

Page 1 of 23

SUMMER-2022 EXAMINATION
Subject Name: Programming with Python Model Answer Subject Code: 22616

Important Instructions to examiners:

1. The answers should be examined by key words and not as word-to-word as given in
the model answer scheme.

2. The model answer and the answer written by candidate may vary but the examiner
may try to assess the understanding level of the candidate.

3. The language errors such as grammatical, spelling errors should not be given more
Importance (Not applicable for subject English and Communication Skills.

4. While assessing figures, examiner may give credit for principal components
indicated in the figure. The figures drawn by candidate and model answer may vary.
The examiner may give credit for any equivalent figure drawn.

5. Credits may be given step wise for numerical problems. In some cases, the assumed
constant values may vary and there may be some difference in the candidate’s
answers and model answer.

6. In case of some questions credit may be given by judgement on part of examiner of
relevant answer based on candidate’s understanding.

7. For programming language papers, credit may be given to any other program based
on equivalent concept.

8. As per the policy decision of Maharashtra State Government, teaching in
English/Marathi and Bilingual (English + Marathi) medium is introduced at first year
of AICTE diploma Programme from academic year 2021-2022. Hence if the students
in first year (first and second semesters) write answers in Marathi or bilingual
language (English +Marathi), the Examiner shall consider the same and assess the
answer based on matching of concepts with model answer.

Q.

No.
Sub

Q. N.
Answer Marking Scheme

1 Attempt Any FIVE of the following 10

 a) Name different modes of Python
Python has two basic modes:

• Script (Normal Mode)

• Interactive Mode

2M (1m each)

 b) List identity operators in python
Identity operators in Python are

• is

• is not

2M (1m each)

 c) Give two differences between list and tuple

List Tuple

Lists are mutable Tuples are immutable

Lists consume more memory Tuple consume less memory
as compared to the list

Lists have several built-in
methods

Tuple does not have many
built-in methods.

The unexpected changes and
errors are more likely to occur

In tuple, it is hard to take
place.

2M (1m for each
difference, any 2
difference)

Page 2 of 23

The List has the variable
length

The tuple has the fixed length

List operations are more error
prone.

Tuples operations are safe

Lists can be used to store
homogeneous and
heterogeneous elements.

Tuples are used to store only
heterogeneous elements.

List is useful for insertion and
deletion operations.

Tuple is useful for readonly
operations like accessing
elements.

List iteration is slower and is
time consuming.

Tuple iteration is faster.

 d) Explain Local and Global variable
Local Variables: Local variables are those which are initialized
inside a function and belongs only to that particular function. It
cannot be accessed anywhere outside the function
Example:
def f():
 # local variable
 s = "I love Python Programming"
 print(s)
Driver code
f()
Output
I love Python Programming

Global Variables: The global variables are those which are defined
outside any function and which are accessible throughout the
program i.e. inside and outside of every function.
Example:
This function uses global variable s
def f():
 print("Inside Function", s)

Global scope
s = "I love Python Programming"
f()
print("Outside Function", s)

Output:
Inside Function I love Python Programming
Outside Function I love Python Programming

2M (1m each)

 e) Define class and object in python
Class: A class is a user-defined blueprint or prototype from which
objects are created. Classes provide a means of bundling data
and functionality together.

Object: An object is an instance of a class that has some
attributes and behavior. Objects can be used to access the
attributes of the class.

2M (Any suitable
definition: 1M
Each)

Page 3 of 23

 f) How to give single and multiline comment in Python
Single line comment: Single-line comments are created simply by
beginning a line with the hash (#) character, and they are
automatically terminated by the end of line.
Example:
print is a statement
print(‘Hello Python’)

Multi line comment: Python multi-line comment is a piece of text
enclosed in a delimiter (""") Triple quotation marks.
Example:
""" Multi-line comment used
print("Python Comments") """
or
To add a multiline comment you could insert a # for each line:
Example:
#This is a comment
#written in
#more than just one line
print("Hello, World!")

2M (1m each)

 g) List different modes of opening file in Python

Modes for opening file:

• r: open an existing file for a read operation.

• w: open an existing file for a write operation. If the file
already contains some data then it will be overridden.

• a: open an existing file for append operation. It won’t
override existing data.

• r+: To read and write data into the file. The previous
data in the file will be overridden.

• w+: To write and read data. It will override existing data.

• a+: To append and read data from the file. It won’t
override existing data.

2M
(Any 2 names 2M)

2 Attempt any THREE of the following 12

 a) Write a program to print following
1
1 2
1 2 3
1 2 3 4

for i in range(1,5):
 for j in range(1,i+1):
 print(j,end=' ')
 print()

4M (for correct
program and
logic)

 b) Explain four Buit-in tuple functions in python with example 4M (1M for each
function with
example)

Page 4 of 23

 c) Explain how to use user defined function in python with example

• In Python, def keyword is used to declare user defined
functions.

