Summer - 2017 Examinations
 Model Answer

Subject Code: 17323 (ECN)

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner should assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner should give credit for any equivalent figure/figures drawn.
5) Credits to be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer (as long as the assumptions are not incorrect).
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept

Summer - 2017 Examinations
 Model Answer

Subject Code: 17323 (ECN)
1 Attempt any TEN of the following:
1a) Define frequency and amplitude.

Ans:

i) Frequency: It is defined as number of cycles completed by alternating quantity in one second.
ii) Amplitude: A maximum value or peak value attained by an alternating quantity during positive or negative half cycle is called as its amplitude.
1b) Define crest factor and form factor for sinusoidal A.C.

Ans:

i) Crest Factor:

It is defined as the ratio of the peak or crest value to the RMS value
1 Mark of an alternating quantity.

$$
\text { Crest factor }=\frac{\text { Peak Value }}{\text { RMS Value }}
$$

ii) Form Factor:

It is defined as the ratio ofRMS value to average value of an alternating quantity.

$$
\text { Form factor }=\frac{\text { RMS Value }}{\text { Average Value }}
$$

1c) Draw impedance triangle for R-C series circuit. Write nature of power factor.
Ans:
Impedance triangle for $R-C$ series circuit:

1 Mark

1 Mark
1d) Convert $Z=6+j 8 \Omega$ in polar form.
Ans:

$$
\begin{aligned}
Z & =\sqrt{6^{2}+8^{2}}=10 \text { and } \emptyset=\angle \tan ^{-1} \frac{8}{6}=53.13 & & 1 \text { Mark } \\
& =10 \angle 53.123^{0} \Omega & & 1 \text { Mark }
\end{aligned}
$$

1e) Define Q factor. Give equation of it.

Ans:
 Quality Factor:

The quality factor basically represents a figure of merit of a component (practical inductor or capacitor) or a complete circuit. It is a

1 Mark
dimensionless number and defined as: $Q=2 \pi\left[\frac{\text { Maximum energy stored }}{\text { Energy dissipated per cycle }}\right]$
OR

Summer - 2017 Examinations
 Model Answer

Subject Code: 17323 (ECN)
In series circuit it is defined as voltage magnification in the circuit at resonance

OR

It is also defined as the ratio of the reactive power of either the inductor or the capacitor to the average power of the resistor.

OR

In parallel circuit it is defined as equal to the current magnification in the circuit at resonance

OR

The quality factor or Q -factor of parallel circuit is defined as the ratio of the current circulating between two branches of the circuit to the current taken by the parallel circuit from the source.

Expression of Q Factor:

$$
\begin{gathered}
Q \text { factor }=\text { voltage magnification }=\frac{1}{R} \sqrt{\frac{L}{C}} \\
\text { OR } \\
Q \text { factor }=\text { current magnification }=\frac{1}{R} \sqrt{\frac{L}{C}}
\end{gathered}
$$

1f) Define admittance and state its unit.
Ans:
Admittance is defined as the ability of the circuit to carry (admit) alternating current through it.

OR

It is the reciprocal of impedance Z . i.e Admittance $\mathrm{Y}=1 / \mathrm{Z}$.
Unit: Its unit is siemen (S) or mho ((\mathbb{O}).

1Mark for definition

1Mark for unit
$1 \mathrm{~g})$ Define balanced 3 phase load.
Ans:
Balanced 3 phase Load:
Balanced three phase load is defined as star or delta connection of three equal impedances having equal real parts and equal imaginary parts.
It takes same current of equal magnitude and equal phase angle.
1h) State the relation between line and phase values of voltage and current in 3 phase star connected system.

Ans:

Star Connection:

$$
\begin{array}{rlr}
\text { Line voltage } & =\sqrt{3}(\text { Phase Voltage }) & \\
\text { i.e. } V_{\mathrm{L}} & =\sqrt{3} V_{\mathrm{ph}} & 1 \text { Mark } \\
\text { Line current } & =\text { Phase current } & \text { 1 Mark } \\
\text { i.e. } \mathrm{I}_{\mathrm{L}} & =\mathrm{I}_{\mathrm{ph}} &
\end{array}
$$

1i) State Superposition Theorem.
Ans:
Superposition Theorem:
In any linear, bilateral, multisource network the voltage across or the current through any branch is given by algebraic sum of all individual

Summer - 2017 Examinations Model Answer

voltages or currents caused by the separate independent sources acting alone with all other sources replaced by their internal resistances if any.
1j) State Thevenin's Theorem.

Ans:

Thevenin's Theorem:

Any two terminal circuit having number of linear impedances and sources (voltage, current, dependent, independent) can be represented by a simple equivalent circuit consisting of a single voltage source V_{Th} in series with an impedance Z_{Th}, where the source voltage V_{Th} is equal to 2 Marks the open circuit voltage appearing across the two terminals due to internal sources of circuit and the series impedance Z_{Th} is equal to the impedance of the circuit while looking back into the circuit across the two terminals, when the sources are replaced by their internal impedances.
$1 \mathrm{k})$ How to convert voltage source into equivalent current source?
Ans:
Conversion of voltage source into equivalent current source:

1 Mark

Step I Calculate equivalent current by using formulaI $=\frac{V}{r}$
Step II Keep same resistance r in parallel with current source.
1 Mark
11) State the behavior of pure L at the time of switching.

