

SUMMER– 2019 Examinations Model Answer

Page 1 of 41

Important suggestions to examiners:

Subject Code: 17507

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skills)
- 4) While assessing figures, examiner may give credit for principle components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case some questions credit may be given by judgment on part of examiner of relevant answer based on candidate understands.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.1	Attempt any FIVE :	20 Marks		
a)	Define Electric drive. State the two advantages associated with electric drives.			
Ans:	Electric Drive: (2 Mark			
	It is a machine which gives mechanical power. e.g. drives employing electric			
	motors are known as electric drives.			
	Following advantages of electric drive: (Any Four point Expected: 1/2 eac	ch point: 2 Marks)		
	1. It is more economical.			
	2. It is more clean.			
	3. No air pollution.			
	4. It occupies less space.			
	5. It requires less maintenance.			
	6. Easy to start and control.			
	7. It can be remote controlled.			
	8. It is more flexible.			

	Subject Code: 17507	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 2 of 41
	9. Its operating cha	racteristics can be modified.	
	10. No standby losse	2S.	
	11. High efficiency.		
	12. No fuel storage a	and transportation cost.	
	13. Less maintenanc	e cost.	
	14. It has long life.		
	15. It is reliable sour	ce of drive.	
b)	State its eight applicatio	<u> </u>	
Ans:	Applications of Dielectri	ight points are expected: 1/2 Mark eac	h point Total (Marks)
		ry for manufacturing of ply wood.	n point, rotar 4 Warks)
	2) In plastic Indus	try for making different containers.	
	3) For manufactur	ing process of raincoats & umbrellas.	
	4) In medical lines	for sterilization of instruments & band	lages.
	5) For quick dryin	g gum used for book binding purpose.	
	6) In cotton indust	ry for drying & heating cotton cloths fo	or different processes.
	7) For Rubber vulo	canizing, tyre and tube manufacturing	process
	8) Cooking of food	l without removing outer shell (e.gbo	iled egg)
	9) In milk industry	of or pasteurizing of milk.	
	10) In Tobacco man	ufacturing industry for dehydration of	tobacco.
	11) In food processi	ing industry, dielectric heating is used	for Baking of cakes & biscuits
	in bakeries.		
c)	Compare resistance weld	ling and arc welding on any four poin	ts.
Ans:		m The Following Or Equivalent	Points Are Expected 1
	Mark To Each Point,	Total 4 Marks)	

Subject Code: 17507

SUMMER- 2019 Examinations <u>Model Answer</u>

Page 3 of 41

Sr.No	Parameters	Resistance Welding	Arc Welding
1	Type of welding	Plastic/Pressure/Non-	Fusion/Non pressure
		fusion welding	welding
2	Principle of heat	Heat is developed due to	Heat developed due to arc
	developed	I ² R losses where R is the	produced in between
		contact resistance	electrode and job
3	External filler	Not required during	Required during welding
	material required	welding	
4	External pressure	Required	Not required
	required		
5	Type of supply used	Both AC,DC supply is	Metal arc welding - Both
		used. But generally Ac	AC,DC supply is used. But
		Supply is used.	generally Ac Supply is
			used.and for
			Carbon arc welding -only D
			supply are used
6	Voltage ¤t	Low voltage (2 to 20V	Metal Arc welding Voltage-
	required	AC) and high current (40	70 to 100V AC and
		to 400A, in some cases 5	Carbon arc welding voltage-
		to 20KA) supply is	50 to 60V DC,
		required	Current- 50-600-800A
7	Energy	Low (3 to 4 KWH/Kg of	High (5 to 10 KWH/Kg of
	consumption	deposited material)	deposited material.)
8	Temperature	Temperature obtained is	Temperature obtained is ver
	obtained	not very high (up to	high (up to 3500°C to 6000°C
		1350°C)	
9	Power factor	Low	Poor
10	Type of electrode	Non-consumable	Coated electrodes are used

	Subject Code: 17507		UMMER– 2019 Examinations <u>Model Answer</u>	Page 4 of 41	
			electrodes are used.	for metal arc welding and bare electrodes are used for carbon arc welding.(Electrodes may be consumable or non- consumable)	
	11	Application	It is suitable for mass production	It is suitable for heavy job, maintenance and repair work	
d)			an ideal traction system.		
Ans:		our Points From Th	0	ent Points Are Expected 1	
	Ideal Tra	ction system should pr	ocesses following requireme	ent:-	
	1. It should be Pollution free.				
	2. It should have low capital, Running and maintenance cost.				
		3. It should have qui	ck starting time.		
		4. It should have hig	h starting torque.		
		5. It should have hig	h rate of acceleration & retar	dation.	
		6. Highest speeds are	e possible.		
		7. It should have eas	y speed control method.		
		8. Its braking system	n should be reliable and caus	ses less wear.	
		9. It should have bet	ter riding quality (less vibrat	tion)	
		10. It should be free fr more.	om unbalance forces i.e. coe	fficient of adhesion should be	
	11. It should have lower center of gravity.				

MAHARASHTRA STATE BOARAD OF TECHNICAL EDUCATIOD (Autonomous) (ISO/IEC-27001-2005 Certified)

SUMMER– 2019 Examinations Model Answer

Page 7 of 41

SUMMER-2019 Examinations Model Answer

Subject Code: 17507 Model Answer 5 Total current Reduces 4 Lagging reactive power (KVAr) Reduces > Advantages of Static Capacitor: (Expected any one) 1. Initial cost is low. 1. Initial cost is low. 2. Low operating cost.	Page 10 of 41
4 Lagging reactive power (KVAr) Reduces > Advantages of Static Capacitor: (Expected any one) 1. 1. Initial cost is low. 2. Low operating cost.	
 Advantages of Static Capacitor: (Expected any one) 1. Initial cost is low. 2. Low operating cost. 	
 Initial cost is low. Low operating cost. 	
 Initial cost is low. Low operating cost. 	
2. Low operating cost.	
3. Low maintenance cost.	
4. Losses are very less (less than 0.5%) than that of rated value	
5. Noise less operation as it is a static piece.	
6. Less space is required. Therefore can be installed near load.	
7. Greater reliability.	
8. KVAr (leading) rating can be adjusted easily as per load condition.	
Disadvantages of Static Capacitance: (Expected any one)	
1. It has short life as compared to synchronous condenser.	
2. Capacitors get easily damaged if the voltage exceeds than its rated capacitors are damaged its repair is uneconomical.	value. Once the
3. When capacitor is switched OFF then precaution is taken before m	aking it ON. In
between OFF and ON time, time should be kept to discharge the ca	pacitor, otherwise
capacitor may fail.	
4. Switching current of capacitor is many times that of rated current;	therefore cable siz
should be double of the normal current carrying capacity, so its cos	st increases.
5. When there is no load or system is lightly loaded at that time capac	ritor bank must be
made OFF otherwise voltage across transformer increases.	

