Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \hline \text { Q. } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \mathrm{Q} . \\ & \mathrm{N} . \end{aligned}$	Answers							Marking Scheme
1	a	Attempt any THREE:							12- Total Marks
Ans:		Draw the format of TCON and state the function of each bit in it.							4M
		TCON: TIMER/COUNTER CONTROL REGISTER. BIT ADDRESSABLE.							Format-2 marks Function2marks
		TF1 ${ }^{\text {T }}$ TR1	TF0	TRO	\|E1	IT1	IE0	170	
		Bit Symbol 7 TF1	Timer 1 Overflow flag. Set when timer rolls from all 1's to 0. Cleared when processor vectors to execute interrupt service routine located at program address 001Bh.						
		$6 \quad \text { TR1 }$	Timer 1 run control bit. Set to 1 by program to enable timer to count; cleared to 0 by program to halt timer.						
		5 TF0	Timer 0 Overflow flag. Set when timer rolls from all 1's to 0. Cleared 						

	4 TR0 3 IE1 2 IT1 1 IE0 0 IT0	program address 000Bh. Timer 0 run control bit. Set to 1 by program to enable timer to count; cleared to 0 by program to halt timer. External interrupt 1 Edge flag. Set to 1 when a high-to-low edge signal is received on port 3.3 (INT1). Cleared when processor vectors to interrupt service routine at program address 0013h. Not related to timer operations. External interrupt 1 signal type control bit. Set to 1 by program to enable external interrupt 1 to be triggered by a falling edge signal. Set to 0 by program to enable a low-level signal on external interrupt 1 to generate an interrupt. External interrupt 0 Edge flag. Set to 1 when a high-to-low edge signal is received on port 3.2 (INT0). Cleared when processor vectors to interrupt service routine at program address 0003 h . Not related to timer operations. External interrupt 0 signal type control bit. Set to 1 by program to enable external interrupt 1 to be triggered by a falling edge signal. Set to 0 by program to enable a low-level signal on external interrupt 0 to generate an interrupt.	
ii	Compare be	en RISC and CISC machines (any four points).	4M
Ans			Any 4 points - 1mark each

	$\begin{aligned} & \mathrm{A}_{7}=\mathrm{C} \\ & \mathrm{C}=\mathrm{A}_{0} \end{aligned}$ Bytes: 1 b)DIV AB The DIV instruction divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register B. After the division, the quotient is stored in the accumulator and the remainder is stored in the B register. The carry and OV flags are cleared. $A B=A / B$ Bytes:1 c)JNB P1.3, DOWN The JNB instruction branches to the specified address (DOWN) if the bit P1.3 has a value of 0 . Otherwise, execution continues with the next instruction. No flags are affected by this instruction. JNB $\begin{aligned} & \mathrm{PC}=\mathrm{PC}+3 \\ & \mathrm{IF}(\text { bit })=0 \\ & \mathrm{PC}=\mathrm{PC}+\text { offset } \end{aligned}$ Bytes:3	
ii	Draw the architecture of 8051 microcontroller.	6M
Ans		Correct labelled diagram-4 marks

SUMMER- 18 EXAMINATION

Subject Name: Microprocessor \& Applications Model Answer

$\begin{array}{\|l} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
2		Attempt any TWO:	16- Total Marks
	a	Write assembly language program to find largest number from the array of ten numbers stored in external memory RAM. Assume suitable data.	8M
	Ans:	Assumptions: Array of ten numbers are stored from memory location 3000 H onwards and result is stored in memory location 6000 H	Correct program-8 marks
	b	Draw interface diagram of ADC 0809 with 8051. Write 'C' language program to generate	8M

Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any FOUR:	16- Total Marks
	a	i) Convert (1011101) \mathbf{I}_{2} to ($)_{10 .}$ ii) Subtract $(1001)_{2}$ from $(1100)_{2}$ by using 2 's complement method.	4M
	Ans	Q3a). (i) Convert $(1011101)_{2}$ to ()$_{10}$ $\begin{aligned} &(1011101)_{2} \\ &=\left(1 \times 2^{6}\right)+\left(0 \times 2^{5}\right)+\left(1 \times 2^{4}\right)+\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right) \\ &+\left(1 \times 2^{0}\right) \\ &=64+0+16+8+4+0+1 \\ &=(93)_{10} \end{aligned}$	2M EACH

(ISO/IEC - 27001-2013 Certified)
SUMMER- 18 EXAMINATION
Subject Name: Microprocessor \& Applications Model Answer
Subject Code:
17509

	Pin P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7	Name RXD TXD INT0 INT1 T0 T1 WR RD	Alternate Function Serial input line(Receive) Serial output line(Transmit) External interrupt 0 External interrupt 1 Timer 0 external input Timer 1 external input External data memory write strobe External data memory read strobe	
ii	Compare	EEPROM	oints).	4M
Ans				1M each

(ISO/IEC - 27001-2013 Certified)

(ISO/IEC - 27001-2013 Certified)

SUMMER- 18 EXAMINATION

Subject Name: Microprocessor \& Applications Model Answer

		MOV P1,A //LOWER BYTE OF COUNT IN P1 MOV A,THO //HIGHER BYTE OF COUNT IN P2 MOV P2,A SJMP \$	
	ii	Draw the diagram to interface external RAM and ROM with 8051 microcontroller and explain the function of ALE and PSEN pins of 8051.	6M
	Ans	PSEN pin stands for Program Store Enable. It is used to read a signal from the external program memory. ALE/PROG: Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during EPROM programming.	4M (drawing) 1 M each (function)
$\begin{array}{l\|l} \text { Q. } \end{array}$	Sub Q. N .	Answers	Marking Scheme
5		Attempt any TWO:	16- Total Marks
	a	Describe the addressing modes of 8051 with suitable example.	8M
	Ans :	There are a number of addressing modes available to the 8051 instruction set, as follows:	Any four, 2 marks

1. Immediate Addressing mode
2. Register Addressing mode
3. Direct Addressing mode
4 Register Indirect addressing mode
4. Relative Addressing mode
5. Absolute addressing mode
6. Long Addressing mode
7. Indexed Addressing mode
1) Immediate Addressing mode: Immediate addressing simply means that the operand (which immediately follows the Instruction op. code) is the data value to be used.

For example the instruction: MOV A, \#25H ; Load 25 H into A Moves the value 25 H into the accumulator. The \# symbol tells the assembler that the immediate addressing mode is to be used.

2) Register Addressing Mode: One of the eight general-registers, RO to R7, can be specified as the instruction Operand. The assembly language documentation refers to a register generically as Rn .

An example instruction using register addressing is: ADD A, R5 ; Add the contents of register R5 to contents of A (accumulator) Here the contents of R5 are added to the accumulator. One advantage of register addressing is that the instructions tend to be short, single byte instructions.
3) Direct Addressing Mode: Direct addressing means that the data value is obtained directly from the memory location specified in the operand.

For example consider the instruction: MOV RO, 40H; Save contents of RAM location 40H in RO. The instruction reads the data from Internal RAM address 40H and stores this in theRO. Direct addressing can be used to access Internal RAM, including the SFR registers.
4) Register Indirect Addressing Mode: Indirect addressing provides a powerful addressing capability, which needs to be appreciated.

An example instruction, which uses indirect addressing, is as follows: MOV A, @RO; move contents of RAM location whose address is held by RO into A Note the @ symbol indicated that the indirect addressing mode is used. If the data is inside the CPU, only registers RO \& R1 are used for this purpose.
5) Relative Addressing Mode: This is a special addressing mode used with certain jump
each (1
mark for explanatio n and 1 mark for example)