Ans:

Behavior of pure L at the time of switching:
i) The pure inductor, carrying zero current prior to switching, acts as OPEN CIRCUIT.

OR
ii) The pure inductor, carrying some current, say I_{0}, prior to switching, acts as a current source I_{0} or an Open Circuit in parallel with current source I_{0}.

1 Mark

2a) Derive the expression for current in pure capacitive circuit when connected to AC supply. Draw phasor diagram.
Ans:

Expression for current in Pure Capacitance:

The alternating voltage causes alternating current in the capacitor.
Let an alternating voltage applied across capacitor be
$v=V_{m} \sin (\omega t) \ldots \ldots \ldots \ldots \ldots \ldots \ldots(i) \quad 1$ Mark
The resulting current is given by,

$$
\begin{gather*}
i=C \frac{d v}{d t} \\
i=C \frac{d v}{d t}=C \frac{d}{d t}\left(V_{m} \sin \omega t\right) \\
=\omega C V_{m} \cos \omega t=\left(\omega C V_{m}\right) \sin \left(\omega t+\frac{\pi}{2}\right)=\frac{V_{m}}{\left(\frac{1}{\omega C}\right)} \sin \left(\omega t+\frac{\pi}{2}\right) \\
\therefore \boldsymbol{i}=\boldsymbol{I}_{\boldsymbol{m}} \sin \left(\boldsymbol{\omega} \boldsymbol{t}+\frac{\boldsymbol{\pi}}{\mathbf{2}}\right) \tag{ii}
\end{gather*}
$$

Referring to eq. (i) and (ii), it is clear that in case of pure capacitor, the voltage lags behind the current by 90° or $(\pi / 2)$ rad or the current leads the voltage by 90° or $(\pi / 2) \mathrm{rad}$.

2b) Define:-
i) Active Power
ii) Reactive Power
iii) Apparent Power
iv) Power factor

Ans:

(i) Active Power:

Active power (P) is the product of voltage, current and the cosine of the phase angle between voltage and current.
Unit: watt (W) or kilo-watt (kW) or Mega-watt (MW)

$$
\mathrm{P}=\mathrm{VI} \cos \emptyset=\mathrm{I}^{2} \mathrm{R} \text { watt }
$$

(ii) Reactive Power:

Reactive power (Q) is the product of voltage, current and the sine of the phase angle between voltage and current.

1 Mark for each Unit: volt-ampere-reactive (VAr), or kilo-volt-ampere-reactive definition (kVAr) or Mega-volt-ampere-reactive (MVAr)

$$
\mathrm{Q}=\mathrm{VI} \sin \emptyset=\mathrm{I}^{2} \mathrm{X} \text { volt-amp-reactive }
$$

(iii) Apparent Power (S):

This is simply the product of RMS voltage and RMS current.

Summer-2017 Examinations Model Answer

Unit: volt-ampere (VA) or kilo-volt-ampere (kVA) or Mega-vol-ampere (MVA)

$$
\mathrm{S}=\mathrm{VI}=\mathrm{I}^{2} \mathrm{Z} \text { volt-amp }
$$

(iv) Power Factor:

It is the cosine of the angle between the applied voltage and the resulting current.
Power factor $=\cos \phi$
where, ϕ is the phase angle between applied voltage and current.
OR
It is the ratio of true or effective or real power to the apparent power.
Power factor $=\frac{\text { True Or Effective Or Real Power }}{\text { Apparent Power }}=\frac{\text { VIcos } \varnothing}{\text { VI }}=\cos \emptyset$
OR
It is the ratio of circuit resistance to the circuit impedance.
Power factor $=\frac{\text { Circuit Resistance }}{\text { Circuit Impedance }}=\frac{\mathrm{R}}{\mathrm{Z}}=\cos \emptyset$
2c) Three identical impedances are connected in delta to a 3 phase, 400 v . The line current is 35 Amp . And total power taken from supply is 15 KW . Calculate resistance and reactance of each phase.
Ans:
Data Given: $\mathrm{V}_{\mathrm{L}}=400 \mathrm{v}, \mathrm{I}_{\mathrm{L}}=35 \mathrm{Amp}$, Total power taken $=15 \mathrm{KW}$.
For delta connection $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{ph}}=400 \mathrm{v}$.

$$
\begin{gathered}
I_{L}=\sqrt{3} I p h \\
I p h=\frac{I_{L}}{\sqrt{3}}=\frac{35}{\sqrt{3}}=20.2072 \mathrm{Amp}
\end{gathered}
$$

Therefore $Z_{p h}=\frac{V_{p h}}{I_{p h}}=\frac{400}{20.2072}=19.7949 \Omega$
Total active power $P=3 I_{P h}^{2} R_{p h}=15000 \mathrm{~W}$
Resistance per phase $\left(R_{p h}\right)=\frac{15000}{3 I_{P h}^{2}}$

$$
=\frac{15000}{3 \times 20.2072^{2}} \quad=12.2449 \Omega
$$

Reactance per phase $\left(X_{p h}\right)=\sqrt{Z_{P h}^{2}-R_{P h}^{2}}$

$$
\begin{aligned}
& \qquad=\sqrt{19.7949^{2}-12.2449^{2}} \\
& \quad=\sqrt{391.8380-150.0600}=\sqrt{241.778}=15.5492 \Omega \\
& \text { OR } \\
& \text { Calculate } \cos \emptyset \text { then } \mathrm{R}=\mathrm{Z} \cos \emptyset \text { and } \mathrm{X}=\mathrm{Z} \sin \varnothing
\end{aligned}
$$

