I Programme Name/s I I	: Automobile Engineering./ Agricultural Engineering/ Automation and Robotics/ Civil Engineering/ Civil & Rural Engineering/ Construction Technology/ Electrical Engineering/ Electrical Power System/ Instrumentation & Control/ Instrumentation/ Civil & Environmental Engineering/ Mechanical Engineering/ Mechatronics/ Production Engineering
Programme Code :	: AE/ AL/ AO/ CE/ CR/ CS/ EE/ EP/ IC/ IS/ LE/ ME/ MK/ PG
Semester :	: Second
Course Title :	: APPLIED SCIENCE
Course Code :	: 312308

I. RATIONALE

Diploma engineers have to deal with various processes, materials and machines. The comprehension of concepts and principles of Science like Elasticity, motion, Oscillation, Photoelectricity, X rays ,LASER, Nanomaterials, metals, alloys, water treatment ,fuel and combustion, cells and batteries will help the students to use relevant materials, processes and methods for various engineering applications.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to attain following industry/ employer expected outcome through various teaching learning experiences. Apply the principles of physics and chemistry to solve broad-based engineering problems.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Select relevant material in industries by analyzing its physical properties .
- CO2 Apply the concept of simple harmonic motion, resonance and ultrasonic sound for various engineering applications.
- CO3 Apply the concept of modern Physics (X-rays, LASER, Photosensors and Nanotechnology) for various engineering applications.
- CO4 Use the relevant metallurgical processes in different engineering applications.
- CO5 Use relevant water treatment processes to solve industrial problems.
- CO6 Use appropriate fuel and electrolyte for engineering applications.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

				L	ear	ning	Sche	me					As	ssess	ment	Sch	eme				
Course Code	Course Title	Abbr	Course Category/s	C	onta s./W	ct eek	SLH	NLH	Credits		per		Theory			Based on LL & TL Practical		&	Based on SL		Total
		7		CL	TL	LL				Duration	FA-	SA- TH	To	tal	FA-	PR	SA-	PR	SL		Marks
. /											Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
	APPLIED SCIENCE	ASC	DSC	4	-	4	-	8	4	1.5	30	70*#	100	40	50	20	50@	20	-	-	200

Total IKS Hrs for Sem. : 4 Hrs

Abbreviations: CL- ClassRoom Learning , TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.

- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	TLO 1.1 Apply the concept of elasticity and plasticity to select the material for engineering applications. TLO 1.2 Establish relation between given types of moduli of elasticity. TLO 1.3 Predict the behavior of the given metallic wire. TLO 1.4 Explain the relevant Newton's laws of motion for the given moving object. TLO 1.5 Calculate the work, power, energy for the given situation.	 Unit - 1 Properties of matter and kinematics 1.1 Deforming Force and Restoring Force, Elasticity, Plasticity, Rigidity. 1.2 Stress and Strain and their types, elastic limit and Hooke's law, types of moduli of elasticity. 1.3 Stress -Strain diagram, Poisson's ratio, factors affecting elasticity 1.4 Newton's laws of motion, and their applications. 1.5 Angular displacement, angular velocity, angular acceleration, three equations of angular motion, projectile motion, trajectory, range of projectile angle of projection ,time of flight 1.6 Work, power and energy: potential energy, kinetic energy, work –energy principle. 	Improved lecture
2	TLO 2.1 Find the parameters required to analyze the given wave motion and simple harmonic motion. TLO 2.2 Explain the concept of resonance and its applications. TLO 2.3 Describe the properties of given ultrasonic waves. TLO 2.4 Explain the given method of production of ultrasonic waves .	 Unit - II Waves and Oscillations 2.1 Sound waves, amplitude, frequency, time - period, wave-length and velocity of wave, relation between velocity, frequency and time - period of wave. 2.2 Simple Harmonic Motion , Uniform Circular Motion as Simple Harmonic Motion, Equation of simple harmonic motion , Phase of Simple Harmonic Motion. 2.3 Resonance , Application of resonance. 2.4 Resonance concept in prehistoric times, concept of different frequencies (Mantras) used to ignite different chakras in body (IKS). 2.5 Ultrasonic waves, properties of ultrasonic waves. 2.6 Piezoelectric and Magnetostriction method to produce ultrasonic waves . 2.7 Applications of ultrasonic waves. 	Improved lecture Demonstration Video Demonstrations
3	TLO 3.1 Explain properties of photon on basis Planck's hypothesis. TLO 3.2 Explain the construction and working of given photoelectric device. TLO 3.3 Explain the method to produce X-Rays with its properties and engineering applications. TLO 3.4 Differentiate between LASER and ordinary light. TLO 3.5 Explain the given terms related to LASER. TLO 3.6 Describe the properties of nanomaterials and its various	Unit - III Modern Physics (Photoelectricity , X rays, LASER and nanotechnology) 3.1 Planck's hypothesis, properties of photons. 3.2 Photo electric effect: threshold frequency, threshold wavelength, stopping potential, Work function, characteristics of photoelectric effect, Einstein's photoelectric equation 3.3 Photoelectric cell and LDR : principle ,Working and applications 3.4 Production of X-rays by modern Coolidge tube, properties and engineering applications. 3.5 Laser: properties, absorption, spontaneous and stimulated emission, 3.6 Population inversion, active medium, optical pumping, three energy level system, He-Ne Laser. 3.7 Engineering applications of Laser. 3.8 Nanotechnology : Properties of nanomaterials (optical, magnetic and dielectric properties), applications of nanomaterials, Metallic Bhasma (Ancient Ayurveda,	Improved lecture Presentations Demonstration Video Demonstrations

