| Subject Name: Design of Steel Structures \quad Model Answer | Subject Code: 17505 |
| :--- | :--- | :--- |

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of thecandidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and CommunicationSkills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figuredrawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and modelanswer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate'sunderstanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
Q. 1	(A)a) Ans:-	State any SIX advantages and TWO disadvantages of steel as a construction material. Advantages:- 1. Steel being a ductile material does not fail suddenly it gives visible evidence of impending failure 2. It has high ratio of strength to weight making it to use for the construction of long span bridges, tall buildings etc. 3. Steel can be transported, fabricated and erected at site thus saves time of construction and saves expenses also. 4. Steel as construction material has good earthquake resistor capacity due to its ductility and elastic plasticity. 5. The steel structures can be disassembled and reused wherever required. It can be recycled easily. 6. Steel has high scrap value amongst all building materials. 7. Steel is a gas resistant. Disadvantages :- 1.Steel structures are subjected to corrosion hence requires frequent painting 2.steel structures requires fire proof treatment which increases the cost 3.steel is costly material 4. It requires skill labour for erection.	4 m 01/2 mark for each. (any six) 01/2 mark for each. (any two)

(ISO/IEC - 27001-2013 Certified)

Q 2		Attempt any TWO	16 M
Q 2	(a)	12 mm thick plates are connected using double bolted lap joint using 16mm diameter bolt of 4.6 grade at a pitch of 80 mm . Calculate strength and efficiency of joint. $d=16$ hence, $\mathrm{d}_{0}=16+2=18 \mathrm{~mm}$ 1) Shear strength of bolt $\begin{aligned} \mathrm{V}_{\mathrm{dsb}} & =\mathrm{fub}_{\mathrm{ub}} / \sqrt{ } 3 \times\left(\mathrm{n}_{\mathrm{n}} \times \mathrm{A}_{\mathrm{nb}}\right) / \gamma_{\mathrm{mb}} \\ & =400 / \sqrt{ } 3 \times(1 \times 156.82) / 1.25 \end{aligned}$ $\begin{aligned} \left(A_{\mathrm{nb}}\right. & =0.78 \times \Pi / 4 \times 16^{2} \\ & \left.=156.82 \mathrm{~mm}^{2}\right) \end{aligned}$ $\mathrm{V}_{\text {dsb }}=28.97 \times 10^{3} \mathrm{~N}$ $\mathrm{V}_{\mathrm{dsb}}=28.97 \mathrm{KN}$ 2) Bearing strength of bolt Assume e $=40 \mathrm{~mm}$ $P=80 \mathrm{~mm} \text { (given) }$ $\mathrm{V}_{\mathrm{dpb}}=2.5 \mathrm{~K}_{\mathrm{b}} \cdot \mathrm{d}_{\mathrm{t}} \cdot \mathrm{t}_{\mathrm{p}} \cdot \mathrm{F}_{\mathrm{u}} / \gamma_{\mathrm{mb}}$ K_{b} is smaller of i) $e / 3 d_{0}=40 / 3 \times 18=0.74$ ii) $p / 3 d_{0}-0.25=1.23$ iii) $f_{u b} / f_{u}=400 / 410=0.98$ iv) 1 Hence, $\mathbf{K}_{b}=\mathbf{0 . 7 4}$ Therefore, $\mathrm{V}_{\mathrm{dpb}}=(2.5 \times 0.74 \times 16 \times 12 \times 410) / 1.25$ $\begin{gathered} =116.50 \times 10^{3} \\ V_{\text {dpb }}=116.50 \mathrm{KN} \end{gathered}$ Therefore, Strength of bolt $=$ Minimum of shear strength and bearing strength. Therefore, Strength of bolt $=\mathbf{2 8 . 9 7} \mathbf{~ K N}$ As no. of bolts covered in one pitch length are two, the strength of bolted joints/pitch length= $\begin{aligned} & =2 \times \text { strength of bolt } \\ & =2 \times 28.97 \\ & =57.94 \mathrm{KN} \end{aligned}$ 3) Efficiency of Joint Efficiency = minimum actual strength of joint / Gross strength of solid plate Therefore, Gross strength of solid plate $=\left(0.9 \times f_{u} \times\right.$ cross sectional area $) / \gamma_{\mathrm{mb}}$ $\begin{aligned} & =(0.9 \times 410 \times 80 \times 12 / 1.25) \\ & =283.39 \times 10^{3} \mathrm{~N} \end{aligned}$ Therefore, Efficiency $=(57.94 / 283.39) \times 100$ $=20.44 \%$	8 m