2d) Compare series and parallel resonant circuit.
Ans:
Comparison between series and parallel resonant circuit:

Sr. No	Series resonant Circuit	Parallel resonant Circuit

	For series R-L-C circuit, the resonance frequency is,	For parallel R-L-C circuit, the resonance frequency is,		
$f_{r}=\frac{1}{2 \pi \sqrt{L C}}$			\quad	$f_{r}=\frac{1}{2 \pi \sqrt{L C}}$
:---				

Any four points 1 Mark each

$=4$ Marks

1 Mark

1 Mark of all the values of an alternating quantity over one cycle.

Given $\mathrm{e}=200 \sin 314 \mathrm{t}$ volts
R.M.S.value $=0.707 \times$ Max.value $=0.707 \times 200=141.4$ volts $\quad 1$ Mark

Averagevalue $=0.637 \times$ Max. value $=0.637 \times 200=127.4$ volts

Summer - 2017 Examinations Model Answer

2f) State any four advantages of Polyphase circuits over single phase circuit.
Ans:
Advantages and of Polyphase circuits over Single phase circuit:
i) Three-phase transmission is more economical than single-phase transmission. It requires less copper material.
ii) Parallel operation of 3-phase alternators is easier than that of single-phase alternators.
iii) Single-phase loads can be connected along with 3-ph loads in a 3ph system.
iv) Instead of pulsating power of single-phase supply, constant power is obtained in 3-phase system.

1 Mark for each (any 4)
$=4$ Marks
v) Three-phase induction motors are self-starting. They have high efficiency, better power factor and uniform torque.
vi) The power rating of 3-phase machine is higher than that of 1phase machine of the same size.
vii) The size of 3-phase machine is smaller than that of 1-phase machine of the same power rating.
viii) Three-phase supply produces a rotating magnetic field in 3-phase rotating machines which gives uniform torque and less noise.

3 Attempt any TWO of the following:

3a) A resistance of 20Ω, an inductance of 0.2 H and a capacitance of $100 \mu \mathrm{f}$ are connected in series across $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine (i) impedance, (ii) current, (iii) active power, (iv) apparent power.
Ans:
(i) $\mathrm{L}=0.2 \mathrm{H}, \quad \mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}=2 \times \pi \times 50 \times 0.2=62.83 \Omega$

$$
\begin{aligned}
& \mathrm{C}=100 \mu \mathrm{~F}, \quad \mathrm{X}_{\mathrm{c}}=\frac{1}{2 \pi \mathrm{fC}}=\frac{1}{2 \times \pi \times 50 \times 100 \times 10^{-6}}=31.83 \Omega \\
& \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}=36.891 \Omega
\end{aligned}
$$

$X_{L}=1 M$
$X_{c}=1 \mathrm{M}$
$\mathrm{Z}=1 \mathrm{M}$
(ii) $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{Z}}=\frac{220}{36.891}=5.96 \mathrm{Amp}$
$\operatorname{Cos} \varphi=\frac{\mathrm{R}}{\mathrm{Z}}=\frac{20}{36.891}=0.542$
$\mathrm{I}=2 \mathrm{M}$
$\mathrm{PF}=1 \mathrm{M}$
(iii) Active Power $=\mathrm{P}=\mathrm{VI} \operatorname{Cos} \varphi=220 \times 5.96 \times 0.542=710.67$ watts

$$
\text { Or } \mathrm{P}=\mathrm{I}^{2} \mathrm{R}=5.96^{2} \times 20=710.43 \text { watts }
$$

(iv) Apparent Power $=\mathrm{S}=\mathrm{VI}=1311.2 \mathrm{VA}$
$\mathrm{P}=1 \mathrm{M}$
$\mathrm{S}=1 \mathrm{M}$
3b) Two impedances $(12+\mathrm{j} 16)$ and ($10-\mathrm{j} 20) \Omega$ are connected in parallel across a supply of $200 \angle 60^{\circ}$ using admittance method. Calculate branch current, total current and power factor of whole circuit.
Ans:
$\mathrm{V}=200 \angle 60^{\circ}$ volts

$$
\begin{array}{rlr}
Y_{1}=\frac{R_{1}}{R_{1}^{2}+X_{L}^{2}}-j \frac{X_{L}}{R_{1}^{2}+X_{L}^{2}} & =\frac{12}{12^{2}+16^{2}}-j \frac{16}{12^{2}+16^{2}} & \\
& =0.03-j 0.04=0.05 \angle-53.13^{\circ} \quad Y_{1}=1 M
\end{array}
$$

