Summer - 2017 Examinations
 Model Answer

Subject Code: 17214 (FEE)

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner should assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner should give credit for any equivalent figure/figures drawn.
5) Credits to be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer (as long as the assumptions are not incorrect).
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept

Summer - 2017 Examinations
 Model Answer

Subject Code: 17214 (FEE)
I Attempt any ten of the following:
I 1) Define resistance. Also mention the factors upon which it depends.
Ans:
Resistance: It is the opposition offered by substance to the electric current passing through it.

1 Mark

Factors on which resistance depends:

i) Nature of material
ii) Length of conductor
iii) Cross sectional area of conductor iv) Temperature of conductor

I 2) What is internal voltage drop and terminal voltage?
Ans:
Internal voltage drop (I.r): Voltage drop across internal resistance of the source is known as internal voltage drop.

OR

Potential difference between Emf induced across terminals of battery at no load ($\mathrm{I}=0 \mathrm{amp}$) and Terminal voltage when external load is connected is known as internal voltage drop

$$
\mathrm{I} \times \mathrm{r}=\mathrm{E}-\mathrm{V}
$$

OR
When source delivers current to load, the current flowing through the internal resistance causes voltage drop across it. This voltage drop is called 'Internal Voltage Drop'.

Terminal voltage (V): Terminal voltage of a cell is the potential difference across its terminals when it is delivering a current to the external load.
I 3) State any two features of carbon composition resistors.
Ans:
1 Mark for each
Definition $=2$ Marks

Features of Carbon composition resistance:
i) Low cost
ii) Wide resistance range (ohm to mega ohm)
iii) Wide range of working voltage

1 Mark for
each of any
two
features
$=2$ Marks

1 Mark

1 Mark

$$
\text { i.e } V \propto I \text { or } V=R I
$$

where $\mathrm{R}=$ constant of proportionality, called as the resistance of the conductor.
I 5) What is dielectric strength of an insulating material? What is its unit?
Ans:
Dielectric Strength: The dielectric strength of an insulating material is the maximum voltage which the insulating medium can withstand without breakdown.

Summer - 2017 Examinations
 Model Answer

Subject Code: 17214 (FEE)
Unit is volts per millimeter (V/mm), or $\mathrm{kV} / \mathrm{mm}$ or $\mathrm{kV} / \mathrm{cm}$
1 Mark
I 6) State any two applications of electromagnet.
Ans:
Any two 1
Applications of Electromagnet: Mark each
Cranes, Motors, Generators, Transformers, Electromagnetic Relays, Circuit $=2$ Marks breakers, Traction, Measuring instruments, Electrical Bell etc.

I 7) Define magnetic lines of force. Also draw and show magnetic lines of force of a bar type magnet.
Ans:
Magnetic Lines of force- These are the imaginary lines (having no physical existence) introduced by Faraday for the pictorial representation of the distribution of a magnetic field.

Definition 1 Mark

OR

A line of force is defined as a line along which an isolated N -pole would travel if free to move in a magnetic field and it is such that the tangent at any point gives direction of the resultant force at that point.

Diagram 1
Mark

2 Marks
this magnetic flux opposes the changing magnetic field that is responsible for emf induction.
I 9) Classify electrical materials.
Ans:
Classification of electrical materials:
i) Conducting Materials
ii) Insulating materials
iii) Magnetic materials
iv) Semiconducting materials

I 10) State Faradays laws of electromagnetic induction.
Ans:
Faraday's laws of electromagnetic induction:
First law: When a conductor cuts the magnetic flux or a changing magnetic 1 Mark
field links with a conductor, an emf is induced in the conductor.
Second law: The magnitude of emf induced in the conductor is directly proportional to the rate of change of flux linking with conductor.

1Mark i.e $e=-N d \emptyset / d t$.

I 11) What is Amorphous metal? Give one application of this metal.
Ans:

Summer - 2017 Examinations
 Model Answer

Subject Code: 17214 (FEE)

Amorphous Metals:

Amorphous Metals means materials that do not possess a particular structure. Metal alloys typically possess crystalline atomic structure. The atoms are arranged in particular order with repetitive pattern. The amorphous metal alloys differ in crystalline structure. The atoms are arranged in random configuration.
Applications-
a) Making nanocomposites for field electron emission devices.
b) Manufacturing cores of high efficiency distribution transformers
c) Manufacturing cores of special transformers
d) Manufacturing magnetic sensors
e) Magneto-motive sensors

I 12) State the factors affecting hysteresis loss.
Ans:
i) Flux density
ii) Frequency
iii) Volume of the magnetic material

1 Mark for definition
iv) Nature of magnetic material

II Attempt any four of the following:
II 1) Why is Source conversion needed? Also explain how voltage source can be converted into an equivalent current source. Explain with suitable figures.
Ans:
Need of Source Conversion:

- To simplify complex electrical network.
- To find equivalent source (voltage or current) in network.
- To facilitate network analysis.

