum allowed size are included in this attribute.Protection: Access control information determines that who can do	
	 reading, writing, executing and so on. Time, Date and User Identification: This information may be kept for 	
	creation, Last modification and last use. These data can be useful for protection, security and usage monitoring.	
c)	Explain any four benefits of using threads	4
Ans:	The benefits of using threads:	Any four
	Responsiveness: Multithreading an interactive application may allow a	Benefits: 1M
	program to continue running even if part of it is blocked or is	each
	performing a lengthy operation, thereby increasing responsiveness to	
	the user. For instance, a multithreaded web browser could still allow user interaction in one thread while an image was being loaded in	
	user interaction in one thread while an image was being loaded in another thread.	
	• Resource sharing: By default, threads share the memory and the	
	resources of the process to which they belong. The benefit of sharing	

	 code and data is that it allows an application to have several different threads of activity within the same address space. Economy: Allocating memory and resources for process creation is costly. Because threads share resources of the process to which they belong, it is more economical to create and context-switch threads. Empirically gauging the difference in overhead can be difficult, but in general it is much more time consuming to create and manage processes than threads. In Solaris, for example, creating a process is about thirty times slower than is creating a thread, and context switching is about five times slower. Utilization of multiprocessor architectures: The benefits of multithreading can be greatly increased in a multiprocessor architecture, where threads may be running in parallel on different processors. A single threaded process can only run on one CPU, no matter how many are available. Multithreading on a multi-CPU machine increases concurrency. 	
d)	Write Steps of banker's algorithm to avoid deadlock	4
Ans:	 Steps of Banker's Algorithm: This algorithm calculates resources allocated, required and available before allocating resources to any process to avoid deadlock. It contains two matrices on a dynamic basis. Matrix A contains resources allocated to different processes at a given time. Matrix B maintains the resources which are still required by different processes at the same time. Algorithm F: Free resources Step 1: When a process requests for a resource, the OS allocates it on a trial basis. Step 2: After trial allocation, the OS updates all the matrices and vectors. This updating can be done by the OS in a separate work area in the memory. Step 3: It compares F vector with each row of matrix B on a vector to vector basis. Step 4: If F is smaller than each of the row in Matrix B i.e. even if all free resources are allocated to any process in Matrix B and not a single process can complete its task then OS concludes that the system is in unstable state. Step 5: If F is greater than any row for a process in Matrix B the OS allocates all required resources for that process on a trial basis. It assumes that after completion of process, it will release all the recourses allocated to it. These resources can be added to the free vector. Step 6: After execution of a process, it removes the row indicating executed process from both matrices. Step 7: This algorithm will repeat the procedure step 3 for each process from the matrices and finds that all processes can complete execution without entering unsafe state. For each request for any resource by a process OS goes through all these trials of imaginary allocation and updation. After this if the system remains in the safe state, and then changes can be made in actual matrices. 	Correct Steps: 4M