Summer - 2017 Examinations Model Answer

Subject Code: 17323 (ECN)

$$
=0.02+\mathrm{j} 0.04=0.044 \angle 63.43^{\circ} \quad Y_{2}=1 \mathrm{M}
$$

$Y=Y_{1}+Y_{2}=G+j B=0.03-j 0.04+0.02+j 0.04=0.05-j 0=0.05 \angle 0^{\circ}$
(i) Current I_{1} flowing through admittance Y_{1},

$$
=\mathrm{V} \times \mathrm{Y}_{1}=\left(200 \angle 60^{\circ}\right) \times\left(0.05 \angle-53.13^{\circ}\right) \quad \mathrm{Y}=1 \mathrm{M}
$$ $\mathrm{I}_{1}=10 \angle 6.87^{\circ} \mathrm{amp}$

(ii) Current I_{2} flowing through admittance Y_{2},

$$
=\mathrm{V} \times \mathrm{Y}_{2}=\left(200 \angle 60^{\circ}\right) \times\left(0.044 \angle 63.63^{\circ}\right) \quad \mathrm{I}_{1}=1 \mathrm{M}
$$

$$
\mathrm{I}_{2}=8.8 \angle 123.23^{\circ} \mathrm{amp}
$$

Total Current $\mathrm{I}=\mathrm{V} \times \mathrm{Y}=\left(200 \angle 60^{\circ}\right) \times\left(0.05 \angle 0^{\circ}\right)=10 \angle 60^{\circ} \mathrm{amp}$

$$
\text { OR } \quad \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

$\mathrm{I}_{2}=1 \mathrm{M}$
Power factor angle $\varnothing=$ voltage ref. angle - current angle $=60-60=0^{\circ}$
Therefore, Power factor $=\cos \left(0^{\circ}\right)=1$
$\mathrm{I}=1 \mathrm{M}$
$\emptyset=1 \mathrm{M}$
$\mathrm{Pf}=1 \mathrm{M}$
3c) Using Nodal Analysis, find current in the 3Ω resistor for circuit A. Refer Fig.
No. 1.

Fig. No. 1
Ans:

1 Mark

By applying KCL to Node A

$$
\begin{array}{cc}
\frac{\mathrm{V}_{\mathrm{A}}-5}{2+1}+\frac{\mathrm{V}_{\mathrm{A}}}{3}+\frac{\mathrm{V}_{\mathrm{A}}-4}{2}=0 & \text { 2 Marks } \\
\frac{\mathrm{V}_{\mathrm{A}}-5}{3}+\frac{\mathrm{V}_{\mathrm{A}}}{3}+\frac{\mathrm{V}_{\mathrm{A}}-4}{2}=0 & \\
\frac{2 \mathrm{~V}_{\mathrm{A}}-10+2 \mathrm{~V}_{\mathrm{A}}+3 \mathrm{~V}_{\mathrm{A}}-12}{6}=0 & \text { 1 Mark } \\
\frac{7 \mathrm{~V}_{\mathrm{A}}-22}{6}=0 & 2 \text { Mark } \\
\mathrm{V}_{\mathrm{A}}=\frac{22}{7}=3.14 \text { volts } &
\end{array}
$$

Current flowing through resistance $3 \Omega=\frac{\mathrm{V}_{\mathrm{A}}}{3}=1.04 \mathrm{Amp}$
2 Mark.
4 Attempt any FOUR of the following:

Summer - 2017 Examinations Model Answer

4 a) What is Phase sequence? Draw waveforms of 3 phase emf.
Ans:
Phase sequence: It is the order in which the three phases reach their peak or maximum values. It is shown in below fig. the phase sequence is A-B-C (or R-Y-B). In the following waveforms, it is seen that the Rphase voltage attains the positive maximum value first, and after angular 2Marks distance of 120°, Y-phase voltage attains its positive maximum and further after 120°, B- phase voltage attains its positive maximum value. So the phase sequence is R-Y-B.

Waveforms 2 Marks

4 b) Derive the formulae for delta to star transformation.
Ans:

Delta connection $\mathrm{R}_{12}, \mathrm{R}_{23}$ and R_{32} connected in delta fashion between terminals 1,2 and 3.

It is possible to replace delta by its equivalent star circuit. Considering terminals 1 and 2, Resistance R_{12} parallel with ($\mathrm{R}_{23}+\mathrm{R}_{31}$), Hence resistance between terminals 1 and 2

Equivalent star connection

Summer-2017 Examinations Model Answer

Subject Code: 17323 (ECN)

$$
\begin{aligned}
& \mathrm{R}_{1}-\mathrm{R}_{3}=\frac{\mathrm{R}_{12} \mathrm{R}_{31}-\mathrm{R}_{23} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \ldots \ldots \ldots \ldots \ldots \\
& \text { By adding equation (5) \& (6) } \\
& 2 \mathrm{R}_{1}= \frac{\mathrm{R}_{31} \mathrm{R}_{12}+\mathrm{R}_{31} \mathrm{R}_{23}+\mathrm{R}_{12} \mathrm{R}_{31}-\mathrm{R}_{23} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}}
\end{aligned}
$$

Equivalent star resistances for delta connection

$$
\begin{aligned}
\mathrm{R}_{1} & =\frac{\mathrm{R}_{12} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \\
\mathrm{R}_{2} & =\frac{\mathrm{R}_{12} \mathrm{R}_{23}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}} \\
\mathrm{R}_{3} & =\frac{\mathrm{R}_{23} \mathrm{R}_{31}}{\mathrm{R}_{12}+\mathrm{R}_{23}+\mathrm{R}_{31}}
\end{aligned}
$$