	Subject Code: 17507	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 11 of 41			
g)		erning selection of a motor for partic				
Ans:	(Any Four Points From The Following Or Equivalent Points Are Expected 1					
	Mark To Each Point, Total 4 Marks)					
	Following Factors gov particular application:1. Nature of supply:Whether supply availar▶ AC,▶ Pure DC▶ Or Rectified D	ble is	lecting electric (Motor) for			
	2. Nature of Drive (Moto	or):				
	Whether motor is used	l to drive (run)				
	Individual macl	nine				
	OR group of ma	achines.				
	3. Nature of load:					
	Whether load red	quired light or heavy starting torque				
	OR load having	high inertia, requirehigh starting to	rque for long duration.			
	OR Whether load	Id torque increases with speed (T α N	N)			
	OR decreases w	ith speed (T α 1/N)				
	> OR remains con	stant with speed $(T = N)$				
	OR increases with	ith square of speed (T α N ²)				
	4. Electric Characterist	ics of drive:				
	Starting,					
	Running,					
	Speed control					
	and braking cha	practeristics				
	of electric drive should	l be studied and it should be matche	d with load requirements(i.e.			
	machine).					
	5. Size and rating of me	otor:				
	Whether motor	is short time running				

SUMMER-2019 Examinations Model Answer

	Subject Code: 17507	Model Answer	Page 12 of 41
	> OR continuous	sly running	
	> OR intermitter	ntly running	
	OR used for va	ariable load cycle.	
	Whether overload cap	pacity, pull out torque is sufficient.	
	6. Mechanical Consi	derations:	
	Types of enclose	sure,	
	Types of bearing	ng,	
	\succ Transmission of	of mechanical power,	
	> Noise		
	\succ and load equal	lization	
	7. Cost:		
	Capital,		
	Running	. 1 111 1	
	and maintenar	nce cost should be less.	
-			
Q.2	Attempt any TWO :		16 Marks
a) i)	(i) Give any four ideal re		16 Marks
	1 2		16 Marks
a) i)	(i) Give any four ideal re- Ideal requirements of ele		
a) i)	(i) Give any four ideal re- Ideal requirements of ele	evator: Any Four requirements are Expected: 1	
a) i)	(i) Give any four ideal real real real requirements of ele Ideal requirements of ele (1. There must be all saf	evator: Any Four requirements are Expected: 1	
a) i)	(i) Give any four ideal re- Ideal requirements of ele (1. There must be all saf 2. Compactable acceler	evator: Any Four requirements are Expected: 1 Tety features.	Mark each, Total :4 Marks)
a) i)	 (i) Give any four ideal real real requirements of ele 1. There must be all saf 2. Compactable acceler 3. It should have sufficient 	Any Four requirements are Expected: 1 Tety features. Pation and retardation to avoid jerk.	Mark each, Total :4 Marks)
a) i)	 (i) Give any four ideal real real requirements of ele Ideal requirements of ele 1. There must be all saf 2. Compactable acceler 3. It should have suffici 4. There should adequa 	Any Four requirements are Expected: 1 Yety features. Pation and retardation to avoid jerk. ient Speed (feet/min.) proportional to height	Mark each, Total :4 Marks)
a) i)	 (i) Give any four ideal real real requirements of ele Ideal requirements of ele 1. There must be all saf 2. Compactable acceler 3. It should have suffici 4. There should adequa 	Any Four requirements are Expected: 1 Tety features. Pation and retardation to avoid jerk. Patient Speed (feet/min.) proportional to height te lighting and provision of fan. Interior design of the car.	Mark each, Total :4 Marks)
a) i)	 (i) Give any four ideal real requirements of ele Ideal requirements of ele 1. There must be all saf 2. Compactable acceler 3. It should have suffici 4. There should adequa 5. There should better in 6. It should have minim 	Any Four requirements are Expected: 1 Tety features. Pation and retardation to avoid jerk. Patient Speed (feet/min.) proportional to height te lighting and provision of fan. Interior design of the car.	Mark each, Total :4 Marks)
a) i)	 (i) Give any four ideal real requirements of ele Ideal requirements of ele 1. There must be all saf 2. Compactable acceler 3. It should have suffici 4. There should adequa 5. There should better i 6. It should have minim 7. There should be wid 	Any Four requirements are Expected: 1 Tety features. Tety features. Tetion and retardation to avoid jerk. Tetion and retardation to avoid jerk.	. Mark each, Total :4 Marks) of building.

SUMMER– 2019 Examinations <u>Model Answer</u>

Page 13 of 41

	10. There must be provision of back-up, when electric supply get's failure like D.G. sets.				
a) ii)	(ii) State	e the factors to be considere	ed for selection of shape a	nd size of elevators.	
	(Any four points are Expected 1 Marks to each, Total 4 Ma				
	The size	e and shape of elevator car	depends on following fac	tors:	
	i) No. c	of passenger to be carried: W	Thile selecting the size of ca	ar it is a usual practice to allow.	
	\triangleright	A Space of 2 Sq.ft/ person.			
	\triangleright	Average weight of passeng	er is assumed 68 kg/perso	n.	
Ans:	\triangleright	Thus the maximum load ca	pacity of elevator is consid	lered 34 kg/sq.ft	
Alls.	\triangleright	There should be wide front	age and shallow depth		
	ii) Limi	itation in the building desig	n:		
	Shape of elevator depends on space available in building.				
	iii) Typ	e of building			
		olication of elevator			
	<i>,</i> 11				
b) i)	(i) Com	pare AC & DC system of tra			
Ans:		(Any I	Four point expected: 1	Mark each, Total 4 Marks)	
	S.No	Points	AC track Electrification	DC track electrification	
	1.	Supply given to O/H	1-ph, 25KV, AC 50 Hz	600/750V-Tromways	
		condition		1500/3000V urban/	
				suburban	
	2.	Type of drive used	1-ph, AC series motor	DC series motor for	
				tramways. DC compound	
	motor				
	3.	Weight of traction motor	1.5 times more than d.c. series motor.	1.5 times less than a.c series motor	
	4.	Starting torque	Less starting torque	High starting torque	
			than d.c series motor		
	5.	Accl ⁿ and retardation	Less than d.c series	High	