Source Conversion:

Practical voltage source can be converted to equivalent current source \& vice versa.
$R_{\text {se }}$ and $R_{\text {sh }}$ are internal resistance of sources. The equivalent current source is given by,

$$
I=\frac{V}{R_{s e}}
$$

1 Mark
And internal resistance of current source is given by,

$$
R_{s h}=R_{s e}
$$

1 Mark
II 2) A potential difference of 200 V is applied to copper field coil at a temperature of $15^{\circ} \mathrm{C}$ and the current is 10 A . What will be the mean temperature of the coil when the current has fallen to 5 A , the applied voltage

Summer - 2017 Examinations
 Model Answer

being the same as before? $\boldsymbol{\alpha}_{15}=\frac{1}{534.5} /{ }^{\circ} \mathrm{C}$
Ans:

Given:

At temperature $\mathrm{t}_{1}=15^{\circ} \mathrm{C}, V=200 \mathrm{~V}$ and $\mathrm{I}=10 \mathrm{~A}$
$\therefore \mathrm{R}_{15}=$ Resistance of the coil at $15^{\circ} \mathrm{C}=\mathrm{V} / \mathrm{I}=200 / 10=\mathbf{2 0} \boldsymbol{\Omega}$
At temperature $t_{2}=t^{\circ} \mathrm{C}, \quad V=200 \mathrm{~V}$ and $I=5 \mathrm{~A}$
$\therefore \mathrm{R}_{\mathrm{t}}=$ Resistance of the coil at $\mathrm{t}^{\circ} \mathrm{C}=\mathrm{V} / \mathrm{I}=200 / 5=40 \Omega$
Resistance-temperature coefficient at $15^{\circ} \mathrm{C} \quad \alpha_{15}=\frac{1}{534.5} /{ }^{\circ} \mathrm{C}$
Considering the temperature rise from $15^{\circ} \mathrm{C}$ to $t^{\circ} \mathrm{C}$, the resistance of the coil changes from 20Ω to 40Ω. The resistance of coil at $t^{\circ} \mathrm{C}$ can be expressed as,

$$
\begin{gathered}
R_{t}=R_{15}\left\{1+\alpha_{15}(t-15)\right\} \\
40=20\left\{1+\frac{1}{534.5}(t-15)\right\} \\
\frac{40}{20}=2=1+\frac{1}{534.5}(t-15) \\
1=\frac{1}{534.5}(t-15) \\
(t-15)=534.5 \\
\therefore \mathbf{t}=\mathbf{5 1 9 . 5}{ }^{\circ} \mathbf{C} \\
\mathbf{O R}
\end{gathered}
$$

The resistance-temperature coefficient at $15^{\circ} \mathrm{C}$ is given by,

$$
\begin{gathered}
\alpha_{15}=\frac{R_{t}-R_{15}}{R_{15}(t-15)} /{ }^{\circ} \mathrm{C} \\
\frac{1}{534.5}=\frac{40-20}{20(t-15)} \\
(t-15)=534.5 \\
\therefore \mathbf{t}=\mathbf{5 1 9 . 5}{ }^{\circ} \mathbf{C}
\end{gathered}
$$

II 3) Prove that $I_{1}=\frac{\mathrm{IR}_{2}}{R_{1}+\mathrm{R}_{2}}$ in the parallel combination of two resistors R_{1} and R_{2}.
Ans:
$I_{1}=\frac{V}{R_{1}} \quad I_{2}=\frac{V}{R_{2}} \quad \frac{I_{1}}{I_{2}}=\frac{R_{2}}{R_{1}}$
Hence, the division of currents in two branches of a parallel circuit is inversely proportional to
 their resistances. Current in branch can also be expressed in terms of total current drawn by the circuit.

$$
\mathrm{V}=\mathrm{IR}=\mathrm{I}_{1} \times \mathrm{R}_{1}=\mathrm{I}_{2} \times \mathrm{R}_{2}
$$

1 Mark
Where, R is the equivalent resistance of parallel combination of R_{1} and R_{2}.

$$
I_{1}=I \times \frac{R}{R_{1}}
$$

1 Mark
But, Equivalent resistance $=R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

$$
\mathrm{I}_{1}=\mathrm{I} \times \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