1 Mark

4 c) A voltage $v=100 \sin 314 t$ is applied across a circuit containing 25Ω resistor and $80 \mu \mathrm{~F}$ capacitor in series. Determine (i) The expression for instantaneous current (ii) Power consumed
Ans:

$$
\begin{array}{cr}
v=100 \sin 314 t \\
\mathrm{X}_{\mathrm{c}}=\frac{1}{\omega C}=\frac{1}{314 \times 80 \times 10^{-6}}=\mathbf{3 9 . 8 0} \boldsymbol{\Omega} & \\
\mathbf{Z}=\sqrt{R^{2}+X_{C}{ }^{2}}=\sqrt{25^{2}+39.80^{2}}=\mathbf{4 7 . 0 0} \boldsymbol{\Omega} & 1 / 2 \text { Mark } \\
\boldsymbol{I}_{\boldsymbol{m}}=\frac{v_{m}}{Z}=\frac{100}{47}=\mathbf{2 . 1 2} \mathbf{A m p} & 1 / 2 \text { Mark } \\
\emptyset=\tan ^{-1}\left(\frac{X_{c}}{R}\right)=\tan ^{-1}\left(\frac{39.80}{25}\right)=57.86=57^{\circ} 86^{\prime}(\text { lear }) & 1 / 2 \text { Mark }
\end{array}
$$

i) Instantaneous current

$$
\begin{aligned}
& \boldsymbol{i}=I_{m} \sin (\omega t+\emptyset) \\
& \boldsymbol{i}=\mathbf{2 . 1 2} \sin \left(\mathbf{3 1 4 t}+\mathbf{5 7} \mathbf{7}^{\circ} \mathbf{8 6}\right)
\end{aligned} \quad \text { 1Mark }
$$

ii) Power Consumed

$$
\mathrm{P}=I^{2} R=\left(\frac{2.12}{\sqrt{2}}\right)^{2}(25)=\mathbf{5 6 . 1 8} \text { watts } \quad \text { or }
$$

1Mark

$$
\begin{aligned}
P=V r m s \times \operatorname{Irms} \times \operatorname{Cos} \emptyset & =(100 / \sqrt{ } 2) \times(2.12 / \sqrt{ } 2) \times \cos (57.86) \\
& =56.18 \mathrm{watts} .
\end{aligned}
$$

$4 \mathrm{~d})$ Three coils each with a resistance of 10Ω and inductance of 0.35 mH are connected in star to a 3 -phase, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate line current and total power consumed.
Ans: $\mathrm{L}=0.2 \mathrm{H}, \quad \boldsymbol{X}_{L}=2 \pi f L=2 \pi \times 50 \times 0.35 \times 10^{-3}=\mathbf{0 . 1 1 ~ \Omega} \quad 1 / 2$ Mark

Summer - 2017 Examinations Model Answer

Subject Code: 17323 (ECN)
$\operatorname{Cos} \phi=1$ resistive load
$1 / 2$ Mark
1 Mark

2 Marks

2 Marks

1 Mark

By applying KVL to loop ABCDA

$$
\begin{gather*}
6-0.5 I_{1}-3 I_{1}-6\left(I_{1}+I_{2}\right)=0 \\
9.5 I_{1}+6 I_{2}=6 \quad \cdots \cdots \cdots \cdots \cdots \cdots .(\tag{1}\\
\text { By applying KVL to Loop FECDF }
\end{gather*}
$$

$$
\begin{gather*}
12-I_{2}-2 I_{2}-6\left(I_{1}+I_{2}\right)=0 \\
6 I_{1}+9 I_{2}=12 \ldots \ldots \ldots \ldots \ldots \ldots \tag{2}
\end{gather*}
$$

Expressing eq.(1) and (2) in matrix form,

$$
\left[\begin{array}{cc}
9.5 & 6 \\
6 & 9
\end{array}\right]\left[\begin{array}{l}
\mathrm{I}_{1} \\
\mathrm{I}_{2}
\end{array}\right]=\left[\begin{array}{c}
6 \\
12
\end{array}\right]
$$

$\therefore \Delta=\left|\begin{array}{cc}9.5 & 6 \\ 6 & 9\end{array}\right|=85.5-36=49.5$
By Cramer's rule,

$$
\begin{aligned}
& \mathrm{I}_{1}=\frac{\left|\begin{array}{cc}
6 & 6 \\
12 & 9
\end{array}\right|}{\Delta}=\frac{(6 \times 9)-(12 \times 6)}{49.5}=\frac{54-72}{49.5}=-\mathbf{0 . 3 6 3} \mathrm{A} \\
& \mathrm{I}_{2}=\frac{\left|\begin{array}{|c}
9.5 \\
6 \\
6
\end{array}\right|}{\Delta}=\frac{(9.5 \times 12)-(6 \times 6)}{49.5}=\frac{114-36}{49.5}=\mathbf{1} .58 \mathrm{~A}
\end{aligned}
$$