SUMMER– 2019 Examinations <u>Model Answer</u>

Page 14 of 41

		1	1	
			motor	
	6.	Overload capacity	Less than d.c series motor	High
	7.	Method of speed control	Simple and smooth	Limited, except chopper method
	8.	Maintenance cost of traction motor	More	Less
	9.	Starting Efficiency	More	Less
	10.	Ridding quality	Less, better than d.c.	Smooth (Better)
	11.	Insulation cost	High	Low
	12.	Cross section of conductor	Less	More
	13.	Design of supporting structure	light	Heavy
	14.	Distance between two substation	More	Less
	15.	No. of substation required for same track distance.	Less	More
	16.	Size (capacity) of traction substation	More	Less
	17.	Capital & maintenance cost of substation	Less	More
	18.	Cost track electrification for same track distance	Less	More
	19.	Applications	Main line services	Urban and suburban area
b) ii)	A electric train has a schedule speed of 25 km/hr between stations 800 m apart. The duration of stop is 20 seconds, the maximum speed is 20% higher than average running speed and the braking retardation is 3 km/hr/sec. Determine rate of acceleration required to operate the train.			
	-	Schedule speed of 25 km/h	r, Distance betwee	en stations 800 m
A		Stop time 20 Sec.		
Ans:		Maximum speed is 20% hig	her than average running	g speed, Braking retardation is 3
		km/hr/sec		

	SUMMER- 2019 Examinations				
Subject Code: 17507	Model Answer	Page 15 of 41			
Scheduled	$speed = \frac{3600D}{T_{sch}}$				
$T_{sch} = \frac{3600}{2}$	0×0.8				
	• J				
(2) 141 H120-24	20sec				
Actualtime	$from T = T = T_{sch} - T_{sop}$				
	=115.20-20				
	= 95.20 sec.	(1/2 Mark)			
		(1/2 Wark)			
A var age spe	$ped = \frac{5000D}{T}$				
	1				
$=\frac{3600\times0.8}{95.2}$		(1 /2 Mark)			
$= 30.2521 \ km$	n / hr.				
Maximum Sp	peed = $1.2 \times \text{Average speed}$				
	=1.2×30.2521				
	=36.3025 km/hr	(1/2 Mark)			
1 1 7200	$0D \left[V_{\text{max}} \right]$				
$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{1}{V^2 m}$	$\frac{0D}{\max} = \left[\frac{V_{\max}}{V_{ac}} - 1\right]$	(1 Mark)			
,					
7200 D	5760				
$=\frac{7200D}{(36,3025)^2}$	$= [1.2 - 1] = \frac{5760}{1317.87}$	(1/2 Mark)			
$\frac{1}{\alpha} + \frac{1}{\beta} = 0.874$	41				
,					
$\frac{1}{} = 0.8741 - 1000$	1				
α	β	(1/2 Mark)			
$= 0.8741 - \frac{1}{3}$	$\frac{1}{\beta}$				
3					
$\frac{1}{\alpha} = 0.5407$					
$\alpha = 1.8495 kn$	nphs	(1/2 Mark)			

	Subject Code: 17507	SUMMER- 2019 <u>Model A</u>		Page 16 of 41
c)	required to impro		.85 lagging. Calculate kVA What will value of capac connected in delta?	
Ans:	Given Data			
	Volt : 440 V,			
	P= 40 Kw	· •	$\cos \phi_2 = 0.95$	
	$\therefore Cos \varphi_1 =$	0.85		
	$ \tan \phi_1 = 0 $).6197		(1/2 Mark)
	$\cos \phi_2 =$:0.95		
	$ an \phi_2 =$	0.3286		(1/2 Mark)
	$Q_1 = P$	$tan \phi_1$		
	= 40	0 x 0.6197		
	= 24	4.788 KVAR		(1/2 Mark)
	Q2= P	$tan \phi_2$		
	= 40	0 x 0.3286		
	= 13	3.144 KVAR -		(1/2 Mark)
	i) KVAR Rating (of the capacitor Bank		
		$Q_{\rm C} = Q_{\rm 1-} Q_{\rm 2}$		
	= I	$P \tan \phi_1 - P \tan \phi_2$		(1 Mark)
	= 24	4.788 - 13.144		
	$Q_{\rm C}$ = 1	1.644 KVAR		(1 Mark)
	∴ Capacitor whe	n connected in Star :-		
	C per pho	ase = $\frac{Q_C \times 10^3}{\omega V^2}$ or $Q_C = 2 \pi$	$F_C V^2$	(1 Mark)
	C per ph	$ase = \frac{11.644 \times 10^3}{2\pi \times 50 \times (440)^2}$		
	C per pha	$se = 1.914 \times 10^{-4}$ F -		(1 Mark)
	∴ Capacitor when	connected in delta :-		