	e)	Differentiate between pre-emptive an points)	d non-pre-emptive scheduling (any 4	4
	Ans:	•		Any four
		Pre-emptive Scheduling	Non Pre-emptive Scheduling	points: 1M
		Even if CPU is allocated to one	Once the CPU has been allocated to	each
		process, CPU can be preempted to	a process the process keeps the CPU	
		other process if other process is	until it releases CPU either by	
		having higher priority or some other fulfilling criteria.	terminating or by switching to waiting state.	
		Throughput is less	Throughput is high.	
		Only the processes having higher	Processes having any priority can get	
		priority are scheduled.	scheduled.	
		It doesn't treat all processes as equal.	It treats all process as equal	
		Algorithm design is complex.	Algorithm design is simple	
		Circumstances for preemptive	Circumstances for Non-preemptive	
		(i) Process switch from running to	Process switches from running to	
		ready state	waiting state Process terminates	
		(ii) Process switch from waiting to		
		ready state		
		For e.g.: Round Robin, Priority	For e.g.: FCFS Algorithm	
		Algorithms	5 5	
		5		
4	a)			12
4	a) (i)	Attempt any THREE of the following	Aicrokernel OS (Any four points)	12 4
4	(i)		/licrokernel OS (Any four points)	4
4		Attempt any THREE of the following Differential between Monolithic and N		4 Any four
4	(i)	Attempt any THREE of the following Differential between Monolithic and Monolithic OS	Microkernel OS	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and Monolithic OS Monolithic OS The entire O.S. is placed inside the	Microkernel OS Only bare minimum code is placed	4 Any four
4	(i)	Attempt any THREE of the following Differential between Monolithic and Monolithic OS	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and Monolithic OS Monolithic OS The entire O.S. is placed inside the	Microkernel OS Only bare minimum code is placed	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and Monolithic OS Monolithic OS The entire O.S. is placed inside the	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory management and Inter Process Communication code) Here the kernel is broken down into	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and N Monolithic OS The entire O.S. is placed inside the kernel It runs as a single large process	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory management and Inter Process Communication code) Here the kernel is broken down into processes called as servers	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and M Monolithic OS The entire O.S. is placed inside the kernel It runs as a single large process As all the services are placed inside	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory management and Inter Process Communication code) Here the kernel is broken down into processes called as servers As services (Servers provide services)	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and N Monolithic OS The entire O.S. is placed inside the kernel It runs as a single large process As all the services are placed inside the kernel, they have a single	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory management and Inter Process Communication code) Here the kernel is broken down into processes called as servers As services (Servers provide services) are separated they have different	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and N Monolithic OS The entire O.S. is placed inside the kernel It runs as a single large process As all the services are placed inside the kernel, they have a single address space	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory management and Inter Process Communication code) Here the kernel is broken down into processes called as servers As services (Servers provide services) are separated they have different address spaces	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and M Monolithic OS The entire O.S. is placed inside the kernel It runs as a single large process As all the services are placed inside the kernel, they have a single address space It is easy to implement/code	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory management and Inter Process Communication code) Here the kernel is broken down into processes called as servers As services (Servers provide services) are separated they have different address spaces It is tough to implement/code	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and N Monolithic OS The entire O.S. is placed inside the kernel It runs as a single large process As all the services are placed inside the kernel, they have a single address space It is easy to implement/code Performance is high (As kernel can	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory management and Inter Process Communication code) Here the kernel is broken down into processes called as servers As services (Servers provide services) are separated they have different address spaces It is tough to implement/code Performance is low (As servers are	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and N Monolithic OS The entire O.S. is placed inside the kernel It runs as a single large process As all the services are placed inside the kernel, they have a single address space It is easy to implement/code Performance is high (As kernel can invoke any function directly as	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory management and Inter Process Communication code) Here the kernel is broken down into processes called as servers As services (Servers provide services) are separated they have different address spaces It is tough to implement/code Performance is low (As servers are separated, so to invoke services from	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and N Monolithic OS The entire O.S. is placed inside the kernel It runs as a single large process As all the services are placed inside the kernel, they have a single address space It is easy to implement/code Performance is high (As kernel can	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory management and Inter Process Communication code) Here the kernel is broken down into processes called as servers As services (Servers provide services) are separated they have different address spaces It is tough to implement/code Performance is low (As servers are separated, so to invoke services from other servers IPC(Inter Process	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and N Monolithic OS The entire O.S. is placed inside the kernel It runs as a single large process As all the services are placed inside the kernel, they have a single address space It is easy to implement/code Performance is high (As kernel can invoke any function directly as	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory management and Inter Process Communication code) Here the kernel is broken down into processes called as servers As services (Servers provide services) are separated they have different address spaces It is tough to implement/code Performance is low (As servers are separated, so to invoke services from other servers IPC(Inter Process Communication) is needed which	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and N Monolithic OS The entire O.S. is placed inside the kernel It runs as a single large process As all the services are placed inside the kernel, they have a single address space It is easy to implement/code Performance is high (As kernel can invoke any function directly as	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory management and Inter Process Communication code) Here the kernel is broken down into processes called as servers As services (Servers provide services) are separated they have different address spaces It is tough to implement/code Performance is low (As servers are separated, so to invoke services from other servers IPC(Inter Process Communication) is needed which requires kernel's permission and	4 Any four points: 1M
4	(i)	Attempt any THREE of the following Differential between Monolithic and N Monolithic OS The entire O.S. is placed inside the kernel It runs as a single large process As all the services are placed inside the kernel, they have a single address space It is easy to implement/code Performance is high (As kernel can invoke any function directly as	Microkernel OS Only bare minimum code is placed inside the kernel (only basic memory management and Inter Process Communication code) Here the kernel is broken down into processes called as servers As services (Servers provide services) are separated they have different address spaces It is tough to implement/code Performance is low (As servers are separated, so to invoke services from other servers IPC(Inter Process Communication) is needed which	4 Any four points: 1M