Summer - 2017 Examinations Model Answer

II 4) State and explain Kirchhoff's current law and voltage law.
Ans:

Kirchhoff's laws:

1) Kirchhoff's Current Law (KCL): It states that in any electrical network, the algebraic sum of the currents meeting at a node (point or junction) is zero.
ie $\Sigma \mathrm{I}=0$
At junction point P,
$\mathrm{I}_{1}-\mathrm{I}_{2}-\mathrm{I}_{3}+\mathrm{I}_{4}+\mathrm{I}_{5}-\mathrm{I}_{6}=0$
Sign convention:
Incoming current at the node is

2 Marks
considered to be positive and outgoing current to be negative.
2) Kirchhoff's Voltage Law
(KVL):
It states that, in any closed path in an electric circuit, the algebraic sum of the emfs and products of the currents and resistances is zero.
ie $\Sigma \mathrm{E}-\Sigma \mathrm{IR}=0$ or $\Sigma \mathrm{E}=\Sigma \mathrm{IR}$ OR
It states that, in any closed path in an electrical circuit, the total voltage rise is equal

to the total voltage drops.
ie Voltage rise $=$ Voltage drop
Referring to the circuit, by KVL we can write,
$\left(\mathrm{E}_{1}-\mathrm{E}_{2}+\mathrm{E}_{3}\right)=\left(\mathrm{I}_{1} \mathrm{R}_{1}-\mathrm{I}_{2} \mathrm{R}_{2}+\mathrm{I}_{3} \mathrm{R}_{3}-\mathrm{I}_{4} \mathrm{R}_{4}\right)$
Sign convention:
While tracing the loop or mesh, the voltage rise is considered as positive and voltage drop is considered as negative.
II 5) Two batteries A and B are connected in parallel and a load of 10 ohm is connected across their terminals. A has an e.m.f. of 12 V and an internal resistance of 2 ohm , B has an emf of 8 V and an internal resistance of 1 ohm . Use Kirchhoff's laws to determine the values and direction of the currents flowing in each of the batteries and in the external resistance. Refer fig. 1.

Fig. 1

Ans:

Apply KVL to
Loop abca

$$
\begin{array}{r}
-2 x+12-10(x+y)=0 \\
12 x+10 y=12 \ldots \tag{i}
\end{array}
$$

Loop adca

$$
\begin{array}{r}
-1 y+8-10(x+y)=0 \\
10 x+11 y=8 \ldots \tag{ii}
\end{array}
$$

1 Mark
By solving equation (i) and (ii).

$$
\begin{gathered}
y=\frac{-12}{16} \\
y=-\mathbf{0 . 7 5} \mathbf{a m p}
\end{gathered}
$$

$$
1 \text { Mark }
$$ 1/2 Mark

Direction of actual current \boldsymbol{y} is opposite to that shown in figure.
By substituting $y=-0.75 \mathrm{amp}$ in equation (i)

$$
\begin{aligned}
& \qquad \begin{array}{rl}
12 x+10 \times(-0.75)=12 \\
\boldsymbol{x}=\mathbf{1 . 6 2 ~ a m p} \\
\text { Current through resistance } 10 \mathrm{ohm}=(\mathbf{x}+\mathbf{y})=1.62-0.75=\mathbf{0 . 8 7 5} \mathbf{a m p} & 1 / 2 \text { Mark } \\
1 \text { Mark }
\end{array}
\end{aligned}
$$

II 6) Define the following terms of a magnetic circuit:
a) MME
b) Ampere turns
c) Reluctance
d) Permeance

Ans:
i) MME (MMF): It is the force that drives magnetic flux through magnetic circuit. It is measured in amp-turns.
ii) Ampere Turns: It is the product of current I through a coil having number of turns N . It is the magneto-motive force (MMF) which sets

1 Mark up the magnetic flux in the magnetic circuit.

$$
\text { Amp-turns }=\mathrm{I} \times \mathrm{N}
$$

iii) Reluctance: The opposition offered by magnetic circuit to establish

1 Mark magnetic flux in it, is called as "Reluctance". Its unit is AT/weber.
iv) Permeance: It is the reciprocal of reluctance and implies the readiness with which magnetic flux is developed. It is measured in weber/AT.
III Attempt any four of the following:
$(4 \times 4=16)$
III1) Derive the equation to find capacitance of a capacitor having medium partly air.
Ans:
As shown in figure, the medium consists partly air parallel sided dielectric slab of thickness ' t ' and relative permittivity ϵ_{r}.
The electric flux density $\mathrm{D}=\mathrm{Q} / \mathrm{A}$ is the same in both media.
But electric intensities are different.