Current flowing through resistance of $\mathbf{6 \Omega}=I_{1}+I_{2}=\mathbf{1 . 2 1 2} \mathrm{amp}$,
5 Attempt any FOUR of the following
5a) Derive the expression for resonance frequency in R-L-C series circuit.
Ans:
The frequency at which the net reactance of the series circuit is zero is called the resonant frequency f_{o}.
Its value can be found as under:
At resonance $\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}=0 \quad$ or
or $\quad X_{L}=X_{C}$
1 Mark
$\omega_{0} \mathrm{~L}=1 / \omega_{0} \mathrm{C}$

$$
\begin{array}{cl}
\omega_{0}^{2}=1 / \mathrm{LC} & 1 \text { Mark } \\
\therefore\left(2 \pi f_{0}\right)^{2}=\mathrm{LC} & 1 \text { Mark } \\
f_{0}=\frac{1}{2 \pi \sqrt{L C}} & 1 \text { Mark }
\end{array}
$$

5b) Draw the phasor diagram and waveforms of voltage, current and power in a pure inductive circuit supplied by a single phase a.c. source.
Ans
Phasor diagram of pure inductive circuit:
Phasor

Summer-2017 Examinations Model Answer

5c) Using Norton's Theorem, find current through R_{L} in Fig. No.3.

Fig. No. 3

Ans:

Solution by Norton Theorem:
Remove R_{L} and short the path, now circuit becomes as shown below

Apply Superposition theorem to find out the $\mathrm{I}_{\mathrm{SC}}=\mathrm{I}_{\mathrm{N}}$
Consider 20 V source only

$$
\begin{gathered}
\mathrm{I}_{\mathrm{SC}}{ }^{\prime}=20 /(6+3)=20 / 9=2.22 \mathrm{Amp} \text { from } \mathrm{A} \text { to } \mathrm{B} \\
\text { Consider } 6 \mathrm{~A} \text { source only }
\end{gathered}
$$

Norton's equivalent circuit becomes

Therefore current through R_{L} is $\mathrm{I}_{\mathrm{L}}=8.22 \times 9 /(9+5)=5.28 \mathrm{Amp}$
5d) Series RLC circuit of $\mathrm{R}=10 \Omega, \mathrm{~L}=0.1 \mathrm{H}$, and $\mathrm{C}=10 \mu \mathrm{~F}$ is connected to 230 V variable frequency supply. Calculate (i) The frequency at which circuit behaves as purely resistive circuit (ii) Quality factor
Ans:
(i) RLC series circuit behaves as purely resistive circuit at resonance and frequency at Resonance is

$$
\begin{array}{lll}
& f_{0}=\frac{1}{2 \pi \sqrt{L C}} & 1 \text { Mark } \\
\text { Therefore } & f_{0}=\frac{1}{2 \pi \sqrt{\left(0.1 \times 10 \times 10^{-6}\right)}}=\mathbf{1 5 9 . 1 5 ~ H z} & 1 \text { Mark }
\end{array}
$$

(ii) Quality factor can be found by using

$$
\begin{array}{ll}
Q=\frac{1}{R} \sqrt{\frac{L}{C}} & \text { 1 Mark } \\
Q=\frac{1}{10} \sqrt{\frac{0.1}{10 \times 10^{-6}}}=\mathbf{1 0} & 1 \text { Mark }
\end{array}
$$

5e) Derive the relation between line and phase current in 3 phase delta connected balanced load. Draw phasor diagram.
Ans:

2 Mark

From above diagram current in each lines are vector difference of the two phase currents flowing through that line.
For example:

> Current in line R is $I_{R}=I_{B R}-I_{R Y}$
> Current in line Y is $I_{Y}=I_{R Y}-I_{Y B}$
> Current in line B is $I_{B}=I_{Y B}-I_{B R}$

1 Mark
Current in line R is found by compounding $I_{B R}$ and $I_{R Y}$ and value given

Summer-2017 Examinations Model Answer

by parallelogram in phasor diagram.
Angle between $I_{B R}$ and $-I_{R Y}$ is 60°,
where $\left|I_{B R}\right|=\left|I_{R Y}\right|=$ Phase current $I_{p h}$

$$
\begin{gathered}
I_{R}=I_{B R}-I_{R Y}=2 I_{p h} \cos \left(\frac{60}{2}\right)=2 I_{p h} \frac{\sqrt{3}}{2}=\sqrt{3} I_{p h} \\
I_{Y}=I_{R Y}-I_{Y B}=2 I_{p h} \cos \left(\frac{60}{2}\right)=2 I_{p h} \frac{\sqrt{3}}{2}=\sqrt{3} I_{p h} \\
I_{B}=I_{Y B}-I_{B R}=2 I_{p h} \cos \left(\frac{60}{2}\right)=2 I_{p h} \frac{\sqrt{3}}{2}=\sqrt{3} I_{p h} \\
\text { As } I_{R}=I_{Y}=I_{B}=I_{L} \\
\mathbf{I}_{\mathbf{L}}=\sqrt{3} \mathbf{I}_{\mathbf{p h}}
\end{gathered}
$$

1 Mark

5f) Express (i) $\mathrm{Z}=10 \angle 60^{\circ}$ in rectangular form (ii) $\mathrm{Z}=16+\mathrm{j} 8$ in polar form
Ans:
(i) $\mathrm{Z}=10 \angle 60^{\circ}$

Real part $=10 \times \cos 60^{\circ}=5$; Imaginary part $=10 \times \sin 60^{\circ}=8.66 \quad 2$ Marks
Therefore in Rectangular form $Z=5+j 8.66$
(ii) $\mathrm{Z}=16+\mathrm{j} 8$

Magnitude $=\sqrt{ } 16^{2}+8^{2}=17.88$; Angle $\varphi=\tan ^{-1}(8 / 16)=26.56^{0}$
2 Marks
Therefore in Polar form $Z=17.88 \angle 26.56^{0}$

6 Attempt any FOUR of the following

6a) Calculate current through 5Ω resistor by using superposition theorem in Fig. No. 4.

