Template: Study Material

<mrs.m.r.abhang></mrs.m.r.abhang>	<8/7/2020>	<mr.a.d.wandhekar></mr.a.d.wandhekar>
Key words Variance, coefficient of variance	Learning Objective: Determine the variance and coefficient of variance of given grouped and ungrouped data and justifies the consistency of given simple sets of data.	If $\sigma = 5.4$, mean=44 find coefficient of variance. Solution: Coefficient of variance=
Key Questions Define variance. How to check consistency of two sets?	Concept Map Variance Coefficient of variance $v_1 = CV$ for set A $v_2 = CV$ for set B Set A is more consistent	$\frac{\sigma}{x} \times 100$ $= \frac{5.4}{44} \times 100 = 12.273$

Explanation of Concept

Variance

The square of standard deviation is called the variance.

Raw data

Variance = (S.D.)² =
$$\sigma^2 = \sum \frac{d_i^2}{N}$$

Coefficient of variance
$$=\frac{\text{S.D.}}{\text{Mean}} \times 100$$

$$=\frac{\sigma}{\bar{x}} \times 100$$

Example:

Find the variance and coefficient of variance of the following data:

Solution:

$$\bar{x} = \frac{\sum x_i}{N}$$

$$= \frac{49 + 63 + 46 + 59 + 65 + 52 + 60 + 54}{8}$$

$$\therefore \bar{\mathbf{x}} = \mathbf{56}$$

Xi	$\mathbf{d_i} = \mathbf{x_i} - \ \bar{\mathbf{x}}$	d_i^2
49	- 7	49
63	7	49
46	- 10	100
59	3	9
65	9	81
52	- 4	16
60	4	16
54	- 2	4
		$\sum d_i^2 = 324$

S.D.
$$=\sigma = \sqrt{\frac{d_i^2}{N}} = \sqrt{\frac{324}{8}}$$

$$= 6.363$$
Variance = $(S.D.)^2 = (6.363)^2$
= 40.487

Coefficient of variance
$$=\frac{\sigma}{\bar{x}} \times 100$$

= $\frac{6.363}{56} \times 100$

Variance for ungrouped data:

1) Calculate the mean and variance for the data:

X	10	20	30	40	50
f	12	15	17	11	9

Solution:

Key Definitions/ Formulas

Variance= σ^2

Coefficient of variance=

$$\frac{\sigma}{\overline{x}} \times 100$$

Xi	$\mathbf{f_i}$	f_ix_i	$\mathbf{d}_{\mathbf{i}} = (\mathbf{x}_{\mathbf{i}} - \bar{\mathbf{x}})$	d_i^2	$f_i d_i^2$
10	12	120	- 18.437	339.92	4079.04
20	15	300	- 8.437	71.182	1067.73
30	17	510	1.563	2.442	41.541
40	11	440	11.563	133.70	1470.7
50	9	450	21.563	464.96	4184.64
	$N = \Sigma f_i = 64$	$\Sigma f_i x_i = 1820$			$\Sigma f_i d_i^2 = 10843.65$

Mean =
$$\bar{x} = \frac{1820}{64}$$

$$\bar{x} = 28.437$$

S.D. =
$$\sigma = \sqrt{\frac{\sum f_i d_i^2}{N}}$$

= $\sqrt{\frac{10843.65}{64}}$

S.D. =
$$\sigma = 13.016$$

Variance =
$$(S.D.)^2$$

= $(13.016)^2$

Variance = 169.416

Variance for grouped data:

1) Find the variance and coefficient of variance of the following data:

C.I.	0-10	10-20	20-30	30-40	40-50
Frequency	14	23	27	21	15

Solution:

Class	fi	Xi	$f_i x_i$	$\mathbf{d_i} = \mathbf{x_i} - \bar{\mathbf{x}} $	d_i^2	$f_i d_i^2$
0-10	14	5	70	20	400	5600
10-20	23	15	345	10	100	2300
20-30	27	25	675	0	0	0
30-40	21	35	735	10	100	2100
40-50	15	45	675	20	400	6000
	$N = \Sigma f_i$ $= 100$		$\Sigma f_i x_i = 2500$			$\Sigma f_i d_i^2 = 16000$

Mean =
$$\bar{x} = \frac{\Sigma f_i x_i}{N} = \frac{2500}{100} = 25$$

S.D. = $\sigma = \sqrt{\frac{\Sigma f_i d_i^2}{N}} = \sqrt{\frac{16000}{100}}$

S.D. = 12.649
Variance =
$$(S.D.)^2 = \sigma^2 = (12.649)^2$$

= 159.997

$$Variance = 160$$

Coefficient of variance =
$$\frac{\text{S.D.}}{\text{Mean}} \times 100$$

= $\frac{12.649}{25} \times 100$
= 50.596%

Solved word Problem

An analysis of monthly wages paid to the workers in two firms A and B is as follows:

	Α	В
Avg.	186	175
S.D.	9	10

Which firm is more consistent? Solution: Let

 v_1 and v_2 be coefficient of variations for firms A and B

$$v_1 = \frac{\sigma}{x} \times 100$$
$$= \frac{9}{186} \times 100$$
$$= 4.839$$

$$v_2 = \frac{\sigma}{x} \times 100$$
$$= \frac{10}{175} \times 100$$
$$= 5.714$$

 $v_1 < v_2$ \therefore Firm A is more consistent.

Comparison of Two Sets of Observations:

Coefficient of variance is the most important relative measure of dispersion .

If two sets of observations are given, to find which set is more consistent, we have to find coefficient of variations. Less is the coefficient of variance the set is more consistent.

Example:

The data of runs scored by two batsman A and B in five one day matches is given below:

Batsman	Average runs scored	S.D.
A	44	5.1
В	54	6.31

State which batsman is more consistent?

Solution: Let v_1 and v_2 be coefficients of variance for batsman A and B.

$$v_1 = \frac{\sigma}{x} \times 100$$

$$= \frac{5.1}{44} \times 100 = 11.59$$

$$v_2 = \frac{\sigma}{x} \times 100$$

$$= \frac{6.31}{54} \times 100$$

$$= 11.68$$

$$\therefore v_1 < v_2$$

:. Batsman A is more consistent.

	Application of Concept/ Examples in real life	Link to YouTube/ OER/
	Coefficient of variance is used in engineering for quality control. It is also used in biochemistry ,	video
	medical physics, biology, psychology, pathology, social sciences etc.	https://www.ck12.org/boo
	The coefficient of variation shows the extent of variability of data in a sample in relation to the	k/CK-12-Probability-and-
	mean of the data.	Statistics-
		Concepts/section/5.9/
Key Take away from th	is UO : Variance	<u> </u>
Rey Take away from th	Coefficient of variance	
	Consistency of sets	
	Consistency of sets	