	Subject Code: 17507	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 17 of 41
	C per phase	$=\frac{Q_C \times 10^3}{3\omega V^2} - \cdots$	(1 Mark)
	C per phase	$=\frac{11.644\times10^{3}}{3\times2\pi\times50\times(440)^{2}}$	
	C per phase =	$= 6.38 \times 10^{-5}$ F	(1 Mark)
Q.3	Attempt any FOUR :		16 Marks
a)	State types of track ele	ectrification system. f Track Electrification From The Following	ng Are Expected 1
			ing file Expected I
		Of Track Electrification, Total 4 Marks)	
	C	erent track electrification system	
	D.C. Supply system:-		
	1. Direct cur	rent track electrification:	
		600V, 750V DC for tramways	
	>	1500V, 3000V DC for Train (Urban and sub-u	rban services)
	A.C. Supply system:-		
	2. 1-Ph, 25K	V,standard frequency AC supply system:	
Ans:		1-Ph, 25 KV, 50 Hz	
	3. 1-Phase, lo	ow frequency AC Supply system:	
		1-Ph, 15/16 KV, 16.2/3 Hz or 25 Hz	
	4. 3-Ph, Low	frequency AC supply system;	
	~	3-Ph, 3.3/3.7 KV, 16 2/3 Hz or 25 Hz	
	Composite system:-		
	5. 1-Ph AC (1-ph, 25KV) – DC Supply System	
	6. Kando Sys	stem (1-Ph AC – 3-Ph AC)	
b)	State any one applicat	tion of each of following :	

SUMMER-2019 Examinations Subject Code: 17507 **Model Answer** Page 18 of 41 (i) Direct resistance heating (ii) Indirect induction heating (iii) Direct arc heating (iv) Dielectric heating (Any Two Application Are Expected Of Each Heating Type 1/2 Mark Each Application, Ans: Total 4 Marks) (i) Direct resistance heating:-(Any Two Application Are Expected) 1. This type of heating used for industrial purpose 2. Salt bath heating: This utilized for the purpose of carbonizing, tempering, quenching and hardening of steel tools 3. Heating of water in boiler (ii) Indirect induction heating: (Any Two Application Are Expected) 1. For heating as well as melting 2. Production of carbon free ferrous alloys. 3. For vacuum melting. 4. For melting non-ferrous metals for e.g. copper, aluminum, nickel etc. 5. For duplexing steel products. 6. Heating of non-conducting material is also possible if crucible is made from conducting material. (Any Two Application Are Expected) (iii) Direct arc heating:-1. Used for continuous and large production of high quality steel. 2. For Ferro-alloy manufacturing (Any Two Application Are Expected) (iv) Dielectric heating:-1. In food processing industry, dielectric heating is used for Baking of cakes & biscuits in bakeries. 2. Cooking of food without removing outer shell (e.g.-boiled egg) and pasteurizing of milk.

	Subject Code: 17507	UMMER– 2019 Examinations <u>Model Answer</u>	Page 19 of 41
	3. For Rubber vulcani	zing.	
	4. In Tobacco manufa	cturing industry for dehydration of	tobacco.
	5. In wood industry fo	or manufacturing of ply wood.	
	6. In plastic Industry	for making different containers.	
	7. In cotton industry f	for drying & heating cotton cloths fo	r different processes.
	8. In tailoring industr	y for producing threads.	
	9. For manufacturing	process of raincoats & umbrellas.	
	10. In medical lines for	sterilization of instruments & banda	ages.
	11. For heating of bones & tissues of body required for certain treatment to reduces paints & diseases.		
	12. For removal of moisture from oil.		
	13. For quick drying gum used for book binding purpose.		
	14. In foundry for heating of sand, core, which are used in molding processes.		
c)	State one applications of (i) Se Metal arc welding	eam welding (ii) Butt welding (iii)	Carbon arc welding (iv)
Ans:	(i) Applications of Seam welding	ng:- (Any one applicati	on expected: 1 Mark)
	It gives leak	k-proof joints.	
	1. Hence used for welc	ling of various types of containers,	
	2. Pressure tank,		
	3. Tank of transformer	,	
	4. Gas line,		
	5. Air craft tank,		
	6. Condenser,		

	Subject Code: 17507	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 20 of 41
	7. Evaporator and		
	8. Refrigerator etc.		
	(ii) Application Butt Welding	: (Any one applica	tion expected: 1 Mark)
	1) For welding rod, w	vire, pipe etc	
	2) Butt welding is a read	esistance welding process for joinin	g thick metal plates or ba
	(iii) Application of Carbon are	c welding:	(1 Mark)
	1. For welding non fer	-	
	(iv) Application of Metal arc v		(1 Mark)
	1. For welding Ferro	ous Metals, Can be used for vertical	& overhead welding.
d)		ty (ii) Lumen (iii) Candle power (iv	
Ans	,	Ly min ous Flux	(1 Mark)
	Luminous intens	$sity = Illu\min ation = \frac{Lu\min ousFlux}{Area}$	
	OR $I = \frac{\phi}{w}$ (When	re $\phi = lu \min ous \ flux, w = Solid \ Angle$)
		OR Intensity in any particular direction solid angle is called the luminous in	
	(ii) Lumen:		(1 Mark)
	It is defined as the lumi	inous flux emitted by a source of on	e candle power per unit
	solid angle in all directions	OR	
	It is unit of luminous flu	ux. One lumen is defined as lumino	us flux emitted per unit
	solid angle from a point so	urce of candle power.	
	iii) Candle power:		(1 Mark)
	The candle power is	s the radiation capacity of the light s	ource in the given
	direction. The candle powe	er is always given in lumens output	per unit solid angle of the

	Subject Code: 17507	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 21 of 41
	iv) MHCP (Mean Horiz	zontal candle Power (MHCP) :	(1 Mark)
	MHCP is define	ed as the mean of the candle power of sour	rce in all directions in
	horizontal plane.		
e)	<u> </u>	e off day tariff. (any four)	
Ans:	Advantages of time off	day tariff: (Any four point expected: 1	Mark each, Total 4 Mark)
	1. Major industrial	consumers are trying to run their maximu	m load during OFF load
	period , to get rel	bate in their energy bill .	
	2. Major industrial	consumers are trying to run their industry	at reduced load during
	PEAK load perio	d to avoid additional charges charged in e	nergy bill.
	3. Due to above two	o reasons, it increases overall load factor as	s well as diversity factor of
	power system.		
	4. As load factor an	d diversity factor of power system increas	es so overall cost per unit
	reduces.		
	5. Also due to this t	here will be maximum utilization of powe	er plant & infrastructure.
	6. Due to TOD tarif	f major industrial consumers are trying to	run their maximum load
	during off load p	eriod	
	So, TOD tariff h	elps to avoid the wastage of surplus energ	y generated during OFF
	load period.		
	In this w	vay it helps to conserve energy.	
f)	Define : (i) Average sj schedule speed.	peed (ii) Schedule speed Also, state the	e four factors affecting the
Ans:	(i) Average Speed: -		(2 Marks)
	It is defined as dis known as average sp	tance covered between two stops divided oeed. OR	by actual time of run is
		$V_{av} = \frac{3600D}{T} \text{ Km/hr}$	
		Where $T = is$ actual time of run in sec C	DR