Course Code : 312308

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	applications.	IKS).	
4	TLO 4.1 Describe the extraction process of the ore. TLO 4.2 Explain Mechanical properties of metals. TLO 4.3 State purposes of making alloys. TLO 4.4 Describe methods of preparation of alloys. TLO 4.5 State Composition ,properties and applications of ferrous and nonferrous alloys.	 Unit - IV Metals and Alloys 4.1 Ancient Indian Metallurgy (IKS) 4.2 Metals: Occurrence of metals in free and combined state. Basic concepts : Mineral, ore, gangue, flux and slag, metallurgy. 4.3 Metallurgy:Extraction processes of metal from ore Concentration : Gravity separation, electromagnetic separation, froth floatation, calcination and roasting, Reduction : Smelting, aluminothermic process, Refining,poling, electrorefining. 4.4 Mechanical properties of metals :Hardness, ductility, malleability, torsile strength, toughness, machinability, weldability, forging, soldering, brazing, castability. 4.5 Alloys: Purposes of making alloys with examples. 4.6 Preparation methods of alloys : Fusion, compression. 4.7 Classification of alloys :Ferrous and non-ferrous alloys Ferrous alloys: Composition, properties and applications of low carbon, medium carbon, high carbon steels. Non- ferrous alloy:Composition, Timman Solder, Woods metal. 	Chalk-Board Demonstration Case Study Video Demonstrations
5	TLO 5.1 Explain types of hardness of water. TLO 5.2 List salts causing temporary and permanent hardness to water. TLO 5.3 Describe boiler corrosion and caustic embritlement. TLO 5.4 Explain the given type of water softening process. TLO 5.5 Describe the Wastewater treatment and potable water treatment. TLO 5.6 Solve numerical based on pH and pOH.	 Unit - V Water Treatment 5.1 Hard and soft water, causes of hardness, types of hardness 5.2 Hard water in boilers and prevention: Boiler corrosion, caustic embrittlement, priming and foaming, scales and sludges, and methods of prevention of boiler corrosion. 5.3 Methods of water softening: lime soda process (hot lime soda and cold lime soda process), zeolite process, ion exchange process. 5.4 Potable water treatment: Sedimentation, coagulation, filtration and sterilization . 5.5 Wastewater treatment: Sewage treatment, BOD and COD of sewage water. 5.6 pH and pOH: Concept of pH, pOH, pH Scale, Numerical. 	Chalk-Board Demonstration Case Study Video Demonstrations
6	TLO 6.1 Describe the properties of the given type of fuel. TLO 6.2 Describe Proximate analysis and Ultimate analysis of coal samples. TLO 6.3 Calculate the calorific value of the given solid fuel using Bomb calorimeter. TLO 6.4 Describe fractional distillation of crude petroleum. TLO 6.5 Explain properties of liquid fuels. TLO 6.6 Describe composition, properties of given gaseous fuel with their applications.	 Unit - VI Fuels and Combustion 6.1 Fuel: Calorific value and ignition temperature, classification. 6.2 Solid fuels: Coal, Classification and composition , Proximate analysis, Ultimate analysis, Calorific value of coal by Bomb calorimeter. 6.3 Liquid fuels: Fractional distillation of crude petroleum, boiling range, composition, propertie Knocking, cracking, octane number and cetane number. 6.4 Gaseous fuels: Biogas, LPG, and CNG. Combustion equation of gaseous fuels, mass and volume of air required for complete combustion. 6.5 Green hydrogen: Producing green hydrogen by electrolysis from renewable sources , Advantages and disadvantages of green hydrogen. 6.6 Electrical conductance in metals and electrolytes, specific conductance, equivalent conductance, cell constant 6.7 Cells and batteries :Construction ,working and applications of dry cell, lead acid storage cell H2 - O2 fuel cell, Ni-Cd battery and Lithium ion battery 	Chalk-Board Demonstration Case Study Video Demonstrations