		Less Secure (If one service fails,	More Secure (Ever		
		entire system crashes)	crashes, others	can function	
			properly because of	separation)	
	(ii)	Explain critical section problem with e	xample		4
	Ans:	Each process contains two sections. On	e is critical section wh	ere a process may	Explanation:
		need to access common variable or o	bjects and other is	remaining section	2M
		containing instructions for processing o	1	v	Example: 2M
		process. Each process must request for	-	•	
		section. The section of code implemen	•		
		entry section if a process gets permission	v ,	5	
		it works with common data. At this time			
		for the same data. The critical section i	-	-	
		process completes its task, it releases			
		the remaining code placed in the remai			
		Entry see	tion		
		Critic	al section		
		Exit sect	ion		
		Rema	inder section		
		} while(T	RUE);		
				a aanta tinaa Tha	
		Two processes cannot execute their of			
		critical section problem is to design a			
		cooperate i.e. allowing entry to only c	-		
		section. Before entering into the critica		s must request for	
	4113	permission to entry inside critical section			
	(iii)	Explain different activities of I/O syste		-	4
	Ans:	I/O System: Input / Output device mar	a .		Description
		the better interaction between system		•	of four
		scanners, tape drives etc. To interact w			activities of
		the operating system uses some specia			I/O system: 1
		device drivers take the data that oper	0 5		mark each
		then translate them into streams of bit			
		specific type of computer software that	•		
		hardware devices. Typically this continu		•	
		the I/O device, through the specif	ic computer bus o	r communication	
		subsystem that the hardware is cor	nnected with. The d	levice driver is a	
		specialized hardware dependent com	nputer program that	enables another	
		program, typically an operating syst	em to interact tran	sparently with a	
		hardware device, and usually provi	des the required ir	nterrupt handling	
		necessary for the time dependent hard	-		
		Activities:	C C		
		• Providing interfaces to other sy	stem components.		
L		~ J	•		

	Managing dovicos	
	Managing devices Transforming data	
	Transferring data Detecting L/O completion	
(:)	Detecting I/O completion	
(iv)		4
Ans	 User-Level Threads: A user-level thread is a thread within a process which the OS does not know about. In a user-level thread approach the cost of a context switch between threads less since the operating system itself does not need to be involved—no extra system calls are required. A user-level thread is represented by a program counter; registers, stack, and small thread control block (TCB). Programmers typically use a thread library to simplify management of threads within a process. Creating a new thread, switching between threads, and synchronizing threads are done via function calls into the library. This provides an interface for creating and stopping threads, as well as control over how they are scheduled. Kernel Threads: In systems that use kernel-level threads the operating system itself is aware of each individual thread. Kernel threads are supported and managed directly by the operating system. A context switch between kernel threads belonging to the same process requires only the registers, program counter, and stack to be changed; the overall memory management information does not need to be switched since both of the threads share the same address space. Thus context switching between two kernel threads is slightly faster than switching between two processes. Kernel threads can be expensive because system calls are required to switch between threads. Also, since the operating system is responsible for scheduling the threads, the application does not have any control over how its threads are managed. 	Explanation of User Thread: 2 marks, Explanation of Kernel Thread: 2 marks
b)	Attempt user ONE of the Following	6
(i)	Explain different methods of inter process communication with help of diagram	6
Ans	There are two methods of IPC: Shared memory:	Two Methods with Description of each: 3 marks (1 mark

The simplest access method is sequential access. Information in the file is processed in order, one record after the other. This mode of access is by far the beginning current position most common; for example, editors and compilers usually access files in this fashion. Reads and writes make up the bulk of the operations on a file. A read operation read next reads the next portion of the file and automatically advances a file pointer, which tracks the I/O location. Similarly, the write operation write next appends to the end of the file and advances to the end of the newly written material (the new end of file).

Description of each: 3 marks (1 mark Diagram, 2 mark Explanation)

beginning	current	position end
•	rewind	read or write

To read a piece of data that is stored at the end of the file, one has to read all of the data that comes before it-you cannot jump directly to the desired data. This is similar to the way cassette tape players work. If one wants to listen to the last song on a cassette tape, he has to either fast-forward over all of the songs that come before it or listen to them. There is no way to jump directly to a specific song.