Q 2 (b) | Draw sketches of three different modes of failure in case of members subjected to axial |
| :--- |
| tension. | ans carrying capacity if it is connected to 8 mm thick gusset plate by welding. Assume properties of ISA $90 \times 90 \times 6 \mathrm{~mm}, \mathrm{f}_{\mathrm{y}}=\mathbf{2 5 0} \mathrm{N} / \mathrm{mm}^{2}$, Area $=1047 \mathrm{~mm}^{2}, C_{x x}=C_{y y}=2.42 \mathrm{~mm}, \mathrm{r}_{\mathrm{xx}}=\mathrm{r}_{\mathrm{yy}}$ $=27.7 \mathrm{~mm}, \mathrm{r}_{\mathrm{yy}}=17.5 \mathrm{~mm}$.

KL / V	80	90	100	110	120	130
$\mathrm{f}_{\mathrm{cd}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	136	121	107	94.6	83.7	74.4

Given, ISA 90 X 90×6
$\mathrm{f}_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~A}=1047 \mathrm{~mm}^{2}$
$C_{x x}=C_{y y}=2.42 \mathrm{~mm}$
$r_{x x}=r_{y y}=27.7 \mathrm{~mm}$
$r_{y y}=17.5 \mathrm{~mm}$
$r_{\text {min }}=17.5 \mathrm{~mm}$
Therefore, $\mathrm{S} . \mathrm{R}=\mathrm{KL} / \mathrm{r}_{\text {min }}$

$$
=(0.85 \times 2400) / 17.5
$$

$S . R=116.57$

$\mathrm{S} . \mathrm{R}$	f_{cd}
110	94.6
116.57	$?$
120	83.7

$$
\begin{aligned}
f_{c d} & =94.6-(94.6-83.7) / 120-110 \\
& =87.43
\end{aligned}
$$

Therefore,
Load carrying capacity $\left(\mathrm{P}_{\mathrm{d}}\right)=\mathrm{f}_{\mathrm{cd}} \times \mathrm{A}_{\mathrm{g}}$

$$
\begin{aligned}
& =87.43 \times 1047 \\
& =91.54 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Load carrying capacity $\left(P_{d}\right)=91.54 \mathrm{KN}$

(ISO/IEC - 27001-2013 Certified)

Q 3	Attempt any four.	16	
Q.3	(a)	State the different types of limit state and describe any one of them. Ans 1. limit state of strength 2. Limit state of serviceability. 1. Limit state of strength:-the limit state of strength associated with failure under the action of probable and most unfavorable combination of factored loads on the structures using the appropriate partial safety factors which may endanger the safety of life and property. Limit state of strength includes: 1. Loss of equilibrium of the as a whole or any its parts or components. 2. Loss of stability of the structure (including the effect of sway where appropriate and overturning or any parts including support and foundation. 3. Failure by excessive deformation rupture of the structure or any part of its part or component. 4. Fracture due to fatigue. 5. Brittle fracture.	3 M

(ISO/IEC - 27001-2013 Certified)

Q. 3 (b) | Draw and labelled any four forms of built up compression members. |
| :--- |
| Ans |
| (c) $1-$ Section with flange plates |
| (a) Channels back to back |

(ISO/IEC - 27001-2013 Certified)

\begin{tabular}{|c|c|c|c|}
\hline Q 3 \& (d)
Ans \& \begin{tabular}{l}
State the necessity of column bases, also state the function of cleat angle and anchor bolt in slab base. \\
Necessity of Column Bases: \\
1. To spread load from column on large area of concrete foundation. \\
2. To sustain bearing pressure below soil, bending moment and shear force too. \\
1. CLEAT ANGLE : These are used to connet column to base plate so that it will resist all moments and forces due to transit, unloading and erection. \\
2. Anchor bolt :- it is used to connect the base plate to concrete block,so that stability ,stiffness and strength of foundation is achived.
\end{tabular} \& \begin{tabular}{l}
4 m \\
02 m \\
02 m
\end{tabular} \\
\hline Q 3 \& \begin{tabular}{l}
(e) \\
Ans
\end{tabular} \& \begin{tabular}{l}
Write step wise procedure of design of angle purlin. \\
Design of angle purlin \\
1. The gravity loads and wind loads are determined .both the loads are assumed to be normal to roof truss. \\
2. The maximum bending moment is computed by \(W_{z}(\mathrm{~L})^{2} / 10\). Where w-unfactored udl,, L-span of purlin \\
3. The modulus of section required is calculated by \(\mathrm{Z}=\mathrm{M} /(1.33 \times 0.66 \mathrm{Xfy})\). Where fy-yield stress. \\
4. A trial section of angle purlin is arrived at by assuming the depth of the angle section as \((1 / 45)\) of the span and width of the angle section as \(1 / 60\) of the span .the depth and width must be less than the specified values to ensure that the deflection are not excessive, \\
5. A suitable angle section is selected from IS-Handbook no. 1 for the calculated leg length section. The modulus of section provided should be more than modulus of section calculated in step no. 3
\end{tabular} \& 4 m \\
\hline Q 4 \& (A) \& Attempt any THREE \& 12 \\
\hline \& (a)