Course Code : 312308

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
	production of green		
	hydrogen by electrolysis.		
	TLO 6.8 Describe		
	construction and working		
	of given cells and batteries.		

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Use Searle's method to determine the Young's modulus of given wire	1	* Determination of Young's modulus of given wire.	2	CO1
LLO 2.1 Compare young's modulii of different materials of wires .	2	Comparison of Young's modulii of given materials of wires.	2	CO1
LLO 3.1 Use of inclined plane to find the downward force.	3	* Determination of relationship between angle of inclination and downward force using inclined plane.	2	CO1
LLO 4.1 Use projectile motion to find the range from initial launch speed and angle	4	*Determination of range of projectile	2	CO1
LLO 5.1 Use helical spring to find force constant .	5	* Determination of force constant using helical spring .	2	CO2
LLO 6.1 Use resonance tube method to determine velocity of sound	6	* Determination of velocity of sound using resonance tube method.	2	CO2
LLO 7.1 Use Simple pendulum to find acceleration due to gravity .	7	* Determination of acceleration due to gravity by using simple pendulum .	2	CO2
LLO 8.1 Use ultrasonic distance – meter to measure distance of object .	8	Determination of distance of object using ultrasonometer.	2	CO2
LLO 9.1 Use ultrasonic interferometer to determine velocity of sound	9	Determination of velocity of ultrasonic sound waves in different liquids using ultrasonic interferometer.	2	CO2
LLO 10.1 Use photo electric cell to find dependence of the stopping potential on the frequency of given light source.	10	Determination of the dependence of the stopping potential on the frequency of given light source .(Virtual Lab)	2	CO3
LLO 11.1 Determine I-V characteristics of the given photo electric cell.	11	* Determination of I-V characteristics of photoelectric cell.	2	CO3
LLO 12.1 Determine I-V characteristics of given light dependent resistor.	12	* Determination of I-V characteristics of LDR.	2	CO3
LLO 13.1 Find divergence of given laser .	13	Determination of the divergence of laser beam.	2	CO3
LLO 14.1 Use LASER beam to find the refractive index of glass plate	14	Determination of refractive index of glass plate using laser beam. (Virtual Lab)	2	CO3
LLO 15.1 Find the wavelength of given laser.		Determination of wavelength of helium neon laser (Virtual Lab)	2	CO3
LLO 16.1 Prepare KMnO4 solution. LLO 16.2 Prepare standard oxalic acid. LLO 16.3 Standardize KMnO4 solution.	16	Standardization of KMnO4 solution using standard oxalic acid and preparation of Fe alloy sample.	2	CO4
LLO 17.1 Set up titration Assembly. LLO 17.2 Record the observations.	17	* Determination of the percentage of iron present in given Haematite ore by KMnO4	2	CO4