Fig. No. 4

Ans:

Consider 15 V source only

Resistances of $5 \& 15$ are in parallel $=5 \times 15 /(5+15)=3.75 \Omega \quad 1 / 2$ Mark

Total current $\mathrm{I}=15 /(10+3.75)=15 / 13.75=1.09 \mathrm{Amp}$
Therefore $\mathrm{I}^{\prime}=1.09 \times 15 /(15+5)=0.82 \mathrm{Amp}$ from B to A
$1 / 2$ Mark
$1 / 2$ Mark
Now consider 10 V source only

Resistances of $10 \& 5$ are in parallel $=10 \times 5 /(10+5)=3.33 \Omega$
Therefore current $\mathrm{I}=10 /(15+3.33)=0.54 \mathrm{Amp}$ $\mathrm{I}=0.54 \times 10 /(10+5)=0.36 \mathrm{Amp}$ from A to B
$\mathrm{I}=\mathrm{I}^{\prime}+\mathrm{I}^{\prime \prime}=0.82-0.36=0.46 \mathrm{Amp}$ from B to A
$1 / 2$ Mark
$1 / 2$ Mark
$1 / 2$ Mark
1 Mark
6b) Develop Thevenin equivalent circuit between points A and B in Fig. No.
5 and find current in $\mathrm{R}_{\mathrm{L}}=10 \Omega$.

Fig. No. 5
Ans:

1Mark
i) Calculation of $V_{\text {TH }}$: Remove R_{L} and find open circuit voltage across it.

Current through circuit will be $=10 /(15+7)=0.45 \mathrm{Amp} \quad 1 / 2$ Mark

$$
\mathrm{V}_{\mathrm{OC}}=\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{AB}}=0.45 \times 7=3.18 \mathrm{~V} \quad 1 / 2 \text { Mark }
$$

ii) Calculation of R_{TH} :

Summer - 2017 Examinations
 Model Answer

Resistances $15 \& 7$ are in parallel $=15 \times 7 /(15+7)=4.77 \Omega$
$\mathrm{R}_{\mathrm{TH}}=7+4.77=11.77 \Omega$
Thevenin equivalent circuit:

$\mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\mathrm{TH}} /\left(\mathrm{R}_{\mathrm{TH}}+\mathrm{R}_{\mathrm{L}}\right)=3.18 /(11.77+10)=0.146 \mathrm{Amp}$
1Mark
6c) Find value of R_{L} in Fig. No. 6 for maximum power transfer.

Fig. No. 6
Ans:
Maximum power will be transferred when load resistance is equal to internal resistance i.e. $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{TH}}$

Resistances of $5 \& 8$ are in parallel $=5 \times 8 /(5+8)=3.07 \Omega$ and circuit is simplified as

1 Mark

1 Mark
$\mathrm{R}_{\mathrm{TH}}=12+3.07=15.07 \Omega$
Hence in the given circuit maximum power will be transferred when $R_{L}=R_{T H}=15.07 \Omega$

1 Mark
6d) Explain the concept of initial and final conditions in switching for L and C.

Ans:
i) Inductor:

The current through an inductor cannot change instantly. If the inductor current is zero just before switching, then whatever may be the applied voltage, just after switching the inductor current will remain zero. i.e the inductor must be acting as open-circuit at instant $t=0$. If the inductor current is I0 before switching, then just after switching the inductor

Summer - 2017 Examinations
 Model Answer

Subject Code: 17323 (ECN)
current will remain same as I 0 , and having stored energy hence it is represented by a current source of value I 0 in parallel with open circuit. As time passes the inductor current slowly rises and finally it becomes constant. Therefore the voltage across the inductor falls to zero [$\mathrm{v}_{\mathrm{L}}=\mathrm{Ldi} \mathrm{L}_{\mathrm{L}} / \mathrm{dt}=0$]. The presence of current with zero voltage exhibits short circuit condition. Therefore, under steady-state constant current condition, the inductor is represented by a short circuit. If the initial inductor current is non-zero I0, making it as energy source, then finally inductor is represented by current source 10 in parallel with a short circuit.

ii) Capacitor:

The voltage across capacitor cannot change instantly. If the capacitor voltage is zero initially just before switching, then whatever may be the current flowing, just after switching the capacitor voltage will remain zero. i.e the capacitor must be acting as short-circuit at instant $t=0$. If capacitor is previously charged to some voltage V0, then also after

2Marks switching at $\mathrm{t}=0$, the voltage across capacitor remains same V0. Since the energy is stored in the capacitor, it is represented by a voltage source V0 in series with short-circuit.
As time passes the capacitor voltage slowly rises and finally it becomes constant. Therefore the current through the capacitor falls to zero $\left[\mathrm{i}_{\mathrm{c}}=\mathrm{Cdv}_{\mathrm{c}} / \mathrm{dt}=0\right]$. The presence of voltage with zero current exhibits open circuit condition. Therefore, under steady-state constant voltage condition, the capacitor is represented by a open circuit. If the initial capacitor voltage is non-zero V0, making it as energy source, then finally capacitor is represented by voltage source V0 in series with an open-circuit.