	Subject Code: 17507	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 22 of 41
	$Average Speed = \frac{Dis \tan ce}{A}$	between stops or stations ctual time of run	
	(ii) Schedule Speed: -		(1 Marks)
	It is defined as distance as schedule speed. OR	e covered between two stops divid	ed by schedule time is known
	Schedule Speed =	$= \frac{Dis \tan ce \ between \ stops \ or \ stations}{(Actual \ time \ of \ run) + (Stop \ time)}$	Km/hr
	Schedule Speed =	$\frac{Dis \tan ce \ between \ stops \ or \ stations}{Schedule \ time}$	
	The following factors affec	t the schedule speed:-	
	(Two factors affecting se	chedule speed_are expected 1/2 Ma	ark each , Total 1 Marks)
	1. By acceleration		
	2. By retardation		
	3. By both acceleration a	and retardation	
	4. By maximum speed		
	5. By stop time		
	6. By coasting period		
Q.4	Attempt any FOUR :		16 Marks
a)		ing in case of D.C. series motor a	nd D.C. shunt motor.
Ans:		mic braking of DC series Motor:	(Figure : 2 Mark)
	Under normal c	ondition Under D	Oynamic breaking condition

		SUMMER-2019 Examinations	
	Subject	Code: 17507 <u>Model Answer</u>	Page 23 of 41
	Rhe	ostaic braking or dynamic braking of DC shunt Motor:	(Figure : 2 Mark)
		F_1 F_2	Ar Az Rex Az
		Under normal condition Under Dynam	ic breaking condition
b)		four advantages of Ajax Wyatt vertical core induction furr ntages of Ajax Wyatt vertical core induction furnace:	iace.
	11474	(Any Four Points Are Expected : 1 Mar	k each Total 4 Marks)
	1)		
	1) As furnace has narrow 'V' shape crucible at bottom. So small quantity of molten me		
	remains in narrow 'V' notch from previous operation, which will help to keep		
	secondary short circuited. So no extra care is required to start the furnace		
	2) Magnetic coupling between primary & secondary winding is better because both		
	windings are on central limb of magnetic core. So there will be less leakage flux, Her		
	leakage reactance is less, so power factor is better than horizontal crucible direct core		
Ans:		type induction furnace.	
	3)	Due to pinch effect in ordinary core type induction furnace	e there are chances of
		temporary interruption in secondary circuit when current	density exceeds above
		500A/cm2 OR 5Amp/mm2	
	4)	But in this type of induction furnace there are no chances of	of interruption in secondary
		circuit even if current density exceeds 500A/cm2 OR 5Am	p/mm2 Because tendency of
		weight of charge keep them in contact due to narrow 'V' sl	hape.
	5)	So we can increase current density above 500A/cm2 OR 54	Amp/mm2 to obtain more
		heat in less time.	

S	ubject Coc		JMMER– 2019 Examinations <u>Model Answer</u>	Page 24 of 41
	6) Vertical crucible is always better than horizontal crucible for pouring and taking out			ible for pouring and taking out
	the metal. Also space required is less.			
	7) As	heat is produced direc	tly in the charge there is no l	heat transfer loss. So efficiency of
	fui	mace is more.		
	8) As	heat is directly produc	ed in the charge time requir	ed for melting metal is less. So
	en	ergy consumption is les	SS.	
	9) As	current is directly indu	aced in the charge there is au	tomatic stirring action taking
	pla	ace in the charge due to	electromagnetic forces deve	eloped in the charge due which,
		Through mixing of	molten metal is possible.	
		Uniform heating is	possible	
	10) Ac	curate temperature cor	itrol.	
	11) Ide	eal working condition is	n a cool atmosphere with no	dirt , noise and fuel.
c)	Compare	between resistance we	elding and arc welding on a	ny four points.
Ans:	(Any Fo	ur Points From The	e Following Or Equivale	ent Points Are Expected 1
	Mark To	o Each Point, Total	4 Marks)	
	Sr.No Parameters Resistance Welding Arc Welding			Arc Welding
	1	Type of welding	Plastic/Pressure/Non-	Fusion/Non pressure
			fusion welding	welding
	2	Principle of heat	Heat is developed due to	Heat developed due to arc
		developed	I ² R losses where R is the	produced in between
	contact resistance electrode and job		electrode and job	
	3	External filler	Not required during	Required during welding
		material required	welding	
	4	External pressure	Required	Not required
		required		
	5	Type of supply used	Both AC,DC supply is	Metal arc welding - Both

SUMMER– 2019 Examinations <u>Model Answer</u>

Page 25 of 41

	uc. 17507	Widder / His wei	1 uge 20 01 41
		used. But generally Ac	AC,DC supply is used. But
		Supply is used.	generally Ac Supply is used.
			And for
			Carbon arc welding -only DC
			supply are used
6	Voltage ¤t	Low voltage (2 to 20V	Metal Arc welding Voltage-
	required	AC) and high current (40	70 to 100V AC and
		to 400A, in some cases 5	Carbon arc welding voltage-
		to 20KA) supply is	50 to 60V DC,
		required	Current- 50-600-800A
7	Energy	Low (3 to 4 KWH/Kg of	High (5 to 10 KWH/Kg of
	consumption	deposited material)	deposited material.)
8	Temperature	Temperature obtained is	Temperature obtained is very
	obtained	not very high (up to	high (up to 3500°C to 6000°C)
		1350°C)	
9	Power factor	Low	Poor
10	Type of electrode	Non-consumable	Coated electrodes are used
		electrodes are used.	for metal arc welding and
			bare electrodes are used for
			carbon arc
			welding.(Electrodes may be
			consumable or non-
			consumable)
11	Application	It is suitable for mass	It is suitable for heavy job,
		production	maintenance and repair work