		instructions. The relative address, often referred to as an offset, is an 8-bit signed number, which is automatically added to the PC to make the address of the next instruction. The 8-bitsigned offset value gives an address range of +127 to -128 locations. Consider the following example: SJMP LABEL_X An advantage of relative addressing is that the program code is easy to relocate in memory in that the addressing is relative to the position in memory. 6) Absolute addressing Mode: Absolute addressing within the 8051 is used only by the AJMP (Absolute Jump) and ACALL (Absolute Call) instructions. 7) Long Addressing Mode: The long addressing mode within the 8051 is used with the instructions LMP and LCALL. The address specifies a full 16 bit destination address so that a jump or a call can be made to a location within a 64 KByte code memory space (216 $=64 \mathrm{~K})$. An example instruction is: LJMP 5000h; full 16 bit address is specified in operand 8) Indexed Addressing Mode: With indexed addressing a separate register, either the program counter, PC, or the data pointer DTPR, is used as a base address and the accumulator is used as an offset address. The effective address is formed by adding the value from the base address to the value from the offset address. Indexed addressing in the 8051 is used with the JMP or MOVC instructions. Look up tables are easy to implement with the help of index addressing. Consider the example instruction: MOVC A, @A+DPTR MOVC is a move instruction, which moves data from the external code memory space. The address operand in this example is formed by adding the content of the DPTR register to the accumulator value. Here the DPTR value is referred to as the base address and the accumulator value us referred to as the index address.	
	b	Write 'C' language program to transfer the message "AICTE" serially at baud rate 9600. Assume crystal frequency 11.0592 MHz .	8M
	Ans	Normally Serial communication MODE 1 is used (8 bit UART with variable baud rate). For setting baud rate, TIMER 1 to be programmed in Mode 2 - Auto reload mode. Following formula is used for calculation of Count to be given to Timer 1 register, TH1 to set standard baud rate. $f_{\text {baud }}=\frac{2^{\text {smod }}}{32} X \frac{f_{\text {osc }}}{12 X(256-T H 1)}$	Calculatio n of count $-1 \mathrm{M}$ Program :- 7M

\{
P1 = 0xFF; //DISPLAY OFF
while(1)
\{
P1 = 0x3F; //DISPLAY 0
delay_ms(1000);
P1 = 0x06; //DISPLAY 1
delay_ms(1000);
P1 = 0x5B; //DISPLAY 2
delay_ms(1000);
P1 = 0x4F; //DISPLAY 3
delay_ms(1000);
P1 = 0x66; //DISPLAY 4
delay_ms(1000);
P1 = 0x6D; //DISPLAY 5
delay_ms(1000);
P1 = 0x7D; //DISPLAY 6
delay_ms(1000);
P1 = 0x07; //DISPLAY 7
delay_ms(1000);
P1 = 0x7F; //DISPLAY 8
delay_ms(1000);
P1 = 0x6F; //DISPLAY 9
delay_ms(1000);
\}

SUMMER- 18 EXAMINATION

Subject Name: Microprocessor \& Applications Model Answer
Subject Code:
17509

	number that comes after ORG is the address from where program will begin. The number can be either in hex and decimal e.g. ORG 1000 H It indicates that program shall start from memory address 1000h 2. DB: Define Byte It is used to define the 8-bit data. It is used to write the value after DB , into the program memory. When DB is used to define data, the numbers can be in decimal, binary, hex, ASCII formats e.g. ORG 1000 H MYDATA: DB 20,21 After execution of this , location $1000 \mathrm{~h}=20 \& 1001 \mathrm{~h}=21$ 3. EQU: EQUATE It is used to define a constant without occupying a memory location The EQU directive assigns a constant value to a label. When the label appears in the program, its constant value will be substituted for the label. e.g. COUNT EQU 10 MOV R2, \#COUNT When the instruction is executed, register R2 is loaded with value 10. 4. END: This indicates to the assembler the end of the source (asm) file. The END directive is the last line of an 8051 program. Means that in the program anything after the END directive is ignored by the assembler e.g. MOV A , \#20 ADD A, \#10 END			
c	Write	the functio	connector of LCD module.	4M
Ans :	Pin	Pin Name:	Description	4 marks