Ans \& \begin{tabular}{l}
Define:

i)Importance Factor

ii)Zone factor

iii)Response Reduction factor

iv)Fundamental Natural Period

i) Importance Factor: - It is a factor used to obtain the design seismic force depending on functional use of the structure. Generally it is taken as $=1.1$

ii) Zone factor: - It is factor to obtain the design spectrum depending on the perceived seismic hazards in the zone in which structure is located.

iii)Response Reduction factor:- It is the factor by which the actual base shear force should be reduced to obtain the design lateral force

iv) Fundamental Natural Period: - The fundamental natural is the first longest time period of vibration of the structure.

 \&

4 m

1 m each
\end{tabular}

\hline
\end{tabular}

(ISO/IEC - 27001-2013 Certified)

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { Q } 4 \\
\& \text { (A) }
\end{aligned}
\] \& (b) \& \begin{tabular}{l}
Calculate the strength of tle member composed of 2ISA 150X75X8 mm when they are placed back to back with their longer leg connected on the same side of the gusset plate by \(\mathbf{2 0 ~ m m}\) diameter bolt. Tacking bolt have been used.
\[
\begin{aligned}
\& \mathrm{d}=20 \mathrm{~mm} \\
\& \mathrm{do}=22 \mathrm{~mm} \\
\& \begin{aligned}
\& \mathrm{Ag}=2 \text { ISA } 150 \times 75 \times 8 \\
\& \text { Gross Area }=2 \times 1961.6 \\
\&=3923.2 \mathrm{~mm}^{2}
\end{aligned}
\end{aligned}
\] \\
i) Design strength governed by gross section yielding
\[
\begin{aligned}
\mathrm{Tdg} \& =\mathrm{Ag} \mathrm{fy} / \mathrm{Ymo} \\
\& =3923.2 \times 250 / 1.10
\end{aligned}
\] \\
ii) Design strength governed by net section rupture
\[
\text { Net area of section } A n=3923.2-2(22 \times 8)
\]
\[
=3571.2
\] \\
Rupture strength
\[
\begin{aligned}
\text { Tdn } \& =\alpha \times \text { An fu/rm1 } \\
\& =0.8 \times 3571.2 \times 410 / 1.25 \\
\text { Tdn } \& =973.08 \times 10^{3} \mathrm{~N}
\end{aligned}
\] \\
Design Tensile strength=Minimun of Tdg and Tdn \\
Design Tensile strength \(\begin{aligned} \mathrm{Td} \& =891.63 \times 10^{3} \mathrm{~N} \\ \& =891.63 \mathrm{KN}\end{aligned}\)
\[
=891.63 \mathrm{KN}
\]
\end{tabular} \& 4 m

1 M

1 M
1 M
1 M

\hline
\end{tabular}

(ISO/IEC - 27001-2013 Certified)

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Q 4 \\
(A)
\end{tabular} \& (c)

Ans \& | Draw An ISMB 450 is used as a Simply supported beam of 4 m span which carry 20 KN/M load. Check the section for shear only. |
| :--- |
| i) Load calculation:- |
| Self wt of slab=25 KN/m |
| Superimposed load $=20 \mathrm{KN} / \mathrm{m}$ |
| Total load $=45 \mathrm{KN} / \mathrm{m}$ $\begin{aligned} \text { Factored load }=1.5 \times 45 & =67.5 \mathrm{KN} / \mathrm{m} \\ \text { Factored shear force } \mathrm{Vd} & =\mathrm{WdL} / 2 \\ & =67.5 \mathrm{X} 4 / 2 \\ \mathrm{Vd} & =135 \mathrm{KN} \end{aligned}$ |
| ii) Check for shear:- $\begin{aligned} V d r & =f y \times \mathrm{tw} \times \mathrm{h} / \mathrm{rmo}_{\mathrm{mo}} \mathrm{~V} 3 \\ & =250 \times 8.6 \times 450 / 1.1 \times \mathrm{V} 3 \\ & =507.80 \mathrm{KN}>135 \mathrm{KN} \end{aligned}$ |
| (For ISMB 450 |
| $\mathrm{w}=8.6 \mathrm{~mm}$ $h=450 \mathrm{~mm}$) |
| Also $\mathrm{Vd} / \mathrm{Vdr}=135 / 507.80$ $=0.26<0.6$ |
| Hence safe | \& 4 m

