
[^0]1. A) Attemptany three:
a) State the functions of :
i) Transmission tower
ii) Steel water tank
iii) Roof truss
iv) Steel chimney.
b) List different types of loads coming on steel structures and explain any one.
c) List any four common standard types of steel sections used with their applications.
d) Define and explain shear lag effect.
B) Attempt any one :
a) Design a suitable fillet weld to connect plate $60 \mathrm{~mm} \times 10 \mathrm{~mm}$ to $150 \mathrm{~mm} \times 12 \mathrm{~mm}$ thick plate. Design the joint for full strength of the plate and assume welding on all three sides. Take $\mathrm{f}_{\mathrm{y}}=250 \mathrm{MPa}$, and $\mathrm{f}_{\mathrm{u}}=410 \mathrm{MPa}$.
b) The double angle $60 \times 60 \times 8 \mathrm{~mm}$ tension member is connected to the both sides of 10 mm gusset plate with 2 blots in a line with 18 mm diameter bolt at a pitch of 50 mm and gauge of 35 mm . Determine the block shear strength of given tension member. Take $\mathrm{f}_{\mathrm{y}}=250 \mathrm{MPa}$, and $\mathrm{f}_{\mathrm{u}}=410 \mathrm{MPa}$.
2. Attempt any two :
a) Design suitable bolted connection for a single angle strut made up of ISA $100 \times 100 \times 10 \mathrm{~mm}$ using 12 mm gusset plate for a factored compressive load of 175 kN . Assume 20 mm bolts of grade 4.6. Draw connection details.
b) A discontinuous strut 3.2 m long of a roof truss consists of a double angle section $90 \times 90 \times 8 \mathrm{~mm}$ connected to 10 mm thick gusset plate by welding. Calculate load carrying capacity.
Assume - Properties of ISA $90 \times 90 \times 8 \mathrm{~mm} ; \mathrm{f}_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2}$ Area $=1380 \mathrm{~mm}^{2}$, $C_{x x}=C_{y y}=25.1 \mathrm{~mm} \mathrm{r}_{x x}=r_{y y}=27.5 \mathrm{~mm} \mathrm{r}_{\mathrm{vv}}=17.5 \mathrm{~mm} \mathrm{I}_{\mathrm{xx}}=\mathrm{I}_{\mathrm{yy}}=104 \times 10^{4} \mathrm{~mm}^{4}$

$\mathrm{KL} / \mathrm{r}:$	80	90	100	110	120	130
$\mathrm{fcd}\left(\mathrm{N} / \mathrm{mm}^{2}\right):$	136	121	107	94.6	83.7	74.4

c) A simply supported beam has span 5 m and it carries a load of 35 kN at its centre. Check whether ISLB 600 is suitable for i) shear and ii) deflection. The section properties of ISLB 600 are $\mathrm{b}_{\mathrm{f}}=210 \mathrm{~mm}, \mathrm{t}_{\mathrm{f}}=15.5 \mathrm{~mm}, \mathrm{tw}=10.5 \mathrm{~mm}, \mathrm{R}_{1}=20 \mathrm{~mm}, \mathrm{Z}_{\mathrm{xx}}=2430 \times 10^{3} \mathrm{~mm}^{3}$, $\mathrm{Z}_{\mathrm{p}}=2798.56 \times 10^{3} \mathrm{~mm}^{3}, \mathrm{I}_{\mathrm{xx}}=728 \times 10^{6} \mathrm{~mm}^{4}$ (Ignore self weight of beam).
3. Attempt any four :
$(4 \times 4=16)$
a) Define:
i) Pitch
ii) Gauge distance
iii) Edge distance
iv) End distance in bolted connections.
b) Enlist with sketch types of joints.
c) Define:
i) Roof truss
ii) Purlin
iii) Pitch of truss
iv) Ridge.
d) Purlin is subjected to bi-axial bending : Illustrate with diagram.
e) Explain the different selection criteria for type of truss.
4. A) Attemptany three:
($3 \times 4=12$)
a) Draw four built up section forms of compression members.
b) State the functions of lacing and battening systems and general requirements for lacing as per IS 800.
c) State with reason whether ISA $90 \times 90 \times 8$ is of semi-compact class or not.