Direct Access Method:

A file is made up of fixed-length logical records that allow programs to read and write records rapidly in no particular order. Thus, we may read block 14, then read block 53, and then write block 7. There are no restrictions on the order of reading or writing for a direct-access file. The direct-access method is based on a disk model of a file, since disks allow random access to any file block. Direct-access files are of great use for immediate access to large amounts of information. Databases are often of this type. For the direct-access method, the file operations must be modified to include the block number as a parameter.

The block number provided by the user to the OS is normally a relative block number. A relative block number is an index relative to the beginning of the file. Thus, the first relative block of the file is 0, the next is 1, and so on, even though the actual absolute disk address of the block may be 14703 for the first block and 3192 for the second. The use of relative block numbers allows the OS to decide where the file should be placed (called the allocation problem) and helps to prevent the user from accessing portions of the file system that may not be part of her file.

When you work with a direct access file (which is also known as a random access file), you can jump directly to any piece of data in the file without reading the data that comes before it. This is similar to the way a CD player or an MP3 player works. You can jump directly to any song that you want to listen to. Sequential access files are easy to work with, and you can use them to gain an understanding of basic file operations.

		Implementation for direct access Cp = 0; Read cp; Cp= cp+1; Write cp; Cp = cp+1	
5		Attempt any TWO of the following	16
	(a)	Explain following multithreading models with advantages and	8
	•••	disadvantages (i) Many to one (ii) Many to Many	
	Ans:	 Many to One Model: This model maps many user level threads to one kernel level thread. If user level thread generates blocking system call then it blocks an entire process. At a time only one user level thread can access kernel level thread i.e multiple threads can't execute in parallel. Thread management is done by Thread libraries. Example: - Green threads – a thread library available for Solaris use many-to-one model. Advantages:- It is an efficient model as threads are managed by thread library in user space. Portable: Because user level threads packages are implemented entirely with standard Unix and POSIX library calls, they are often quite portable. One kernel level thread controls multiple user level threads. Easy to do with few system dependencies. 	Explanation: 1M, Diagram: 1M Advantages: 1M Disadv: 1M = 4M For each Model

	One	to One Mo	del·							
				e model ma	ps ea	ch user threa	d to a	a single kernel thr	ead.	
					•			ne model by allo		
								ocking system call		
		 It also a 	llows	multiple thr	eads	to run in para	llel o	n multiprocessor:	S.	
		 Whene 	ver us	ser level t	hread	is created,	it d	compulsorily cre	ates	
		•		g kernel leve						
	10	 This model 	del is	used in Linu	x & V	Vindows versi	on lil	ke 95,97,XP, NT.	_	
	×	(k)	(k) +	— user thread	OR	U U 2 K K L Kernel Spac	U 3 K 3 	User Thread		
	Adv:	antages:								
		•	s mult	iple threads	to ru	n in parallel c	on mi	ultiprocessors.		
		 More c 		•	1010	in in paraller e	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
				tion in proc	essing	9				
	Disa	dvantages								
	•		•		•			corresponding ke		
				ing kernel	threa	id may affec	t the	e performance of	fan	
		applica		formance o	ftho	systom				
				is overhead		system.				
b)	Calc					F (Shortest Jo	ob Fir	st) and Round Ro	bin	8
	(RR)	algorithm	for fol	lowing table	e: (Tiı	ne Slice 4 ms	ec)			
				Process		Burst Time				
				P1		10				
				P2		04				
				P3 P4		<u> </u>				
Ans:	SJF:			F4		00				Gantt chart:
7		t Chart:								2 marks
				1						each,
		P2 1	24	P3		Pl				Average
				10		0				waiting time:
	0 Mai	4 Hing Time a		10 'n Around T		l9 Jahlor		29		2 marks each
	vvai	Process	-	urst Time		aiting Time	Tur	n Around Time		
		P1		10		19	101	29		
		P2		04		0		04		
		P3		09		10		19		
		P4		06		4		10		