1 M

1 M

1 M
1 M

\hline $$
\begin{aligned}
& \text { Q } 4 \\
& \text { (A) }
\end{aligned}
$$ \& (d)

Ans \& | Write any four selection criteria of type of roof truss. Also, define the perm pitch and slope of roof truss. |
| :--- |
| i) The type of roof truss to be provided mainly depends upon the pitch of the truss |
| ii) Span of roof truss is $6-30 \mathrm{~m}$ |
| iii) When layout of Industrial building in such that more daylight is required. |
| iv) Slope of the roof truss is most economically 35° |
| Pitch= The ratio between Rise and span of a truss |
| Slope $=$ It is the ratio of rise to half span $=\frac{\text { Rise }}{L / 2}$ | \& \[

$$
\begin{gathered}
4 \\
\\
1 \\
\text { mark } \\
\text { Each }
\end{gathered}
$$
\]

\hline
\end{tabular}

(ISO/IEC - 27001-2013 Certified)

\begin{tabular}{|c|c|c|c|}
\hline Q 4 \& (B) \& Attempt any ONE \& 6 m \\
\hline \begin{tabular}{l}
\[
\text { Q } 4
\] \\
(B)
\end{tabular} \& (a)

Ans. \& | A Hall of size $12 \times 18 \mathrm{~m}$ is provided with link type trusses at $4 \mathrm{~m} \mathrm{c} / \mathrm{c}$. Calculate panel point load in case of dead load live load from following data. |
| :--- |
| i) Unit weight of roofing $=150 \mathrm{~N} / \mathrm{m}^{2}$. |
| ii) Self-weight of purlin $=120 \mathrm{~N} / \mathrm{m}^{2}$. |
| iii) Weight of bracing $=100 \mathrm{~N} / \mathrm{m}^{2}$. |
| iv) Pitch $=1 / 5$. |
| v) No. of panels $=6$. |
| Rise $=$ span $/ 5=12 / 5=2.4 \mathrm{~m}$. |
| $\theta=\tan ^{-1}($ Rise $/ 0.5 \times$ span $)=(2.4 / 0.5 \times 12)=21.8^{0}$ |
| Dead Load: |
| a. Weight of roof covering $=150 \mathrm{~N} / \mathrm{m}^{2}$. |
| b. Self-weight of truss $=[(\operatorname{span} / 3)+5] \times 10=[(18 / 3)+5] \times 10=110 \mathrm{~N} / \mathrm{m}^{2}$. |
| c. Weight of purlin $=120 \mathrm{~N} / \mathrm{m}^{2}$. |
| d. Weight of bracing $=100 \mathrm{~N} / \mathrm{m}^{2}$. |
| Total dead load $=480 \mathrm{~N} / \mathrm{m}^{2}$. |
| Area per panel point $=(12 \times 4) / 6=8 \mathrm{~m}^{2}$. |
| Total load per panel point $=480 \times 8=3840 \mathrm{~N}$. |
| Live Load: |
| Live load $=750-[(\theta-10) \times 20]=514 \mathrm{~N} / \mathrm{m}^{2}$. |
| Live load intensity for truss $=(2 / 3) \times 514=342.66 \mathrm{~N} / \mathrm{m}^{2}$ |
| Live load per panel point $=8 \times 342.66=2741.33 \mathrm{~N}$. | \& 6 M

01 M

01 M
02 M
02 M

\hline | Q 4 |
| :--- |
| (B) | \& (b)

Ans \& | A column section HB 200 @ 373 N/m carries an axial service load of 2000 KN. Determine the area and thickness of slab base for the column. The grade of concrete is M10. Take width of flange $=200 \mathrm{~mm}$. $\begin{aligned} & P=2000 \mathrm{KN} \\ & \text { Fck= } 10 \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { Width of flange }=200 \mathrm{~mm} \end{aligned}$ $\begin{aligned} & \text { i) Area of base plate:- } \\ & \text { Pu }=\text { Factured load }=1.5 \times 2000=3000 \\ & \begin{array}{l} \mathrm{A}=\mathrm{Pu} / 0.6 \mathrm{fck} \\ =3000 \times 10^{3} / 0.6 \times 10 \\ \mathrm{~A}=500 \times 10^{5} \mathrm{~mm}^{2} \end{array} \end{aligned}$ |
| :--- |
| ii) Size of base plate:- |
| As both the dimensions of column are equal $D=200 \mathrm{~mm} \quad B=200 \mathrm{~mm}$ |
| Projection will be equal $\begin{aligned} \mathrm{Lp}=\mathrm{Bp} & =\mathrm{V} A \\ & =V 500 \times 10^{3} \\ & =707.1 \mathrm{~mm} \end{aligned}$ |
| Say 710 mm | \& 6 m