Summer - 2017 Examinations Model Answer

Subject Code: 17214 (FEE)
$\mathrm{E}_{1}=\frac{D}{\epsilon o \in r}$
in the dielectric medium
$\mathrm{E}_{2}=\frac{D}{\epsilon o}$
in the air
P.D. between plates,
$\mathrm{V}=\mathrm{E}_{1} . \mathrm{t}+\mathrm{E}_{2}(\mathrm{~d}-\mathrm{t})$
$=\frac{D}{\epsilon o \in r} \times \mathrm{t}+\frac{D}{\epsilon o} \times(\mathrm{d}-\mathrm{t})$
$=\frac{D}{\epsilon_{o}}\left(\frac{t}{\epsilon r}+d-t\right)$
$=\frac{Q}{\epsilon O A}\left[d-\left(t-\frac{t}{\epsilon r}\right)\right]$
$\therefore \quad \frac{Q}{V}=\frac{\in 0 . A}{\left[d-\left(t-\frac{t}{\epsilon r}\right)\right]}$

1 Mark for
E_{1} and E_{2}
1 Mark for V

1 Mark for diagram

1 Mark for C

III2) Draw the arrangement by which a capacitor C may be charged through a resistance R and explain it in brief.
Ans:
Charging of a capacitor:
Fig(a) shows the circuit arrangement for charging of capacitor through a resistor. Here R and C are in series, V is the DC voltage source and SW is the switch. When switch SW is

(a) Charging circuit of a capacitor

1 Mark for circuit diagram closed, say at time instant $\mathrm{t}=0$, the DC voltage is supplied to RC combination. At $\mathrm{t}=0$, the capacitor acts as short circuit. So the voltage across capacitor is zero. The full supply voltage appears across resistance R . Therefore, the current is given by,

$$
i_{c}(0)=I_{0}=\frac{V}{R}
$$

The voltage across capacitor slowly builds up exponentially and finally reaches to Supply voltage V at instant $\mathrm{t} \rightarrow \infty$. The initial charging current falls exponentially to zero as $t \rightarrow \infty$.
The voltage across the capacitor at any instant t is given by,

2 Marks for explanation
$v_{c}=V\left(1-e^{-\frac{t}{\tau}}\right)$
Where, V is the maximum voltage to which capacitor can charge (supply voltage)

$$
\tau=\mathrm{RC}=\text { charging time-constant of the circuit. }
$$

The instantaneous charging current is given by,

$$
i_{c}=I_{0} e^{-\frac{t}{\tau}}
$$

where, I_{0} is the maximum current at instant $\mathrm{t}=0$
The charging curves for voltage and current are shown in the fig (b) and (c) respectively.

(b) Variation in capacitor voltage while charging

(c) Variation in capacitor current while charging

III3) Three capacitors A, B, C have capacitances 10,50 and $25 \mu \mathrm{~F}$ respectively. Calculate (a) charge on each when connected in parallel to a 250 V supply (b) Total capacitance.

Ans:

Given $\mathrm{C}_{1}=10 \mu \mathrm{~F}, \mathrm{C}_{2}=50 \mu \mathrm{~F}, \mathrm{C}_{3}=25 \mu \mathrm{~F}$ in parallel with 250 V supply

$$
\begin{aligned}
& \mathrm{Q}_{1}=\mathrm{C}_{1} \mathrm{~V}=10 \times 250=\mathbf{2 5 0 0} \boldsymbol{\mu} \mathrm{C} \\
& \mathrm{Q}_{2}=\mathrm{C}_{2} \mathrm{~V}=50 \times 250=\mathbf{1 2 5 0 0} \boldsymbol{\mu} \mathrm{C} \\
& \mathrm{Q}_{3}=\mathrm{C}_{3} \mathrm{~V}=25 \times 250=\mathbf{6 2 5 0} \boldsymbol{\mu} \mathrm{C} \\
& \text { Total capacitance }\left(\mathrm{C}_{\mathrm{T}}\right)=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \text { as capacitors are in parallel } \\
& =10+50+25=\mathbf{8 5} \mu \mathrm{F}
\end{aligned}
$$

1 Mark each charge $=3$ Marks

1 Mark
III4) A $50 \mu \mathrm{~F}$ capacitor is charged from a 200 V supply. After being disconnected, it is immediately connected in parallel with $30 \mu \mathrm{~F}$ capacitor. Find (a) p.d across the combination (b) the electrostatic energies before and after the capacitors are connected in parallel.