The initial and final conditions are summarized in following table:

2Marks

Summer-2017 Examinations Model Answer

6e) Find voltages at nodes A and B in Fig. No. 7.

Fig. No. 7

Ans:

$\mathrm{I}_{1}=\mathrm{I}_{4}+\mathrm{I}_{2}$

$$
\left(15-\mathrm{V}_{\mathrm{A}}\right) / 5=\left(\mathrm{V}_{\mathrm{A}} / 8\right)+\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right) / 6
$$

$$
\left(15-\mathrm{V}_{\mathrm{A}}\right) / 5=\left(6 \mathrm{~V}_{\mathrm{A}}+8 \mathrm{~V}_{\mathrm{A}}-8 \mathrm{~V}_{\mathrm{B}}\right) / 48
$$

$$
720-48 \mathrm{~V}_{\mathrm{A}}=30 \mathrm{~V}_{\mathrm{A}}+40 \mathrm{~V}_{\mathrm{A}}-40 \mathrm{~V}_{\mathrm{B}}
$$

$$
\begin{equation*}
118 \mathrm{~V}_{\mathrm{A}}-40 \mathrm{~V}_{\mathrm{B}}=720 . \tag{1}
\end{equation*}
$$

Apply KCL at node B

$$
\begin{gathered}
\mathrm{I}_{5}=\mathrm{I}_{2}+\mathrm{I}_{3} \\
\mathrm{~V}_{\mathrm{B}} / 9=\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right) / 6+5 \\
\mathrm{~V}_{\mathrm{B}} / 9=\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}+30\right) / 6 \\
6 \mathrm{~V}_{\mathrm{B}}=9 \mathrm{~V}_{\mathrm{A}}-9 \mathrm{~V}_{\mathrm{B}}+270
\end{gathered}
$$

$$
\begin{equation*}
-9 \mathrm{~V}_{\mathrm{A}}+15 \mathrm{~V}_{\mathrm{B}}=270 . \tag{2}
\end{equation*}
$$

1 Mark

Expressing eq.(1) and (2) in matrix form,

$$
\left.\begin{aligned}
& \left.\therefore \Delta=\left\lvert\, \begin{array}{cc}
118 & -40 \\
-9 & 15
\end{array}\right.\right]\left[\begin{array}{c}
118 \\
\mathrm{~V}_{\mathrm{A}} \\
\mathrm{~V}_{\mathrm{B}}
\end{array}\right]=\left[\begin{array}{l}
720 \\
270
\end{array}\right] \\
& -9
\end{aligned} 15 \right\rvert\,=1770-360=1410
$$

$$
1 \text { Mark }
$$

By Cramer's rule,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{A}}=\frac{\left|\begin{array}{cc}
720 & -40 \\
270 & 15
\end{array}\right|}{\Delta}=\frac{(720 \times 15)-(270 \times-40)}{1410} \\
& =\frac{10800+10800}{1410}=\mathbf{1 5 . 3 2 \text { volt }} \\
& \mathrm{V}_{\mathrm{B}}=\frac{\left|\begin{array}{cc}
118 & 720 \\
-9 & 270
\end{array}\right|}{\Delta}=\frac{(118 \times 270)-(-9 \times 720)}{1410}=\frac{31860+6480}{1410} \quad \begin{array}{c}
\text { 1 Mark for } \\
\text { final } \\
\text { answers }
\end{array} \\
& =\mathbf{2 7 . 1 9 \text { volt }}
\end{aligned}
$$

Summer - 2017 Examinations Model Answer

6f) Explain how sinusoidal AC voltage is generated by using simple one loop generator.
Ans:
An electric current produced by means of electrical machine is known as generator which converts mechanical energy into electrical energy.
When conductor cuts the magnetic flux, emf induced in it. (Faraday's
1 Mark for explanation Law of electromagnetic induction). Thus, for generation of emf relative motion between magnetic field and conductor is required.

Position 1: $\left(\theta=0^{\circ}\right)$ minimum $\frac{d \varnothing}{d t}$

Position 3: $\left(\theta=180^{\circ}\right)$ minimum $\frac{d \phi}{d t}$

Position 2: $\left(\theta=90^{\circ}\right)$ maximum $\frac{d \emptyset}{d t}$

Here single turn rectangular elementary coil (AB) is made up of conducting material. The coil is so placed that it can be rotated about its own axis with constant speed in a uniform magnetic field provided by permanent magnet.
Assume that the coil (AB) rotates in anticlockwise direction and cuts magnetic flux. According Faraday's law of electromagnetic induction, emf is induced and magnitude of generated emf depends upon position of armature. The nature of emf is alternating as shown by the waveform.

1 Mark for waveform