1.5 m

1.5 m

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Larger projection = smaller projection
\[
=L p-D / 2
\]
\[
=710-200 / 2
\]
\[
=255 \mathrm{~mm}=\mathrm{a}=\mathrm{b}
\] \\
Area of Base plate \(=710 \times 710\)
\[
A p=504100 \mathrm{~mm}^{2}
\] \\
iii) Ultimate pressure from below on the slab base:-
\[
\begin{aligned}
\mathrm{W} \& =\mathrm{Pu} / \mathrm{Ap} \\
\& =3000 \times 10^{3} / 504100 \\
\& =5.95 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\] \\
iv) Thickness of base plate:-
\[
\begin{aligned}
\text { Ts } \& =v 2.5 \mathrm{w}\left(\mathrm{a}^{2}-0.3 \mathrm{~b}^{2}\right) \mathrm{rmo} / \mathrm{fy} \\
\& =\mathrm{v} 2.5 \times 5.95 \times\left(255^{2}-0.3 \times 255^{2}\right) \times 1.1 / 250 \\
\& =v 2.5 \times 5.95 \times\left(255^{2}-0.3 \times 255^{2}\right) \times 1.1 / 250 \\
\& =54.58 \mathrm{~mm} \text { say } 60 \mathrm{~mm}
\end{aligned}
\] \\
Provide square base plate of \(710 \times 710 \times 60 \mathrm{~mm}\)
\end{tabular} \& \begin{tabular}{l}
\[
1.5 \mathrm{~m}
\] \\
1.5 m
\end{tabular} \\
\hline Q 5 \& \& Attempt any TWO \& 16 M \\
\hline \& (a)

Ans \& | An industrial building has trusses for 12 m span. Trusses are spaced at $3.5 \mathrm{~m} \mathrm{c} / \mathrm{c} \&$ rise of truss is $\mathbf{3} \mathbf{~ m}$. Calculate panel point load in case of live load \& wind load using following data. |
| :--- |
| i) Coefficient of internal wind pressure $=+\mathbf{- 0 . 2}$ |
| ii) Coefficient of external wind pressure $=\mathbf{- 0 . 7}$ |
| iii) Design wind pressure $=\mathbf{1 2 0 0} \mathrm{N} / \mathrm{m}^{2}$ |
| iv) No. of panels = 08 $\mathrm{L}=12 \mathrm{~m}$ |
| Spacing $=3.5 \mathrm{~m}$ |
| Rise $=3 \mathrm{~m}$ $\Theta=\text { rise } /(L / 2)=3 / 6=0.5$ $\Theta=26^{\circ} 56^{\prime}$ |
| (1) (i) live load intensity $=750-(\theta-10) \times 20$ $\begin{aligned} & =750-\left(26^{0} 56^{\prime}-10\right) \times 20 \\ & =419 \mathrm{~N} / \mathrm{m}^{2} \end{aligned}$ |
| (ii) L.L intensity for truss $=(2 / 3) \times$ L.L. intensity $\begin{aligned} & =2 / 3 \times 419 \\ & =279.33 \mathrm{~N} / \mathrm{m}^{2} \end{aligned}$ |
| Total live load on one panel $=279.33 \times 8$ | \& 8 m

$4 m$

\hline
\end{tabular}

$$
\begin{aligned}
& =2235 \mathrm{~N} \\
& 2.24 \mathrm{KN}
\end{aligned}
$$

(2) Calculation of panel point wind load

Spacing of trusses $=\mathrm{S}=3.5 \mathrm{~m}$
Design wind pressure $=1200 \mathrm{~N} / \mathrm{m}^{2}$
Coefficient of internal wind pressure $=+-0.2$
(i) Design wind pressure

$$
\begin{aligned}
\mathrm{Pd} & =(\mathrm{Pe}-\mathrm{Pi}) \\
& =(-0.7-0.2) \times 1200 \\
& =-1080 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

(ii) Angle of truss $=\theta=\tan ^{-1}(3 /(12 / 2))=26.50$
(iii) Inclined length of panel $=(12 / 8) / \cos 26.50=1.67 \mathrm{~m}$
(iv) Wind load per intermediate panel point $=-1080 \times 1.67 \times 3=-5410.8 \mathrm{~N}$
(v) Wind load per end point $=-5410.8 / 2=-2705.4 \mathrm{~N}$
(b)