SUMMER– 2019 Examinations Model Answer

Page 26 of 41

	SUMMER-2019 Examinations		
	Subject Code: 17507 <u>Model Answer</u>	Page 27 of 41	
	Explanation:	(1 Marks)	
	In this system, the light does not fall directly on the surface but m	ore than 90 % of	
	light is directed upwards by using diffusing reflectors. Here the ceiling	acts as a source of	
	light and this light is uniformly distributed over the surface and glare is reduc minimum.		
	Application of Indirect lighting scheme: (Anyone	expected: 1 Marks)	
	1. It provides shadow less illumination which is useful for draw composing rooms.	wing offices and	
	2. It is also used for decoration purposes in cinema halls, hotels	s etc.	
e)	D.C. series motor is used for traction purpose. Justify your answ characteristics.	wer with any four	
Ans:	(Characteristics 1 Mark, For justification points 3 Marks, Total 4 Marks		
	Due to following characteristics and advantages, DC series motor is duty:	suitable for traction	
	1) Characteristics:	(1 Mark)	
	and the second s	m a)	
	Characteristics of DC series motor		
	Advantages/ Justification points:-		
	(Any six points are expected 1/2 Mark	each, Total 3 Marks)	
	1. DC Series motor has high starting torque.		
	2. DC Series motor has high rate of acceleration and retardation.		
	3. DC series motor has speed- Torque characteristics is such that it pr at low speeds, low torque at high speed.	oduces high torque	

	Subject Code: 17507	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 28 of 41
		is variable speed motor. Due to these characte of overload i.e. self –reliving property against o	
	5. It has high powe	er to weight ratio.	
	6. DC series motor	consumes less power than AC motors for sam	e HP
	7. DC Series motor	maintenance cost is less.	
	8. DC series motor	weight is 1.5 times less than 1-Ph AC series me	otor for same H.P.
	9. Torque is unaffe	cted by variation in supply voltage.	
	10. Torque obtained quality.	by DC series motor is smooth and uniform, so) it improves riding
	11. DC Series motor	robust in construction and capable to withstar	nd against continuous
	vibration.		
	12. When DC series	motor are running in parallel the all motors sh	are almost equal load.
f)	Sketch the various step	os required for bridge transition system.	
Ans:		(Each Step 1 M	ark, Total 4 Marks)
	In bridge transition, ser	ries last step to parallel first step, is carried out	by following steps
		Step1: Bridge link is connected between two motors as shown in figure $({ m Series}\; { m last}\; { m step})$	
		M1 M Bridge Link M M	
		Step2:Bridge link is so rotated that two motors are put in series without starting resistance. Which ar un-shorted at the same time.	e

SUMMER– 2019 Examinations <u>Model Answer</u>

Page 29 of 41

	Step 3: The portions of external resistance are connected in each motor circuit as shown in fig		
	Step 4: In this last step bridge link is removed as shown in fig. This is nothing but parallel first step.		
	M1 M1 M1 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2		
Q.5	Attempt any FOUR : 16 Marks		
a)	State the meaning of load equalization. How is it done ?		
Ans:	Meaning of load equalization:		
	(Meaning : 2 Mark, Figure: 1 Mark & explanation: 1 Mark)		
	There are many types of load which are fluctuating in nature e.g. wood cutting		
	m/c, Rolling mill. Etc. For such type of loads, load equalization is necessary to draw		
	the constant power from supply. Because,		
	When there is sudden load on motor, it will draw more current from supply at		
	start to meet additional power demand. Due to this heavy current there is large		
	voltage drop in supply system. This will affect electrical instrument, equipment, m/c,		
	other consumer etc. which are connected across same supply line.		
	Also to withstand heavy current, size of input cable increases so cost of cable		
	increases, Hence it is necessary to smooth out load fluctuations on motor.		
	The process of smoothing out load fluctuation is called load equalization.		

	Subject Code: 17507	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 31 of 41
	only two electrodes	because of its shape	
	2. Initial cost is more l	pecause rocking arrangement is compulse	ory required. (As there is
		g action taking place in charge just like b	pottom conducting direct
	arc furnace.	• , , 1, • 1• 1 \	
		ing temperature obtained is less.)	
		ed is more than direct arc furnace	
	5. Capacity of furnace	is less.	
c) Ans:	Give classification of elec	trical welding.	(Total 4 Marka)
Alls.			(Total 4 Marks)
	i) <u>Resistance Welding</u>		
	1) Spot we	0	
	2) Seam w	C C	
		on Welding	
	4) Butt We	elding- i) Simple butt welding	
		ii) Flash butt welding	
	ii) <u>Arc welding:-</u>		
	1) Carbor	n Arc Welding: a) shielded welding b) un	shielded welding
	2) Metal A	rc Welding: a) shielded welding b) unshi	ielded welding
d)		e considered while selecting electrical v	
Ans:		he Following Or Equivalent Points Are	Expected 1Mark To Each
	Point , Total 4 Marks)		
	Following Factors are con	sidered while selecting of electric weld	ing system:-
	1) <u>Type of Material</u> :-		
	Whether similar i	netal is to be welded or dis-similar metal	l is to be welded.
	2) <u>Property of Material</u> :	-	
	Whether ferrous	or non-ferrous metal is to be welded.	
	3) <u>Thickness of job:-</u>		

		019 Examinations <u>I Answer</u>	Page 32 of 41
	It is also depends on thickness of	job to be welded.	
	e.g. for thick material- Arc welding i is used.	s used. And for thin mater	rial – Resistance welding
	4) <u>Temperature required</u> :-		
	Whether job required high or low temperature to weld the job.		
	e.g. For high Temperature - Arc weld	ling is used. And for low T	^r emperature –
	Resistance welding is used.		
	5) <u>Pressure required</u> :-		
	If job is need of pressure at the time	of welding in that case rea	sistance welding is used.
	And if pressure is not required Are	z welding is used.	
	6) <u>Type of Supply Available:-</u>		
	Whether AC or DC or both supply are available.		
	7) <u>Application:-</u>		
	In case of mass production, resista welding is used.	nce welding is used & for	repair work Arc
e)	Explain with neat diagram metal halide la	imp.	
Ans:	Diagram metal halide lamp:		
	(Diagram: 2 Mark, Construction		Mark, Total 4 Mark)
	Circuit for Ballast-Ignitor-Ca BALLAST	pacitor-Lamp	
	Lamp Red Black		
	Construction is similar to mercury lamp.		quivalent figure
	 MH lamps consist of an arc tube (in 	nner) enclosed by an outer	tube.
	Vacuum is created between the inr	ner & outer glass tube to pr	revent heat loss.

