17505

1718 Hours / 100 M	arks	Seat No.							
Instructions :	 (1) All qua (2) Answe (3) Illustra (4) Figure (5) Assum (6) Use of permis (7) Mobile device (8) Formula 	estions are compu r each next main ate your answers w es to the right indi ne suitable data, if f Non-programme ssible . e Phone, Pager an s are not permissi	lsory. questic with ne cate fu `necess able E able in I d	on on a at sketo all mark ary. lectron other El Examin	new chest ks. uic Pa lectro nation	page. w here ocket onic C 1 Hall.	ver ne Calci ommi	ecesso ulato unica	ary. r is tion

Marks

1. A) Attempt **any three** :

- a) State the functions of :
 - i) Transmission tower
 - ii) Steel water tank
 - iii) Roof truss
 - iv) Steel chimney.
- b) List different types of loads coming on steel structures and explain any one.
- c) List any four common standard types of steel sections used with their applications.
- d) Define and explain shear lag effect.
- B) Attempt any one :
 - a) Design a suitable fillet weld to connect plate 60 mm × 10 mm to 150 mm × 12 mm thick plate. Design the joint for full strength of the plate and assume welding on all three sides. Take $f_v = 250$ MPa, and $f_u = 410$ MPa.
 - b) The double angle $60 \times 60 \times 8$ mm tension member is connected to the both sides of 10 mm gusset plate with 2 blots in a line with 18 mm diameter bolt at a pitch of 50 mm and gauge of 35 mm. Determine the block shear strength of given tension member. Take $f_v = 250$ MPa, and $f_u = 410$ MPa.

2. Attempt any two:

a) Design suitable bolted connection for a single angle strut made up of ISA 100× 100× 10 mm using 12 mm gusset plate for a factored compressive load of 175 kN. Assume 20 mm bolts of grade 4.6. Draw connection details.

(2×8=16)

(1×6=6)

(3×4=12)

[2]

Marks

 $(4 \times 4 = 16)$

b) A discontinuous strut $3.2 \text{ m} \log \text{ of a roof truss consists of a double angle section } 90 \times 8 \text{ mm}$ connected to 10 mm thick gusset plate by welding. Calculate load carrying capacity.

Assume – Properties of ISA 90 × 90 × 8 mm; $f_y = 250 \text{ N/mm}^2 \text{ Area} = 1380 \text{ mm}^2$, $C_{xx} = C_{yy} = 25.1 \text{ mm } r_{xx} = r_{yy} = 27.5 \text{ mm } r_{vv} = 17.5 \text{ mm } I_{xx} = I_{yy} = 104 \times 10^4 \text{ mm}^4$ KL/r: 80 90 100 110 120 130 fcd (N/mm²): 136 121 107 94.6 83.7 74.4

c) A simply supported beam has span 5 m and it carries a load of 35 kN at its centre. Check whether ISLB 600 is suitable for i) shear and ii) deflection. The section properties of ISLB 600 are $b_f = 210 \text{ mm}$, $t_f = 15.5 \text{ mm}$, tw = 10.5 mm, $R_1 = 20 \text{ mm}$, $Z_{xx} = 2430 \times 10^3 \text{ mm}^3$, $Z_p = 2798.56 \times 10^3 \text{ mm}^3$, $I_{xx} = 728 \times 10^6 \text{ mm}^4$ (Ignore self weight of beam).

3. Attempt any four :

- a) Define:
 - i) Pitch
 - ii) Gauge distance
 - iii) Edge distance
 - iv) End distance in bolted connections.
- b) Enlist with sketch types of joints.
- c) Define:
 - i) Roof truss
 - ii) Purlin
 - iii) Pitch of truss
 - iv) Ridge.
- d) Purlin is subjected to bi-axial bending : Illustrate with diagram.
- e) Explain the different selection criteria for type of truss.

4. A) Attempt any three :

- a) Draw four built up section forms of compression members.
- b) State the functions of lacing and battening systems and general requirements for lacing as per IS 800.
- c) State with reason whether ISA 90 × 90 × 8 is of semi-compact class or not. Take $f_v = 250$ MPa.
- d) Calculate effective length of a 7 m long column for the standard cases of end conditions
 - i) both ends are fixed
 - ii) one end is fixed and other is hinged.

(3×4=12)

17505

Marks

B) Attempt any one :

- a) Explain with sketches three modes of failure in axial tension member.
- b) Design a suitable angle section as a tie member in a truss to carry factored load of 350 kN. Use double angle section connected back to back on both sides of 10 mm thick gusset plate by means of 4 bolts of 20 mm dia. in one line.

Given $\alpha = 0.8$, $f_v = 250$ MPa, $f_u = 410$ MPa.