Design a column section to support a service load of 1000 kN . The section consists of four equal angus. The overall dimensions of the section being $240 \times 240 \mathrm{~mm}$, the column has an effective length of $4 \mathbf{m}$. use $f_{\mathrm{y}} \mathbf{2 5 0}$ steel. Refer table:

angle	area	$\mathrm{I}_{\mathrm{xx}}(\mathrm{mm})$	$\mathrm{C}_{\mathrm{xx}}(\mathrm{mm})$
$100 \times 100 \times 10$	1903	177×10^{4}	28.4
$110 \times 110 \times 8$	1708	196×10^{4}	30
$90 \times 90 \times 8$	1379	104.2×10^{4}	25.1

Ans
$\mathrm{P}=1000 \mathrm{kN}$
$\mathrm{Pu}=1.5 \times 1000=1500 \mathrm{KN}$.
Assume fcd $=180 \mathrm{~N} / \mathrm{mm}^{2}$ (due to heavy load)
Approximate area $=\mathrm{P}_{\mathrm{u}} / \mathrm{f}_{\mathrm{cd}}=\left(1500 \times 10^{3}\right) / 180=8330 \mathrm{~mm}^{4}$
For single angle $A_{\text {approx. }}=2083 \mathrm{~mm}^{2}$
Try ISA $100 \times 100 \times 10$
Therefore, $A=1903 \mathrm{~mm}^{2}$
$\mathrm{I}_{\mathrm{xx}}=177 \times 10^{4} \mathrm{~mm}^{4}$
Ixx for 4 angles $=4\left(177 \times 10^{4}+1903 \times(100-28.4)^{2}\right)$

$$
=4.61 \times 10^{7} \mathrm{~mm}^{4}
$$

$C_{x x}=28.4 \mathrm{~mm}$
Area for four equal angle $\left(\mathrm{A}_{\mathrm{g}}\right)=4 \times 1903$

$$
=7612 \mathrm{~mm}^{2}
$$

$r_{\text {min }}=$ S.Q.R.T of $I_{\text {min }} / A_{g}=$ S.Q.R.T of $\left(4.61 \times 10^{7} / 7612\right)$
$r_{\text {min }}=77.82 \mathrm{~mm}$
$S . R=K L / R_{\text {min }}$.
$=4 \times 10^{3} / 77.82$
$S . R=51.4 \mathrm{~mm}$
(ISO/IEC - 27001-2013 Certified)