SUMMER-2019 Examinations Subject Code: 17507 **Model Answer** Page 33 of 41 > The inner arc tube contains the electrodes and various metal halides, along with mercury and inert gases that make up the mix. MH lamp has three electrodes – two for maintaining the arc and a third internal starting electrode > **OR** Pulse-start MH lamps do not have a starting electrode. An igniter in the pulse start system delivers a high voltage pulse (typically 3 to 5 kilovolts) directly across the lamp's operating electrodes to start the lamp > IT require a ballast to give high voltage at staring to produce the arc The capacitor is used to improve the power factor. **Operation:** When the lamp is turned on, a high voltage at starting is applied across two electrodes, to initiate an arc which discharges and vaporizes argon gas (starting gas), mercury vapor and chemical components called "metal halides" The energized metal atoms emit light. \geq State any four causes of failure of resistance heating element. **f**) Following of the different causes of failure of resistance heating element: Ans: (Any Four causes expected: 1 Mark each, Total 4 Marks) i) Formation of hot spot: Hot spot on heating element is the point which is at higher temperature than remaining heating element portion. So there is possibility of breaking of heating element at hot spot. ii) Due to oxidization: At high temperature material gets oxidized which may cause failure of heating element. iii) Due to corrosion: If heating element is directly exposed to chemical fumes then there is possibility of rusting of heating element which causes failure of heating element. iv) Mechanical Failure: Measure heating element alloy contain iron which is brittle. Due to frequent heating & cooling of heating element, it may break (fail) due to small mechanical injury also.

		MMER– 2019 Examinations <u>Model Answer</u>	Page 34 of 41
Q.6	Attempt any FOUR :		16 Marks
a)	Derive expression of most econo	mical P.F.	
Ans:	Derivation:		(4 Mark)
	O	$ \begin{array}{c} P & kW \\ (\Phi_1)) \phi_2 \\ (\Phi_1) \phi_2 \\ (\Phi_2) & S^2 \\$	c Qc I IAR, Q1
	Let,		
	P = Active power KW		
	S ₁ , S ₂ = KVA Maximum de	mand before and after imp	roving power factor
	Q_1, Q_2 = Lagging reactive p	oower before & after impro	ving power factor
	$Q_{\rm C}$ = Leading Reactive pow	ver drawn by Capacitor	
	$\cos\phi_1$ = Initial Power facto	r	
	$\cos\phi_2$ = Improved Power	actor	
	Rs $X = Tariff$ charges towa	rds M.D. (KVA) / year	
	Rs Y = Expenditure toward P.F. improving appa	-	per year (Expenditure towards
	1) Before improving Power factor	:	
		$Q_1 = P \tan \phi_1$	
		$\cos \phi_1 = \frac{P}{S_1}$	
		$\mathbf{S}_1 = \frac{\mathbf{P}}{\mathbf{Cos} \ \boldsymbol{\phi}_1}$	
		$\therefore \text{KVA}_1 (S_1) = P \sec \phi_1$	

Subject Code: 17507	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 35 of 41
2) After improving Power	factor:	
	$Q_2 = P \tan \phi_2$	
	$\cos \phi_2 = \frac{P}{S_2}$	
	$S_2 = \frac{P}{\cos \phi_2}$	
	$\therefore \text{KVA}_2 (\text{S}_2) = \text{P} \sec \phi_2$	
3) Saving in KVA charges:		
	$= \operatorname{Rs} X (S_1 - S_2)$	
	= Rs X (P sec ϕ_1 – P sec ϕ_2)	
	= Rs X .P ($\sec \phi_1 - \sec \phi_2$)	
4) Expenditure towards KV	Ar to be neutralized:	
$= \text{Rs Y} (Q_1 - Q_2)$		
= Rs Y (P $\tan \phi_1$	$-P \tan \phi_2$)	
$= \operatorname{Rs} \operatorname{YxP}(\operatorname{tan})$	$\phi_1 - \tan \phi_2$)	
5) Net Saving:		
= Saving in KV	A charges - Expenditure towards KVA	Ar to be neutralized.
= [Rs X .P (see	$(\mathbf{e} \phi_1 - \sec \phi_2)$] - [Rs Y (P tan $\phi_1 - P$ tan	(\$\phi_2)]
Saving will be maxi equate to zero.	mum when differentiate above equati	on with respect to ϕ_2 and
$\frac{\mathrm{ds}}{\mathrm{d}\phi_2} = \frac{\mathrm{d}}{\mathrm{d}\phi_2}$	$-\left[\operatorname{Rs} X P\left(\operatorname{sec}\phi_{1} - \operatorname{sec}\phi_{2}\right)\right] - \left[\operatorname{Rs} Y P\left(\operatorname{tan}\right)\right]$	$\phi_1 - \tan \phi_2 $

	Subject Code: 1750	SUMMER– 2019 Examinations 07 <u>Model Answer</u>	Page 36 of 41
		$= 0 - X P \sec \phi_2 \times \tan \phi_2 - 0 + Y P \sec^2 \phi_2$	
		$0 = -\operatorname{Rs} X \operatorname{P} \sec \phi_2. \tan \phi_2 - 0 + \operatorname{Rs} Y \operatorname{P} \sec^2 \phi_2$	
		Rs X P sec ϕ_2 . tan ϕ_2 = Rs Y P sec ² ϕ_2	
		$\therefore \operatorname{Rs} X \ \tan \phi_2 = \operatorname{Rs} Y \ \sec \phi_2$	
		$\therefore \operatorname{Rs} X \ \frac{\sin \phi_2}{\cos \phi_2} = \operatorname{Rs} Y \ \frac{1}{\cos \phi_2}$	
		$\therefore \operatorname{Rs} X \ \sin \phi_2 = \operatorname{Rs} Y \ \therefore \ \sin \phi_2 = \ \operatorname{Rs} \frac{Y}{X}$	
	6)	$\therefore \sin^2 \phi_2 + \cos^2 \phi_2 = 1$	
		$\cos^2\phi_2 = 1 - \sin^2\phi_2$	
		Most economical power factor = $Cos \phi_2 = \sqrt{1 - (Y/Y)}$	$\overline{x})^2$
		nomical power factor at which maximum saving will o	occurs
b)	Draw neat sketches of series parallel control of traction motors.		
Ans:	Ans: Series steps of traction motor:		
		tion motors M1 and M2 are connected in series and states in series.	arted with all starting
		Series Steps	
	step1	M1	M2
	+	Vdc	S2 M2
	finally tv • In series	ing resistances are cut out one by one gradually from a vo motors are in series without any resistance. connection the supply voltage V is divided in two mo //2) volts). So speed is also half. (N/2)	