	P1 P2 0 4 Waiting Time Proc	8 8	P4 12	P1	P3	P4			
				16	20		P1 P3 26 28 29		
		e and Turn	Around Tim	ne Table					
			rst Time		ng Time	Tu	rn Around Time		
	Р		10		18		28	-	
	P. P		04 09		04		08	-	
	P		09		20 20		29 26	1	
	Average wait	-						1	
	Average turn								
c)	Explain first one advanta				ithm. Giv	e one e	example. Stat	e any	8
	relea In th the C Whe the c the c remo	ises the CPL is algorithm CPU first. FC n a process jueue. n the CPU is jueue. Once oved from the process rele	J, either by a process, FS scheduli enters the s available, the CPU is he queue. ases the CF Process P1 P2 P3	termina , that a r ng is im ready qu it is allo allocate PU by its Bu	ating or by request the plementer ueue, its cated to a red to a pr cown. rst Time 24 3 3	y reque ne CPU ed with PCB is I the pro ocess, 1	Pu until it esting I/O. first, is alloca a FIFO queue linked to the t cess at the he that process i	e. tail of ead of	algorithm Marks:- A relevan Example; Mark:- Advantage Mark:- Disadvant

			Drocoss	Burst Time	Waiting Time	Turn Around		
			Process	buist nine	Waiting Time	Time		
			P1	24	0	24		
			P1 P2	24 3	24	24 27		
			P2 P3	3	24 27			
		Avora	-	-		30		
			• •	ne: (0 + 24 + 27).				
			•	nd time: (24 + 27	+ 30)/3 = 27			
			ntage: mple to imple	mont				
			vantage:	ement.				
		Disau	•	ling mothod is r	on proomptive th	at is, the process w		
		•		•	e of this non preer	•	/111	
						back of the queue h		
			•	•	s at the front to fin	•	ave	
		•		table for real tin		1311.		
		•			iverage turnaround	timo is moro		
		•	comparati	•	iverage turnaround			
			comparativ	iciy.				
6		Atten	npt any FOUR	of the followin	a			16
	a)				•	OS with its activitie	es	4
	Ans:	•			ray of words or byt			2 Marks:-
		•		or byte has its o				Explanation;
		•		5		ccess directly by the	ė	2 Marks:-
			CPU.		ruge that out be at		5	Activities
		•		ay for a program	n to be executed, it	must in the main		
			memory.	aj ter a program				
		The m		s of an operating	in regard to mem	ory-management a	re:	
		•	-			ently being used and		
			whom.		, , , , , , , , , , , , , , , , , , ,	ji ji i	J	
		•	Decide whi	ich processes are	e loaded into mem	ory when memory	space	
			becomes a			,,	•	
		•	Allocate m	emory space as i	needed Deallocate	memory space as		
			needed	5 1		5 1		
	b)	Expla	in structure o	of Unix OS				4
	Ans:	-		Application				2 Marks:-
				Programs				Explanation;
		/	ksh	bash more	Pg			2 Marks:-
			csh	1	which			Diagram
			sh		env Mail			
		1	(Hardware				
			cpp		cut			
			comp	Kernel	ed vi			
			DBMS as	Shell	FTP			

	Hardware:	
	• The hardware is Centre of structure that provides the Operating	
	System with basic services.	
	• The hardware consists of all peripherals like memory (RAM, HDD, FDD	
	etc) processor, mouse, and other input devices, terminals, printers etc.	
	The Kernel:	
	 The kernel is the heart of the system - a collection of programs mostly written in 'C' which communicate with the hardware directly. Kernel is an interface between hardware of the system and shell. It is loaded into the memory when the system is booted. User programs that need to communicate with the hardware use the services of the kernel, which performs the job on the user's behalf. It manages the system's memory, schedules processes, decides their 	
	priorities and performs other tasks.	
	 Shell: The shell is an interface between the user and the kernel that isolates the user from knowledge of kernel functions. The shell accepts the commands keyed by the users and checks for their syntax and gives out error messages if something goes wrong. 	
	It is a command interpreter of user requests.	
	Application programs:	
	• The various compilers for languages like c, c++, pascal, fortran and other application programs written by programmers which are used by users for their operations falls in this layers.	
	• Only those persons who maintain on "account" with the computer	
	system can use the UNIX system.User can directly access application programs through which they can	
	interact with the system.	
c) Ans:	 Explain distributed Operating System with advantages and disadvantages A distributed system consists of a collection of autonomous 	4 2 Marks:-
	 computers, connected through a network and distribution middleware, which enables computers to coordinate their activities and to share the resources of the system, so that users perceive the system as a single, integrated computing facility. In such system the processors do not share memory or a clock; instead each processor has its own local memory. In such systems, if one machine or site fails the remaining sites can continue operation. So these types of systems are the reliable systems. The processors communicate with one another through various communications lines, such as a high speed buses or telephone lines. These systems are usually referred to as Loosely Coupled Systems or Distributed Systems 	Explanation; 1 Mark:- Advantage; 1 Mark:- Disadvantage
	 The structure shown in figure contains a set of individual computer systems and workstations connected via communication systems. 	