		50 183 51.4 $?$ 60 168$\begin{aligned} & \mathrm{f}_{\mathrm{cd}}=\mathrm{f}_{\mathrm{cd} 1}-\left(\mathrm{f}_{\mathrm{cd1} 1}-\mathrm{f}_{\mathrm{cd} 2} / \mathrm{SR}_{2}-\mathrm{SR} R_{1}\right) \mathrm{X}\left(\mathrm{SR}-\mathrm{SR}_{1}\right) \\ & =183-(183-168 / 60-50) \mathrm{X}(51.4-50) \\ & \mathrm{f}_{\mathrm{cd}}=180.9 \mathrm{~N} / \mathrm{mm}^{2} \\ & \begin{aligned} \text { Design strength }\left(\mathrm{P}_{\mathrm{d}}\right) & =\mathrm{f}_{\mathrm{cd}} \times \mathrm{A}_{\mathrm{g}} \\ & =180.9 \times 7612=1377010.8 \mathrm{~N} \\ & =1377.01 \mathrm{KN} \end{aligned} \end{aligned}$	
Q 5	(c) Ans	Design a tension member consisting of single unequal angle section to carry a tension load of $\mathbf{3 4 0} \mathrm{KN}$. Assume single row 20 mm bolted connection. The length of member is $\mathbf{2 . 4 m}$. Take $\mathrm{F}_{\mathrm{e}}-410 \mathrm{MPa}$. $\alpha=0.80$ $\begin{aligned} & \mathrm{d}=20 \\ & \mathrm{~d}_{0}=22 \end{aligned}$ Area required $=T / F_{Y} \times \Upsilon_{m 0}=\left(300 \times 10^{3} / 250\right) \times 1.1$ $=1320 \mathrm{~mm}^{2}$ Try ISA $125 \times 75 \times 8$ $\mathrm{A}_{\mathrm{g}}=1538 \mathrm{~mm}^{2}$ 1. Design strength governed by yielding of gross section $\begin{aligned} \mathrm{T}_{\mathrm{dg}} & =(1538 \times 250) / 1.1 \\ & =349.54 \times 10^{3} \mathrm{~N} \end{aligned}$ 2. Design strength governed by Net section rupture. $\begin{aligned} & \mathrm{T}_{\mathrm{dn}}=\alpha \mathrm{A}_{\mathrm{n}} f_{\mathrm{u}} / \Upsilon_{\mathrm{m} 1} \\ & \mathrm{~A}_{\mathrm{n}}=\mathrm{A}_{\mathrm{g} 0}+\mathrm{A}_{\mathrm{nc}} \\ & \mathrm{~A}_{\mathrm{nc}}=(125-22 / 2-8 / 2) \times 8=880 \mathrm{~mm}^{2} \\ & \mathrm{~A}_{\mathrm{g} 0}=(75-8 / 2) \times 8=568 \mathrm{~mm}^{2} \\ & \mathrm{~A}_{\mathrm{n}}=1448 \mathrm{~mm}^{2} \\ & \mathrm{~T}_{\mathrm{dn}}=(0.8 \times 1448 \times 410) / 1.25 \\ & \mathrm{~T}_{\mathrm{dn}}=379.95 \times 10^{3} \end{aligned}$ 3. Design tensile strength governed by block shear $\begin{aligned} \text { single shear strength of bolt }\left(\mathrm{V}_{\mathrm{dsb}}\right) & =\mathrm{f}_{\mathrm{ub}} / \sqrt{ } 3\left(\mathrm{n}_{\mathrm{n}} \times \mathrm{A}_{\mathrm{nb}} / \Upsilon_{\mathrm{mb}}\right) \\ & 400 / \sqrt{ }(1 \times 245 / 1.25) \\ = & 45.26 \times 10^{3} \mathrm{~N} \end{aligned}$ Therefore, No. of bold required $=340 \times 10^{3} / 45.26 \times 10^{6}=7.51$ Aprrox. 8 Nos. $\mathrm{e}=1.5 \mathrm{~d}_{0}=33 \text { approx } 40$ $P=2.5 d=50$ $T_{d b 1}=$ Avg. $f_{y} / V 3 r_{m 0}+0.9 A_{v n} . f_{u} / v 3 \gamma_{m 1}$ Avg $=(7 \times 50+40) \times 8=2832 \mathrm{~mm}^{2}$ Avn $=(7 \times 50+40-7.5 \times 22) \times 8=1800 \mathrm{~mm}^{2}$	8 m 2 m 2 m

(ISO/IEC - 27001-2013 Certified)

		$\begin{aligned} & \text { Atg }=60 \times 8=480 \mathrm{~mm}^{2} \\ & \text { Atn }=(60 \times 8-0.5 \times 22) \times 8=392 \mathrm{~mm}^{2} \\ & \mathrm{Tdb1}=(2832 \times 250 / \mathrm{V} 3 \times 1.10)+(0.9 \times 1800 \times 410 / \mathrm{V} 3 \times 1.10) \\ & \mathrm{Tdb1}=487.32 \times 10^{3} \\ & \mathrm{Tdb2}=(48 \times 250 / 1.10)+(0.9 \times 1800 \times 410 / \mathrm{V} 3 \times 1.25) \\ & \mathrm{Tdb2}=415.87 \times 10^{3} \mathrm{~N} \end{aligned}$ Therefore, Design Tensile strength of single angle is $\begin{aligned} & =\text { minimum of Tdg, } \mathrm{Tdn}, \& \mathrm{Tdb} \\ & \mathrm{Td}=359.95 \times 10^{3} \mathrm{~N} \\ & \mathrm{Td}=359.95 \mathrm{KN} \end{aligned}$	2 m

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001-2013 Certified)