MSBTE Approval Dt. 29/11/2023

Course Code : 312308

Practical / Tutorial / Laboratory		Laboratory Experiment / Practical Titles	Number	Relevar
Learning Outcome (LLO)	No	/ Tutorial Titles	of hrs.	COs
LLO 17.3 Calculate percentage of iron in		solution.		
haematite ore by titration method .				
LLO 18.1 Prepare Cu ore sample.	18	* Determination of percentage of copper	2	CO4
LLO 18.2 Calculate percentage of Cu.	10	in given copper ore .	2	04
LLO 19.1 Prepare EDTA solution of		*Calculation of total hardness, temporary		
known concentration.	19	hardness and permanent hardness of water	2	CO5
LLO 19.2 Determine total hardness of	sample by EDTA method.		2	05
water by titration.		sample by EDTA method.		
LLO 20.1 Prepare acid solution of known				
concentration.	20	* Determination of the alkalinity of a	2	COL
LLO 20.2 Determine alkalinity of water	20	given water sample.	2	CO5
sample.		0		
		Determination of turbidity of a given		
LLO 21.1 Determine turbidity by using a	21	water sample by Nephelometric method by	2	CO5
Nephelometer or simulation.	1	using Nephelometer or simulation.	_	005
LLO 22.1 Set up titration Apparatus				
LLO 22.2 Record the observations.	22	Determination of dissolved oxygen in the	2	CO5
LLO 22.3 Calculate dissolved oxygen.	22	given water sample.	2	0.05
LLO 23.1 Prepare AgNO3 Solution of				1
known concentration.		Determination of chloride content in the		
LLO 23.2 Calculate chloride content in	23	given water sample by Mohr's method.	2	CO5
water sample.		given water sample by Moni s method.		
			-	
LLO 24.1 Use universal indicator for PH		* Determination of pH value of given		
values.	24	solution using pH meter and universal	2	CO5
LLO 24.2 Calculate PH value by using PH		indicator.		
meter.				
LLO 25.1 Use of oven for appropriate		* Determination of the moisture and ash		
temperature settings.	25	content in a given coal sample using	2	COE
LLO 25.2 Calculate moisture and ash		proximate analysis.	_	
content in coal samples.	-			
LLO 26.1 Set up a Bomb Calorimeter.	26	* Determination of calorific value of	2	CO6
LLO 26.2 Calculate calorific value.	20	given solid fuel using Bomb calorimeter.	-	000
LLO 27.1 Use gravimetric analysis	-	Calculate the percentage of Sulphur in a		
method	27	given coal sample by ultimate analysis.	2	CO6
LLO 27.2 calculate the percentage of	21	(Gravimetric analysis)	2	000
Sulphur.		(Gravinicule analysis)		
LLO 28.1 Standardize conductivity meter.		Determination of conductance of given		
LLO 28.2 Measure the conductance of	28	Determination of conductance of given electrolyte by using a conductivity meter.	2	CO6
given solutions.		electrolyte by using a conductivity meter.		
LLO 29.1 Set up conductometric titration				\
assembly.		* Determination of specific conductance		×
LLO 29.2 Record conductance.	29	and equivalence conductance of given salt	2	COG
LLO 29.3 Determine specific conductance		sample solution.		
and equivalence conductance.				
LLO 30.1 Set up conductometric titration				
assembly.		Determination of equivalence point of		
LLO 30.2 Record conductance.	30	acetic acid and ammonium hydroxide	2	COG
LLO 30.2 Determine equivalence point.		using conductivity meter.		
				I
Note : Out of above suggestive LLOs -				
 '*' Marked Practicals (LLOs) Are mar Minimum 80% of above list of lab ex Judicial mix of LLOs are to be performed 	perin	nent are to be performed.		

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING) : NOT APPLICABLE

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Searle's apparatus(with slotted mass of 0.5 kg each)	1,2
2	An inclined plane , a trolly or a roller , pan , weight box , spring balance spirit level, strong thread , meter scale .	3
3	Retort stand, helical spring, 6 slotted weight of 50 grams ., scale, stop watch.	4
4	Resonance tube , Tuning forks of different frequencies	5
5	Metallic bob , strong thread , stopwatch .	6
6	Ultrasonometer	7
7	ultrasonic interferometer	8
8	Experimental setup for characteristics of photoelectric cell	9,10
9	Experimental setup for characteristics of LDR, optical bench .Source of light ,LDR .	11
10	Laser Source (He Ne, diode laser), optical bench , graph paper, glass plate	12,13,14
11	Electronic balance, with the scale range of 0.001g to 500g. pan size 100 mm; response time 3-5 sec.; power requirement 90-250 V, 10 watt.	All
12	Nephelometer ; Auto-ranging from 20-200 NTU,+/- 2% of reading plus 0.1 NTU, power 220 Volts +/- 10% AC 50 Hz	21
13	pH meter reading up to pH14; ambient temp40 to 700 C.; pH/mV resolution:13 bit	24
14	Electric oven inner size 18"x18"x18"; temperature range 100 to 2500 C with the capacity of 40 lt.	25
15	Bomb calorimeter Temperature Resolution:0.001°C Oxygen Filling Automatic /Manual	26
16	Conductivity meter; conductivity range – 0.01 uS /cm to 200 mS/cm, Cell constant – digital 0.1 to 2.00; Temp. range – 0 to 100°C	28,29,30