Contia	
ooning	juous Allocation
٠	The contiguous allocation method requires each file to occupy a set of
	contiguous address on the disk.
•	Disk addresses define a linear ordering on the disk.
•	With this ordering, accessing block b+1 after block b normally
	requires no head movement.
•	Contiguous allocation of a file is defined by the disk address and the
	length of the first block. If the file is n blocks long, and starts at
	location b, then it occupies blocks b, b+1, b+2,, b+n-1.
•	The directory entry for each file indicates the address of the starting
	block and the length of the area allocated for this file
	directory file start length
	$\begin{array}{c} count \\ \hline 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
4[mail 19 6
8	f 6 2
12[tr 13 14 15
16[17 18 19
20[mail
24[25 26 27
28	list
28[
28[
	Allocation:
	Allocation: In this method, each file occupies disk blocks scattered anywhere on
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk.
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk. It is a linked list of allocated blocks.
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk. It is a linked list of allocated blocks. When space has to be allocated to the file, any free block can be used
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk. It is a linked list of allocated blocks. When space has to be allocated to the file, any free block can be used from the disk and system makes an entry in directory.
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk. It is a linked list of allocated blocks. When space has to be allocated to the file, any free block can be used from the disk and system makes an entry in directory. Directory entry for allocated file contains file name, a pointer to the
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk. It is a linked list of allocated blocks. When space has to be allocated to the file, any free block can be used from the disk and system makes an entry in directory. Directory entry for allocated file contains file name, a pointer to the first allocated block and last allocated block of the file.
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk. It is a linked list of allocated blocks. When space has to be allocated to the file, any free block can be used from the disk and system makes an entry in directory. Directory entry for allocated file contains file name, a pointer to the first allocated block and last allocated block of the file. The file pointer is initialized to nil value to indicate empty file.
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk. It is a linked list of allocated blocks. When space has to be allocated to the file, any free block can be used from the disk and system makes an entry in directory. Directory entry for allocated file contains file name, a pointer to the first allocated block and last allocated block of the file. The file pointer is initialized to nil value to indicate empty file. A write to a file, causes search of free block.
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk. It is a linked list of allocated blocks. When space has to be allocated to the file, any free block can be used from the disk and system makes an entry in directory. Directory entry for allocated file contains file name, a pointer to the first allocated block and last allocated block of the file. The file pointer is initialized to nil value to indicate empty file. A write to a file, causes search of free block. After getting free block data is written to the file and that block is linked
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk. It is a linked list of allocated blocks. When space has to be allocated to the file, any free block can be used from the disk and system makes an entry in directory. Directory entry for allocated file contains file name, a pointer to the first allocated block and last allocated block of the file. The file pointer is initialized to nil value to indicate empty file. A write to a file, causes search of free block. After getting free block data is written to the file and that block is linked to the end of the file.
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk. It is a linked list of allocated blocks. When space has to be allocated to the file, any free block can be used from the disk and system makes an entry in directory. Directory entry for allocated file contains file name, a pointer to the first allocated block and last allocated block of the file. The file pointer is initialized to nil value to indicate empty file. A write to a file, causes search of free block. After getting free block data is written to the file and that block is linked to the end of the file. To read the file, read blocks by following the pointers from block to
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk. It is a linked list of allocated blocks. When space has to be allocated to the file, any free block can be used from the disk and system makes an entry in directory. Directory entry for allocated file contains file name, a pointer to the first allocated block and last allocated block of the file. The file pointer is initialized to nil value to indicate empty file. A write to a file, causes search of free block. After getting free block data is written to the file and that block is linked to the end of the file. To read the file, read blocks by following the pointers from block to block starting with block address specified in the directory entry.
	Allocation: In this method, each file occupies disk blocks scattered anywhere on the disk. It is a linked list of allocated blocks. When space has to be allocated to the file, any free block can be used from the disk and system makes an entry in directory. Directory entry for allocated file contains file name, a pointer to the first allocated block and last allocated block of the file. The file pointer is initialized to nil value to indicate empty file. A write to a file, causes search of free block. After getting free block data is written to the file and that block is linked to the end of the file. To read the file, read blocks by following the pointers from block to