Q 6		Attempt any FOUR	16 m
Q. 6	a) Ans	State any four advantage and dis advantage of welded connection over bolted connection. A) Advantage of welded connection :- 1. Since the process does not involve driving hole gross sectional area is effective, so more load carrying capacity of the member as compared to bolded connection. 2. Welded structures are lighter than bolted connection.3.repair and further new connections can be made easily than bolting. 3. Members of such shapes that afforded difficulty and bolting (like circular sections) can be more easily welded. 4. A welded structure has a better finish and appearance than the bolted structures. 5. Connecting gusset plate, angles can be minimize. 6. It is possible to weld at any point at any part of the structure. But bolting always require enough clearance. 7. It is possible to get 100% efficiency. 8. Welded connections are more water tight. B) Disadvantage of welded connection :- 1. Welding require skilled labour and supervision. 2. Internal stress in the weld are likely to set up. 3. Due to uneven heating and cooling the welded members are likely to get warped. 4. There is a greater possibility of brittle structure in welding. 5. Testing of welded joint is difficult. it needs non-destructive testing. 6. Detects like internal air pockets, incomplete penetration are difficult to detect. 7. Welded joints are over rigid. The fatigue strength is less as compared to bolted joint.	(any four)
Q 6	b) Ans	State general requirements for lacing as per IS-800. General requirements for lacing as per IS-800. a) Members comprising two main components laced and tied, should where practicable, have a radius of gyration about the axis perpendicular to the plane of lacing not less than the radius of gyration about the axis parallel to the plane of lacing. (b)As far as practicable, the lacing system shall be uniform throughout the length of the c) Except for tie plates double laced systems and single laced systems on opposite sides of the main components shall not be combined with cross members (ties) perpendicular to the longitudinal axis of the strut, unless all forces resulting from deformation of the strut members are calculated and provided for in the design of lacing and its fastenings. d) Single laced systems, on opposite faces of the components being laced together shall preferably be in the same direction so that one is the shadow of the other, instead of being mutually opposed in direction. e) The effective slenderness ratio, (kl / r)e., of laced columns shall be taken as 1.05 times the (KI / r) o, the actual maximum slenderness ratio, in order to account for shear deformation effects. f) Width of Iacing Bars In bolted/riveted construction, the minimum width of shall be three times the nominal diameter of the end bolt rivet.	4M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001-2013 Certified)

		g) Thickness of Lacing Bars The thickness of flat lacing bars shall not be less than onefortieth of its effective length for single lacings and one-sixtieth of the effective length for double lacings. h) Rolled sections or tubes of equivalent strength may be permitted instead of flats, for lacings. i) Angle of Inclination: Lacing bars, whether in double. Or single systems, shall be inclined at an angle not less than 40° or more than 70° to the axis of the built-up member. j)Themaximumspacingoflacingbars,whetherconnectedbybolting,rivetingor welding, shall also be such that the maximum slenderness ratio of the components of the main member, between consecutive lacing connections is not greater than 50 or 0.7 times the most unfavorable slenderness ratio of the member as a whole, whichever is less, where al is the unsupported length of the individual member Between lacing points, and r, is the minimum radius of gyration of the individual member being laced together. k) Where lacing bars are not lapped to form the connection to the components of the members, they shall be so connected that there is no appreciable interruption in the triangulation of the system. I) The lacing shall be proportioned to resist a total transverse shear, Vt , at any point in the member, equal to at least 2.5 percent of the axial force in the member and shall be divided equally among all transverse lacing systems in parallel planes. m) For members carrying calculated bending stress due to eccentricity of loading, applied end moments and/or lateral loading, the lacing shall be proportioned to resist the actual shear due to bending. n) The slenderness ratio, KI / r, of the lacing bars shall not exceed 145 . In bolted/riveted construction, the effective length of lacing bars for the determination of the design strength shall be taken as the length between the inner end fastener of the bars for single lacing, and as 0.7 of this length for double lacings effectively connected at intersections. In welded construction, the effective lengths shall be taken as 0.7 times the distance between the inner ends of welds connecting the single lacing bars to the members.	
Q 6	c) Ans	State four classification of cross section of beam based on moment rotation behaviors as per IS-800-2007. A.Class 1(plastic):-cross section which can develop plastic hinges and have the rotation capacity required for failure of the structure by formation of the plastic mechanism. B.Class 2 (Compact):cross section which can plastic moment of resistance but have inadequate plastic hinge rotation capacity for formation of plastic mechanism, due to local buckling. C. Class 3 (Semi-Compact): cross section in which the extreme fibre in compression can reach yield stress but cannot develop the plastic moment of resistance due to local buckling. D. Class 4 (Slender):- cross section in which the elements buckle locally even before reaching yield stress.	4 m 1 M (each)

(ISO/IEC - 27001-2013 Certified)

\begin{tabular}{|c|c|c|c|}
\hline Q 6 \& d)

Ans \& | $\overline{\text { Define gusseted base. Also draw its neat labelled sketch showing details. }}$ |
| :--- |
| Gusseted Base:-for columns carrying heavy loads gusseted bases are used.In gusseted base, the column is connected to base plate through gussets. The load is transferred to the base partly through bearing and partly through gussets. | \& 4 m

1 M

3 M

\hline Q 6 \& e) \& State any eight types of trusses. \& 4M

\hline \& Ans \& 1.king post 2. Queen post 3.howe truss 4. Pratt truss 5. Fink or French truss 6.fan truss 7.fink fan truss 8.compound fan truss. 9. North light roof truss. \& Any eight

\hline
\end{tabular}