Take $\mathrm{f}_{\mathrm{y}}=250 \mathrm{MPa}$.
d) Calculate effective length of a 7 m long column for the standard cases of end conditions
i) both ends are fixed
ii) one end is fixed and other is hinged.
B) Attempt any one :
a) Explain with sketches three modes of failure in axial tension member.
b) Design a suitable angle section as a tie member in a truss to carry factored load of 350 kN . Use double angle section connected back to back on both sides of 10 mm thick gusset plate by means of 4 bolts of 20 mm dia. in one line.
Given $\alpha=0.8, \mathrm{f}_{\mathrm{y}}=250 \mathrm{MPa}, \mathrm{f}_{\mathrm{u}}=410 \mathrm{MPa}$.

Available sections	GrossArea $\left(\mathbf{m m}^{2}\right)$
ISA $80 \times 50 \times 8$	978
ISA $100 \times 75 \times 6$	1014
ISA $125 \times 75 \times 6$	1166

5. Attemptany two :
a) An industrial building of size $16 \mathrm{~m} \times 25 \mathrm{~m}$ is provided with Fink type trusses at $6 \mathrm{mc} / \mathrm{c}$. Calculate panel point load in case of Dead load and Live load from following data:
i) Unit weight of roofing material $=160 \mathrm{~N} / \mathrm{m}^{2}$
ii) Self weight of purlin $=115 \mathrm{~N} / \mathrm{m}^{2}$
iii) Weight of bracing $=50 \mathrm{~N} / \mathrm{m}^{2}$
iv) Rise to span ratio $=1 / 5$
v) No. of panels $=8$.
b) A hall has Howe trusse of 6 panels for 15 m span, are spaced at $4.2 \mathrm{~m} \mathrm{c} / \mathrm{c}$ and rise of truss is 3 m . Calculate panel point load in case of Live load and Wind load.
Given Data: $\mathrm{V}_{\mathrm{b}}=39 \mathrm{~m} / \mathrm{s}$; probability factor $\mathrm{K}_{1}=1$, terrain factor $\mathrm{K}_{2}=0.9$, topography factor $\mathrm{K}_{3}=1$; Coefficient of external wind pressure $=-0.7$ and normal permeability. ($\mathrm{Cpi}= \pm 0.2$).
c) Design a suitable slab base for an ISHB 450 to transfer a factored load of 1300 kN to foundation stratum having bearing capacity $400 \mathrm{kN} / \mathrm{m}^{2}$. Assume concrete of grade M20. Draw the details.

For ISHB $450: \mathrm{b}_{\mathrm{f}}=250 \mathrm{~mm}, \mathrm{t}_{\mathrm{f}}=13.7 \mathrm{~mm} \mathrm{f}_{\mathrm{y}}=250 \mathrm{MPa}, \mathrm{f}_{\mathrm{u}}=410 \mathrm{MPa}$.
6. Attempt any four :
a) Why laterally supported beam always preferred ? Explain any two methods to support beam laterally.
b) Explain with sketch :
i) Web buckling
ii) Web crippling.
c) Draw neat labelled sketch of bolted plate girder showing details.
d) Differentiate between gusseted base and slab base.
e) State components of a slab base with their functions.