Available sections	GrossArea (mm ²)				
ISA $80 \times 50 \times 8$	978				
ISA $100 \times 75 \times 6$	1014				
ISA $125 \times 75 \times 6$	1166				

5. Attempt any two:

- a) An industrial building of size 16 m × 25 m is provided with Fink type trusses at 6 m c/c. Calculate panel point load in case of Dead load and Live load from following data :
 - i) Unit weight of roofing material = 160 N/m^2
 - ii) Self weight of purlin = 115 N/m^2
 - iii) Weight of bracing = 50 N/m^2
 - iv) Rise to span ratio = 1/5
 - v) No. of panels = 8.
- b) A hall has Howe trusse of 6 panels for 15 m span, are spaced at 4.2 m c/c and rise of truss is 3 m. Calculate panel point load in case of Live load and Wind load. Given Data : $V_b = 39$ m/s; probability factor $K_1 = 1$, terrain factor $K_2 = 0.9$, topography factor $K_3 = 1$; Coefficient of external wind pressure = -0.7 and normal permeability. (Cpi = ± 0.2).
- c) Design a suitable slab base for an ISHB 450 to transfer a factored load of 1300 kN to foundation stratum having bearing capacity 400 kN/m^2 . Assume concrete of grade M20. Draw the details.

For ISHB 450 : $b_f = 250 \text{ mm}$, $t_f = 13.7 \text{ mm} f_v = 250 \text{ MPa}$, $f_u = 410 \text{ MPa}$.

6. Attempt any four :

- a) Why laterally supported beam always preferred ? Explain any two methods to support beam laterally.
- b) Explain with sketch:
 - i) Web buckling
 - ii) Web crippling.
- c) Draw neat labelled sketch of bolted plate girder showing details.
- d) Differentiate between gusseted base and slab base.
- e) State components of a slab base with their functions.

$(4 \times 4 = 16)$

(1×6=6)

(2×8=16) n c/c

IS: 800-2007 Equations (Formula Sheet)

$$\begin{split} V_{nsb} = & \left(\frac{f_{u}}{\sqrt{3}}\right) (n_{n}A_{nb} + n_{s}A_{sb}), \qquad V_{dsb} = \frac{V_{nsb}}{\gamma_{mb}}, \qquad V_{dpb} = \frac{V_{npb}}{\gamma_{mb}}, \\ T_{dg} = & \frac{A_{g}f_{y}}{\gamma_{m0}}, \qquad V_{npb} = 2.5k_{b}dtf_{u} \\ T_{dn} = & \frac{0.9A_{nc}f_{u}}{\gamma_{m1}} + \beta \frac{A_{go}f_{y}}{\gamma_{m0}} \text{ where } \beta = 1.4 - 0.076 (w/t) (f_{y}/f_{u}) (bs/Lc) \leq (f_{u}\gamma_{m0}/f_{y}\gamma_{m1}) \\ \geq 0.7 \\ T_{dn} = & \frac{\alpha A_{n}f_{u}}{\gamma_{m1}}, \qquad T_{db1} = \frac{A_{vg}f_{y}}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{in}f_{u}}{\gamma_{m1}}, \qquad T_{db2} = \frac{0.9A_{vn}f_{u}}{\sqrt{3}\gamma_{m1}} + \frac{A_{ig}f_{y}}{\gamma_{m0}} \\ P_{d} = A_{e}f_{cd}, \qquad P_{z} = 0.6 V_{z}^{2}, \qquad V_{z} = V_{b}k_{1}k_{2}k_{3} \\ f_{cd} = \chi \frac{f_{y}}{\gamma_{m0}}, \qquad \chi = \frac{1}{\phi + \sqrt{\phi^{2} - \lambda_{e}^{2}}}, \text{ where } \phi = 0.5[1 + \alpha (\lambda_{e} - 0.2) + \lambda_{e}^{2}] \\ \lambda_{e} = \sqrt{k_{1} + k_{2}\lambda_{vv}^{2} + k_{3}\lambda_{\phi}^{2}} \end{split}$$

where
$$\lambda_{vv} = \frac{\left(\frac{l}{\mathbf{r}_{vv}}\right)}{\epsilon \sqrt{\frac{\pi^2 E}{250}}}$$
 and $\lambda_{\phi} = \frac{(\mathbf{b}_1 + \mathbf{b}_2) / 2t}{\epsilon \sqrt{\frac{\pi^2 E}{250}}}$

$$t_{s} = \sqrt{\left[2.5w(a^{2} - 0.3b^{2})\gamma m_{0}/fy\right]} > t_{f}$$

Values of $\chi\,$ and fcd (N/mm^2) for different values of KL/r_min as per buckling curve 'c'

KL/r _{min}	10	20	30	40	50	60	70	80	90		
χ	1.000	0.987	0.930	0.870	0.807	0.740	0.670	0.600	0.533		
fcd	227	224	211	198	183	168	152	136	121		
KL/r _{min}	100	110	120	130	140	150	160	170	180		
χ	0.471	0.416	0.368	0.327	0.291	0.261	0.234	0.212	0.192		
fcd	107	94.6	83.7	74.3	66.2	59.2	53.3	48.1	43.6		