Voltage across each motor is Vdc and speed is N RPM

SUMMER– 2019 Examinations <u>Model Answer</u>

Page 38 of 41

c)	State types of mechanical power transmission system.	
Ans:	Following types of mechanical power transmission system:-(4 Marks)	
	i) <u>Direct Transmission Drive</u> : -	
	There are two types of direct transmission drive,	
	1) Fixed (rigid) Coupling.	
	2) Flexible Coupling.	
	ii) Indirect Transmission drive:-	
 <u>Belt Drive</u>:- The leather belt is most economical drive .It is used up and slip is 4% <u>Rope Drive</u>: - This type of drive is used when power to be transmi beyond the scope of belt drive. Slip is very small 		
	4. <u>Gear Drive</u> : - With the help of this drive speed reduction is obtained. (Spee increase is also obtained.)	
	5. <u>Vertical Drive</u>: - In this type of drive motor is arranged vertically.	
d)	State the different methods of temperature control of resistance furnace/oven.	
Ans:	Following Methods of temperature control of resistance furnace/oven.: (4 Marks)	
	A) By varying voltage across heating element:	
	1. With the help of autotransformer.	
	2. With the help of tap-changing transformer.	
	 With the help of tap-changing transformer. By use of series impedance or reactance. 	
	3. By use of series impedance or reactance.	

	Subject Code: 17507	SUMMER– 2019 Examinations <u>Model Answer</u>	Page 39 of 41
	B) <u>By varying the val</u>	ue of resistance of heating element:	
	1. By varying	g number of heating element.	
	2. By varying	g value of resistance by different configuration	n in circuit
	C) By use of thermosta	at:	
e)		um demand of 250 kW with a load factor of (ariff 70/kW of M.D./year + 4 paise/kWh (ii) A iff is economical ?	
Ans:	No. of Units con	nsume in One Year	
	= Load	<i>Factor</i> × <i>M</i> . <i>D</i> (<i>KW</i>) × 8760	(1/2 Mark)
	$= 0.6 \times 2$	50×8760	
	=13140	00 Kwh	(1/2 Mark)
	Case-I: Energy	Bill :-	
	= (Tariff	given Rs. 70 of M.D. / year + Rs. 4 paise / Kwh)	(1/2 Mark)
	=((250 :	$(\times 70) + (1314000 \times 4/100))$	
	= (Rs. 17)	(500 + Rs.52560)	
	= 70060	Rs	(1/2 Mark)
	➤ Case-II: Energy		
		given flat rate of 10 Paise / Kwh)	(1/2 Mark)
	, , , , , , , , , , , , , , , , , , ,	$00 \times 10/100)$)	
	= 131400	Rs	(1/2 Mark)
	Remark:-		(1 Mark)
	Two part tariff w	vill be cheaper i.e. 70/kW of MD/year + 4 pai	sa/kWh because power
	consumption is	less	
		OR	
	According to en	ergy bill Case-I is economical	
	➢ For industrial co	onsumer Case-I is economical	

SUMMER-2019 Examinations Subject Code: 17507 **Model Answer** Page 40 of 41 State the two functions and types of enclosures provided to machine. f) (Function: 2 Marks & Types: 2 Marks, Total 4 Marks) Ans: Functions of enclosures as follows:-(Any Two point expected: 1 Mark each, Total : 2 Mark) 1. It protects the operator against the contact with live and moving parts. 2. It provides the protection to internal parts of motor against mechanical injury. 3. It provides the protection against entry of moisture, dirt and dust particles inside the motor. 4. It gives mechanical support. 5. It fold the machine Types of enclosures and their function: -(Any Two types expected: 2 Mark each, Total: 4 Mark) i) Open type enclosure:-It is used where motor is installed in clean atmosphere and in closed room. ii) Screen Protected enclosure:- (Guarded enclosure:) Here screen is provided for rotating parts for better protection. It is also used where motor is installed in clean atmosphere and in closed room. iii) Drip (moisture) proof enclosure:- (Weather-protected type 1 enclosure, Weatherprotected type 2 enclosure, Waterproof enclosure,) This type of enclosure is used in very damp atmospheric condition such as water pumping station motor on ship sub-merssible motors, etc. iv) Flame (Fire) proof enclosure:- (Splash-proof enclosure, Dust-ignition-proof enclosure) It is used where motors are installed in explosive atmosphere like chemical plants, mines etc. v) Totally enclosed type enclosure:-It is used where there is dusty atmosphere such as saw mill, stone crushing plant, coal handling plant, cement manufacturing plant, cotton industry etc. As it is totally enclosed it requires special cooling arrangement. vi) Pipe ventilated totally enclosed type enclosure(Totally enclosed fan-cooled enclosure, Totally enclosed pipe-ventilated enclosure, Totally enclosed water-cooled enclosure,

SUMMER- 2019 Examinations Model Answer

Page 41 of 41

Totally enclosed water-air-cooled enclosure, Totally enclosed air-air-cooled enclosure)
It is used where there is dusty atmosphere such as saw mill, stone crushing plant, coal handling plant, cement manufacturing plant, cotton industry etc.
As it is totally enclosed it requires pipe ventilation, clean and cold air is circulated through pipe forcefully for cooling of motors and hot air is taken out through pipe.

----- END------