IS : 800-2007 Equations (Formula Sheet)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{nsb}}=\left(\frac{\mathrm{f}_{\mathrm{u}}}{\sqrt{3}}\right)\left(\mathrm{n}_{\mathrm{n}} \mathrm{~A}_{\mathrm{nb}}+\mathrm{n}_{\mathrm{s}} \mathrm{~A}_{\mathrm{sb}}\right), \quad \mathrm{V}_{\mathrm{dsb}}=\frac{\mathrm{V}_{\mathrm{nsb}}}{\gamma_{\mathrm{mb}}}, \quad \mathrm{~V}_{\mathrm{dpb}}=\frac{\mathrm{V}_{\mathrm{npb}}}{\gamma_{\mathrm{mb}}}, \\
& \mathrm{~T}_{\mathrm{dg}}=\frac{\mathrm{A}_{\mathrm{g}} \mathrm{f}_{\mathrm{y}}}{\gamma_{\mathrm{m} 0}}, \\
& \mathrm{~V}_{\mathrm{npb}}=2.5 \mathrm{k}_{\mathrm{b}} \mathrm{dt} \mathrm{f}_{\mathrm{u}} \\
& \mathrm{~T}_{\mathrm{dn}}=\frac{0.9 \mathrm{~A}_{\mathrm{nc}} \mathrm{f}_{\mathrm{u}}}{\gamma_{\mathrm{ml}}}+\beta \frac{\mathrm{A}_{\mathrm{go}} \mathrm{f}_{\mathrm{y}}}{\gamma_{\mathrm{m} 0}} \text { where } \beta=1.4-0.076(\mathrm{w} / \mathrm{t})\left(\mathrm{f}_{\mathrm{y}} / \mathrm{f}_{\mathrm{u}}\right)(\mathrm{bs} / \mathrm{Lc}) \leq\left(\mathrm{f}_{\mathrm{u}} \gamma_{\mathrm{m} 0} / \mathrm{f}_{\mathrm{y}} \gamma_{\mathrm{m} 1}\right) \\
& \mathrm{T}_{\mathrm{dn}}=\frac{\alpha \mathrm{A}_{\mathrm{n}} \mathrm{f}_{\mathrm{u}}}{\gamma_{\mathrm{ml}}}, \quad \mathrm{~T}_{\mathrm{db1}}=\frac{\mathrm{A}_{\mathrm{vg}} \mathrm{f}_{\mathrm{y}}}{\sqrt{3} \gamma_{\mathrm{m} 0}}+\frac{0.9 \mathrm{~A}_{\mathrm{tn}} \mathrm{f}_{\mathrm{u}}}{\gamma_{\mathrm{m} 1}}, \quad \mathrm{~T}_{\mathrm{db} 2}=\frac{0.9 \mathrm{~A}_{\mathrm{vn}} \mathrm{f}_{\mathrm{u}}}{\sqrt{3} \gamma_{\mathrm{m} 1}}+\frac{\mathrm{A}_{\mathrm{tg}} \mathrm{f}_{\mathrm{y}}}{\gamma_{\mathrm{m} 0}} \\
& \mathrm{P}_{\mathrm{d}}=\mathrm{A}_{\mathrm{e}} \mathrm{f}_{\mathrm{cd}} \text {, } \\
& \mathrm{P}_{\mathrm{Z}}=0.6 \mathrm{~V}_{\mathrm{Z}}{ }^{2} \text {, } \\
& \mathrm{V}_{\mathrm{z}}=\mathrm{V}_{\mathrm{b}} \mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3} \\
& \mathrm{f}_{\mathrm{cd}}=\chi \frac{\mathrm{f}_{\mathrm{y}}}{\gamma_{\mathrm{m} 0}}, \\
& \chi=\frac{1}{\phi+\sqrt{\phi^{2}-\lambda_{e}^{2}}} \text {, where } \phi=0.5\left[1+\alpha\left(\lambda_{e}-0.2\right)+\lambda_{e}^{2}\right] \\
& \lambda_{\mathrm{e}}=\sqrt{\mathrm{k}_{1}+\mathrm{k}_{2} \lambda_{\mathrm{vv}}^{2}+\mathrm{k}_{3} \lambda_{\varphi}^{2}}
\end{aligned}
$$

where $\lambda_{\mathrm{vv}}=\frac{\left(\frac{l}{\mathrm{r}_{\mathrm{vv}}}\right)}{\varepsilon \sqrt{\frac{\pi^{2} \mathrm{E}}{250}}}$ and $\lambda_{\varphi}=\frac{\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right) / 2 \mathrm{t}}{\varepsilon \sqrt{\frac{\pi^{2} \mathrm{E}}{250}}}$
$\mathrm{t}_{\mathrm{s}}=\sqrt{\left[2.5 \mathrm{w}\left(\mathrm{a}^{2}-0.3 b^{2}\right) \gamma \mathrm{m} 0 / \mathrm{fy}\right]}>\mathrm{t}_{\mathrm{f}}$
Values of χ and $\mathrm{fcd}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ for different values of $\mathrm{KL} / \mathrm{r}_{\text {min }}$ as per buckling curve ' c '

$\mathbf{K L} / \mathbf{r}_{\text {min }}$	10	20	30	40	50	60	70	80	90
χ	1.000	0.987	0.930	0.870	0.807	0.740	0.670	0.600	0.533
fcd	227	224	211	198	183	168	152	136	121

$\mathbf{K L} / \mathbf{r}_{\min }$	100	110	120	130	140	150	160	170	180
χ	0.471	0.416	0.368	0.327	0.291	0.261	0.234	0.212	0.192
$\mathbf{f c d}$	107	94.6	83.7	74.3	66.2	59.2	53.3	48.1	43.6

[^0]: Instructions : (1) All questions are compulsory.
 (2) Answer each next main question on a new page.
 (3) Illustrate your answers with neat sketches wherever necessary.
 (4) Figures to the right indicate full marks.
 (5) Assume suitable data, if necessary.
 (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
 (8) Formula sheet is allowed.