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	Ι	Properties of matter and kinematics	CO1	9	3	4	4	11
2	II	Waves and Oscillations	CO2	10	3	5	4	12
3	III	Modern Physics (Photoelectricity , X rays, LASER and nanotechnology)	CO3	11	3	5	4	12
4	IV	Metals and Alloys	CO4	10	2	3	5	10
5	V	Water Treatment	CO5	8	3	4	4	11
6	VI	Fuels and Combustion	CO6	12	3	5	6	14
		Grand Total		60	17	26	27	70

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

- Two unit tests of 30 marks (Physics 15 marks, Chemistry-15 marks) and average of two unit tests.
- For laboratory learning 50 marks (Physics 25 marks, Chemistry-25 marks).

Summative Assessment (Assessment of Learning)

- End semester assessment of 50 marks for laboratory learning (Physics 25 marks, Chemistry-25 marks).
- End semester assessment of 70 marks through online MCQ examination.

XI. SUGGESTED COS - POS MATRIX FORM

Course Outcomes (COs)		5	Progra	amme Outco	mes (POs)	19	Ъ.	9 01	ogram Specifi itcom (PSOs	ic es*
(003)	PO-1 Basic	PO-2	PO-3	PO-4	PO-5	PO-6 Project	PO-7	PSO-	PSO-	PSO-

	and Discipline Specific Knowledge		Design/ Development of Solutions	Engineering Tools	Engineering Practices for Society, Sustainability and Environment	Management	Life Long Learning	1	2	3
CO1	3	1	1	1	1	1	2			
CO2	3	1	1	1	1	1	2	100		
CO3	3	2	1	1	1	1	2	1	-	
CO4	3	1	-	1	2	2	1			
CO5	3	2	1	2	2	2	1			
CO6	3	1	-	1	2	2	1	0		
			2,Low:01, No	Mapping: -						

*PSOs are to be formulated at institute level

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number
1	Aryabhatta	The Surya Siddhanta	Baptist mission press, Calcutta
2	Haliday, David; Resnik, Robert and Walker, Jearl	Fundamentals of Physics	John Wiley & sons, Hoboken, USA, 2014 ISBN : 812650823X.
3	Hussain Jeevakhan	Applied Physics II	Publisher: Khanna Book Publishing ISBN: 9789391505578.
4	Narlikar, J.V.;Joshi , A. W.; Ghatak A.K. et al	Physics Textbook Part I - Class XII	National Council of Education Research and Training, New Delhi, 2013, ISBN : 8174506314
5	Narlikar, J.V.;Joshi , A. W.; Ghatak A.K. et al	Physics Textbook Part II - Class XII	National Council of Education Research and Training, New Delhi, 2013, ISBN : 8174506713
6	Jain and Jain	Engineering Chemistry	National Council of Education Research and Training, New Delhi, 2010, ISBN : 8174505083
7	Dara, S. S.	Engineering Chemistry	National Council of Education Research and Training, New Delhi, 2015, ISBN : 8174505660
8	Bagotsky V.S.	Fundamental of electrochemistry	National Council of Education Research and Training, New Delhi, 2013, ISBN : 8174506314.
9	Agnihotri Rajesh	Chemistry for Engineers	Wiley India Pvt. Ltd. New Delhi, 2014, ISBN: 9788126550784.
10	Anju Rawlley, Devdatta V. Saraf	Applied Chemistry with Lab Manual	Khanna Book Publishing Co. (P) Ltd. New Delhi, 2021, ISBN- 978-93-91505-44-8
11	Vairam S.	Engineering Chemistry	Wiley India Pvt. Ltd. New Delhi, 2013, ISBN: 9788126543342

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://www.iberdrola.com/sustainability/green-hydrogen	Green hydrogen
2	https://vedicheritage.gov.in/vedic-heritage-in-present-conte xt/metallurgy	Ancient indian metallurgy (IKS)
3	https://vlab.amrita.edu/?sub=2&brch=193∼=575&cnt=4	Determine turbidity by using a simulation
4	https://www.britannica.com/science/metallurgy	Metals and alloy
5	https://phet.colorado.edu/en/simulations/ph-scale	PH and POH
6	https://archive.nptel.ac.in/courses/103/105/103105110/	Solid fuel
7	www.physicsclassroom.com	Concepts of Physics
8	www.fearofphysics.com	Fundamental terms in Physics
9	https://iksindia.org	IKS