Ans:

Given: $\mathrm{C}=50 \mu \mathrm{~F}$ is charged by 200 V
The charge on $50 \mu \mathrm{~F}$ capacitor is, $\mathrm{Q}=\mathrm{CV}=50 \times 200=10000 \mu \mathrm{C}$
1 Mark for
When the two capacitor are connected in parallel, the equivalent or total
capacitance is, $\quad \mathrm{C}_{\mathrm{t}}=50+30=80 \mu \mathrm{~F}$
Since second capacitance of $30 \mu \mathrm{~F}$ is uncharged before connection, the net charge after parallel connection remains same as that was on $50 \mu \mathrm{~F}$, however it gets distributed on $50 \mu \mathrm{~F}$ and $30 \mu \mathrm{~F}$.
a) P.d. across the combination:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{T}} & =\text { Charge / total capacitance }=\mathrm{Q} / \mathrm{C}_{\mathrm{t}} \\
& =10000 / 80=125 \mathrm{~V}
\end{aligned}
$$

b) Electrostatic energy before the connection:

$$
=1 / 2 \mathrm{CV}^{2}=1 / 2 \times 50 \times 10^{-6} \times 200^{2}=1 \text { joule }
$$

1 Mark
c) Electrostatic energy after the connection:

$$
=1 / 2 \mathrm{C}_{\mathrm{t}} \mathrm{~V}_{\mathrm{T}}^{2}=1 / 2 \times 80 \times 10^{-6} \times 125^{2}=0.625 \text { joule }
$$

1 Mark
III5) What is magnetic hysteresis? What is the cause of hysteresis?
Ans:
Magnetic hysteresis: When a magnetic material is subjected to cycle of magnetization, it is found that flux density (B) in the material lags behind applied magnetizing force (H). This phenomenon is known as magnetic hysteresis.
Cause: This is due to non-linear relationship between magnetic field intensity and magnetic flux density. When we attempt to produce magnetic field through magnetic material, the domains orient along the direction of field. The magnetic material has tendency to oppose the movement of orientation, due to which the flux density lags behind the magnetic field

Summer - 2017 Examinations
 Model Answer

Subject Code: 17214 (FEE)
intensity.
III6) Define the following terms as referred to battery.
a) E.M.F
b) Internal resistance
c) Ah efficiency
d) WAh efficiency

Ans:

a) E.M.F :

The electromotive force of a battery is defined as the energy spent or 1 Mark the work done in taking a unit positive charge around the complete circuit of the battery i.e., in the circuit outside the cell as well as in the electrolyte inside the cell.
When no current is drawn from a battery i.e. when the battery is in open-circuit condition, then potential difference between the terminals of the battery is its E.M.F.
b) Internal resistance:

The resistance within the source that causes a drop in the source voltage when load current flows, is called internal resistance.
c) AH efficiency:

Ampere-hour efficiency of a battery is defined as the ratio of the output of battery in amp-hr during discharging to the input amp-hr of battery during charging.

$$
=\frac{I_{d} T_{d}}{I_{c} T_{c}} \quad \eta_{A h}=\frac{a m p-\text { hours during discharge }}{\text { amp - hours during charge }}
$$

where, Id be the discharge current,
Td be the time of discharge,
Ic be the charging current, T_{c} be the time of charging
d) WAh Watt - Hr efficiency:

The ratio of the output of a battery, measured in watt-hours, to the input required to restore the initial state of charge, under specified conditions, is called Watt-hr efficiency.

$$
\begin{aligned}
& \eta_{W h}=\frac{\text { watt hours during discharge }}{\text { watt hours during charge }} \\
& =\frac{I_{d} T_{d} V_{d}}{I_{c} T_{c} V_{c}}=\eta_{A h} \frac{V_{d}}{V_{c}}
\end{aligned}
$$

where, Vd be the average potential difference (voltage) of battery during discharge,

Vc be the average potential difference (voltage) of battery during charging.
IV Attempt any four of the following:

IV 1) State any two harmful effects of hysteresis loss. Also draw hysteresis loop for (a) non-magnetic material (b) hard steel

Ans:

Harmful effects of hysteresis loss:

1) Hysteresis loss results in a dissipation of energy which appears as a heating of the magnetic material.
2) It creates buzzing sound.
3) Develops vibrations in core

Hysteresis loop:

1 Mark for each of any two
$=2$ Marks

1 Mark for each
$=2$ Marks

1 Mark

1 Mark Leakage flux: Some flux while passing through the magnetic circuit, leaks through the air surrounding the core. This flux is called as leakage flux.

Useful flux: The flux in the air gap which is actually utilized for various 1 Mark purposes depending upon the application is called as useful flux

Fringing : When the magnetic flux passing or crossing an air gap tends to
1 Mark bulge outwards the iron ring, this effect is called as fringing
IV 3) A mild steel ring having a cross-sectional area of $5 \mathrm{~cm}^{2}$ and mean circumference of 40 cm has a coil of 200 turns wound uniformly around it.

Summer - 2017 Examinations
 Model Answer

Subject Code: 17214 (FEE)
Calculate:
a) Reluctance of the ring
b) Current required to produce a flux of $800 \mu \mathrm{~Wb}$ in the ring.

Assume relative permeability of mild steel as 380 .
Ans:
Data Given:
Cross-sectional area of ring a $=5 \mathrm{~cm}^{2}=5 \times 10^{-4} \mathrm{~m}^{2}$
Length of magnetic path $1=$ Mean circumference $=40 \mathrm{~cm}=0.4 \mathrm{~m}$
No. of turns $\mathrm{N}=200$
Relative permeability of mild steel $\mu_{\mathrm{r}}=380$
Permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
Flux $\phi=800 \mu \mathrm{~Wb}=800 \times 10^{-6} \mathrm{~Wb}$
a) Reluctance $(S)=\frac{l}{\mu_{0} \mu_{r a}}=\frac{0.4}{4 \pi \times 10^{-7} \times 380 \times 5 \times 10^{-4}}$

1 Mark
$=1675315.19 \mathrm{AT} / \mathbf{W b}$
$\mathrm{MMF}=\mathrm{S} \times \phi=1675315.19 \times 800 \times 10^{-6}=1340.25 \mathrm{AT}$
1 Mark
1 Mark
b) Current $\mathrm{I}=\mathrm{MMF} / \mathrm{N}=1340.25 / 200=6.7 \mathbf{~ a m p}$

1 Mark
IV 4) In the network of resistance shown in fig. 2 calculate the network resistance measured between B and C.

Fig. 2
Ans:
Step 1: Converting Inner Star into equivalent Delta

$R_{A B}=R_{A}+R_{B}+\frac{R_{A} R_{B}}{R_{C}}$

$$
\begin{aligned}
& =6+4+\frac{6 \times 4}{3}=18 \Omega \\
R_{B C} & =R_{B}+R_{C}+\frac{R_{B} R_{C}}{R_{A}} \\
& =4+3+\frac{4 \times 3}{6}=9 \Omega \\
R_{C A} & =R_{C}+R_{A}+\frac{R_{C} R_{A}}{R_{B}} \\
& =6+3+\frac{6 \times 3}{4}=13.5 \Omega
\end{aligned}
$$

Step 2: Modified Network
Inner equivalent delta appears in parallel with outer delta.

Step 3: Solving Parallel Combinations

Resistance between $\mathrm{AB}=\frac{9 \times 18}{9+18}=6 \Omega$
Resistance between $\mathrm{BC}=\frac{9 \times 1}{9+1}=0.9 \Omega$
Resistance between $\mathrm{CA}=\frac{1.5 \times 13.5}{1.5+13.5}=1.35 \Omega$
Step 4:

Between B and C, we have two parallel branches:
One has 6Ω in series with 1.35Ω and other branch has only one resistor of 0.9Ω.

Thus $\mathrm{R}_{\mathrm{BC}}=(6+1.35)\|0.9=7.35\| 0.9=\mathbf{0 . 8 0 2 \Omega}$
1 Mark

IV 5) Write down any three similarities between electric and magnetic circuits. Also give one important dissimilarity

Summer - 2017 Examinations
 Model Answer

Subject Code: 17214 (FEE)
Ans
Similarities between Electric and Magnetic Circuits:

Sr. No.	Electric circuit	Magnetic circuit
1	Current: flow of electrons through conductor is current, It is measured in amp.	Flux: lines of force through medium from N pole to S pole form flux. It is measured in weber.
2	EMF: It is driving force for current, measured in volts.	MMF: It is driving force for flux, measured in amp-turn.
3	Resistance: It is opposition of conductor to current, measured in ohms	Reluctance: It is opposition offered by magnetic path to flux, measured in AT/wb.
4	Resistance is directly proportional to length of conductor.	Reluctance is directly proportional to length of magnetic path.
5	For electric circuit we define the conductivity.	For magnetic circuit we define permeability.
6	Electric circuit is closed path for current.	Magnetic circuit is closed path for magnetic flux.
7	For electric circuit I = EMF/resistance	For magnetic circuit $\Phi=$ MMF/reluctance
8	Voltage $=$ IR	M M F = Φ S

1 Mark for

 each of Any three similarities$=$
3 Marks

Dissimilarities between Electric and Magnetic Circuits:

Sr. No.	Electric circuit	Magnetic circuit
1	Electric current flows	Flux does not actually flow (it only gets established or set up)
2	Energy is needed continuously for the flow of current.	Energy is only needed for establishment of field (flux).
3	Current cannot pass through the insulators.	Flux can pass through almost all things including air.
4	Electrical Insulator is available	Magnetic Insulator does not exist.

1 Mark for
Any one disSimilarity $=1$ Mark

1 Mark for classification
$1 / 2$ Mark for each of any two examples of each $=3$ Mark

V Attempt any four of the following:

1 Mark for definition

1 Mark for equation

1 Mark for definition

1 Mark for equation

1 Mark for each of any 4 points $=4$ Marks

Summer - 2017 Examinations
 Model Answer

Subject Code: 17214 (FEE)

5	Types	i) ii)	Self-induced emf Mutual-induced emf	No sub-types

V 3) Derive an expression for energy stored in a magnetic field .
Ans:
Expression for energy stored in a magnetic field:
The energy is stored in magnetic field when current increases and return back when the current decreases.
At instant ' t ' seconds after closer of switch (Refer Fig.), let the current be ' I ' amperes. If current increases by di amperes in dt seconds, then e.m.f. induced in the coil is given by,

$$
\mathrm{e}=-\mathrm{L}(\mathrm{di} / \mathrm{dt}) \text { volts }
$$

The e.m.f. opposes the current and energy drawn from the source.
Component of applied voltage to neutralize the induced e.m.f. $=-\mathrm{e}$ volts.
Therefore Energy absorbed by the magnetic
 field during dt seconds

$$
=\text { Power } \times \text { Time }=(-\mathrm{e}) \mathrm{idt}=\mathrm{L}(\mathrm{di} / \mathrm{dt}) \times \mathrm{i} \times \mathrm{dt}=\mathrm{Li} \text { di joules }
$$

Hence total energy absorbed by the magnetic field when current increases from 0 to I amperes

$$
\begin{aligned}
& \quad E=L \int_{0}^{I} i d i=L\left[\frac{1}{2} i^{2}\right]_{0}^{I}=\frac{1}{2} L I^{2} \\
& \therefore \mathrm{E}=1 / 2 \mathrm{~L} \mathrm{I}^{2} \text { joules } \\
& \text { OR any other equivalent method }
\end{aligned}
$$

V 4) Calculate the inductance of a solenoid of 2000 turns wound uniformly over length of 50 cm on a cylindrical paper tube 4 cm in diameter. The medium is air.
Ans:
Given: $\mathrm{N}=2000, \mathrm{l}=50 \mathrm{~cm}=0.5 \mathrm{~m}, \quad \mathrm{r}=2 \mathrm{~cm}=0.02 \mathrm{~m}$
Step 1: Calculate reluctance S
Cross sectional area of the tube is , $\mathrm{a}=\pi r^{2}=\pi \times(0.02)^{2}$

$$
=1.256 \times 10^{-3} \mathrm{~m}^{2}
$$

Reluctance $\mathrm{S}=\frac{l}{\mu o \mu r a}=\frac{0.5}{4 \boldsymbol{\pi} \times 10^{-7} \times \mathbf{1} \times \mathbf{1 . 2 5 6} \times \mathbf{1 0}^{-\mathbf{3}}}=\mathbf{3 1 6 . 7 8} \times \mathbf{1 0}^{\mathbf{6}} \mathbf{A T} / \mathbf{W b}$
Step 2: Calculate Inductance:

$$
\begin{aligned}
\mathrm{L} & =\frac{N^{2}}{S}=\frac{(2000)^{2}}{316.78 \times 10^{6}} \\
& =\mathbf{0 . 0 1 2 6 2} \mathbf{H}=\mathbf{1 2 . 6 2} \mathbf{~ m H}
\end{aligned}
$$

1 Mark
Stepwise derivation

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC-27001-2005 Certified)

Summer - 2017 Examinations
 Model Answer

Subject Code: 17214 (FEE)
V 5) State any four advantages of A. C. over D. C .
Ans:
Advantages of AC over DC:
i) It is possible to use a transformer.
ii) Distribution efficiency is high.
iii) Generation is easy and economical.
iv) Construction of ac equipment/ machines is robust and simple.

Any four advantages

1 mark
each
v) Installation is less costly.
vi) AC switchgears are simple in construction and operation.
vii) AC system is economical than DC system.
viii) AC system is safer than DC system.

OR

Any equivalent answer.
V 6) Compare series resistive circuit with parallel circuit on any four points.
Ans:
Comparison between Series and Parallel Circuits:

| Sr.
 No. | Series Circuit |
| :--- | :--- | :--- |

VI Attempt any four of the following:

Any four points 1 mark each= 4 Marks

VI1) Describe current charging method of batteries in brief.
Ans:
Constant current method:

Summer - 2017 Examinations Model Answer

Subject Code: 17214 (FEE)
i) In this method, the charging current is kept constant by varying the supply voltage to overcome the increased back emf.
ii) If a charging booster is used, the current supplied by it can be kept constant by adjusting its excitation.

4 Marks
iii) If charged on dc supply, the current is controlled by varying the rheostat connected in the circuit.
iv) The value of charging current should be so chosen that there is no excessive gassing during final stages of charging, the cell temperature should not exceed $45^{\circ} \mathrm{C}$.
v) This method takes a comparatively longer time.

VI2) Compare dry cell with liquid cell on any four points.
Ans:
Comparison between Dry cell and Liquid Cell:

Particulars	Dry Cell	Liquid Cell
Principle of operation	Irreversible chemical action	Reversible chemical action
Cost	Lower	Higher
Life	Lower	Higher
Maintenance	Very low maintenance	Maintenance required at regular intervals

Any four points
1 mark each
$=4$ Marks

VI3) Define the following terms in connection with A.C. generator:
a) Cycle
b) Frequency
c) Time
d) Amplitude

Ans:

i) Cycle: A complete set of variation of an alternating quantity which is repeated at regular interval of time is called a "cycle".

OR
In an ac waveform, each repetition consisting of one positive and one identical negative part is called as one cycle.
ii) Frequency (f): It is defined as the number of cycles completed by an alternating quantity in one second.

1 Mark for
each
Definition
iii) Time (Time period)(T):It is defined as the time taken in seconds by an alternating quantity to complete one cycle.
iv) Amplitude: The maximum value or peak value of an ac quantity is called as its amplitude. It is denoted by $\mathrm{I}_{\mathrm{m}}, \mathrm{V}_{\mathrm{m}}$ etc.
VI4) Write down any two electrical and any two mechanical properties of high conductivity materials.
Ans:
Electrical Properties of high conductivity materials:
i) Low resistivity.
ii) Low temperature coefficient of resistance.

Summer - 2017 Examinations
 Model Answer

Subject Code: 17214 (FEE)
iii) High conductivity.
iv) Low heat dissipation.

Mechanical Properties of high conductivity materials:
i) High mechanical strength to withstand stress and strain.
ii) Malleable to fabricate easily.
iii) Ductile for wire drawing.
iv) Elastic in nature.
two
$=2$ Marks
1 Mark for
each of any
two
$=2$ Marks

1mark for
Classificati on

1) Paramagnetic materials: The relative permeability of such materials is very less but positive (slightly greater than 1) so these materials cannot be magnetized and not suitable to carry the flux from one place to the other. In their case, the individual atomic di-poles are oriented in a random fashion. Following are the paramagnetic materials: magnesium, molybdenum, lithium, Aluminium, Titanium, Platinum.
2) Diamagnetic materials: These materials have relative permeability slightly less than one. Such materials are magnetized opposite to the direction of the external field and due to this they are pushed out of

1 Mark
each for explanation $=3$ Marks

VI6) Find the resistance between the points P and Q in the series parallel network shown in fig. 3

Fig. 3

Summer -2017 Examinations Model Answer

Subject Code: 17214 (FEE)

Ans:

Resistances $180 \Omega, 90 \Omega$ and 20Ω are parallel with each other, their equivalent resistance will be $\frac{1}{R_{P}}=\frac{1}{180}+\frac{1}{90}+\frac{1}{20}=\frac{1}{15}$

1 Mark
$R_{P}=15 \Omega$.
And Resistances 60Ω and 20Ω are parallel with each other, their equivalent resistance will be $R_{P 1}=\frac{60 \times 20}{60+20}=15 \Omega$.
Now the equivalent circuit becomes as shown in figure below.

Resistances 15Ω and 15Ω are in series, their equivalent resistance is,

$$
\mathrm{R}_{\mathrm{S}}=15+15=30 \Omega
$$

Resistance 100Ω and 30Ω are in parallel, their equivalent resistance will be,

$$
\frac{100 \times 30}{100+30}=23.07 \Omega
$$

1 Mark
Now circuit will be as shown in figure.

Resistance 23.07Ω and 10Ω are in series, their equivalent resistance will be $23.07+10=33.07 \Omega$.

The resistance between points P and Q are 33.07Ω.