• The function name with parentheses (), which may or may
not include parameters and arguments and a colon:

• An indented block of statements follows the function
name and arguments which contains the body of the
function.

Syntax:
def function_name():
 statements
 .
 .
Example:
def fun():
 print(“User defined function”)
fun()
output:
User defined function

Parameterized function: The function may take arguments(s) also
called parameters as input within the opening and closing
parentheses, just after the function name followed by a colon.
Syntax:
def function_name(argument1, argument2, ...):

4M (2m for
explanation and
2m for example)

Page 5 of 23

 statements
 .
 .
Example:
def square(x):
 print("Square=",x*x)

Driver code
square(2)
Output:
Square= 4

 d) Write a program to create class EMPLOYEE with ID and NAME
and display its contents.
class employee :
 id=0
 name=""
 def getdata(self,id,name):
 self.id=id
 self.name=name
 def showdata(self):
 print("ID :", self.id)
 print("Name :", self.name)

e = employee()
e.getdata(11,"Vijay")
e.showdata()

Output:
ID : 11
Name : Vijay

4M (for correct
program and
logic)

3 Attempt any THREE of the following 12

 a) List data types used in Python. Explain any two with
example
Data types in Python programming includes:

• Numbers: Represents numeric data to perform
mathematical operations.

• String: Represents text characters, special symbols or
alphanumeric data.

• List: Represents sequential data that the programmer
wishes to sort, merge etc.

• Tuple: Represents sequential data with a little
difference from list.

• Dictionary: Represents a collection of data that
associate a unique key with each value.

• Boolean: Represents truth values (true or false).

1. Integers (int Data Type): An integer is a whole number
that can be positive (+) or negative (−). Integers can be of any
length, it is only limited by the memory available.

4M (2m for list,
and 2m for two
example)

Page 6 of 23

 Example: For number data types are integers.
>>>a=10
>>>b -10
To determine the type of a variable type() function is used.
>>>type(a)
>>> <class 'int'>

2. Boolean (Bool Data Type: The simplest build-in type in
Python is the bool type, it represents the truth values False
and True. Internally the true value is represented as 1 and
false is 0.
For example
>>>a = 18 > 5
>>>print(a)
True
b=2>3
print(b)
False

3. Floating-Point/Float Numbers (Float Data Type): Floating-
point number or Float is a positive or negative number with
a fractional part. A floating point number is accurate up to 15
decimal places. Integer and floating points are separated by
decimal points. 1 is integer, 1.0 is floating point number.
Example: Floating point number.
x=10.1
type(x)
<class 'float'>

4. Complex Numbers (Complex Data Type): Complex
numbers are written in the form, x + yj, where x is the real
part and y is the imaginary part.
Example:
Complex number.
>>>x = 3+4j
 >>>print(x.real)
 3.0
 >>>print(x.imag)
4.0

5. String Data Type: String is a collection of group of
characters. Strings are identified as a contiguous set of
characters enclosed in single quotes (' ') or double quotes ("
"). Any letter, a number or a symbol could be a part of the
string. Strings are unchangeable (immutable). Once a string
is created, it cannot be modified.
Example: For string data type.

Page 7 of 23

>>> s1="Hello" #string in double quotes
>>> s2='Hi' #string in single quotes
>>> s3="Don't open the door" #single quote string in double
quotes
>>> s4='I said "yipee"' #double quote string in single quotes
>>>type(s1)
<class 'str'>

6. List Data Type: List is an ordered sequence of items. It is
one of the most used datatype in Python and is very flexible.
List can contain heterogeneous values such as integers,
floats, strings, tuples, lists and dictionaries but they are
commonly used to store collections of homogeneous
objects. The list datatype in Python programming is just like
an array that can store a group of elements and we can refer
to these elements using a single name. Declaring a list is
pretty straight forward. Items separated by commas (,) are
enclosed within brackets [].
Example: For list.
>>> first=[10, 20, 30] # homogenous values in list
>>> second=["One","Two","Three"] # homogenous values in
list
>>> first
[10, 20, 30]
>>> second
['One', 'Two', 'Three']
>>> first + second # prints the concatenated lists
 [10, 20, 30, 'One', 'Two', 'Three']

7. Tuple Data Type: Tuple is an ordered sequence of items
same as list. The only difference is that tuples are immutable.
Tuples once created cannot be modified. It is defined within
parentheses () where items are separated by commas (,).
A tuple data type in python programming is similar to a list
data type, which also contains heterogeneous
items/elements.
Example: For tuple.
>>> a=(10,'abc',1+3j)
>>> a
(10, 'abc', (1+3j))
>>> a[0]
10
>>> a[0]=20
Traceback (most recent call last):
 File "<pyshell#12>", line 1, in <module>

Page 8 of 23

8. Dictionary: Dictionary is an unordered collection of key-
value pairs. It is the same as the hash table type. The order
of elements in a dictionary is undefined, but we can iterate
over the following:
o The key
o The value
o The items (key-value pairs) in a dictionary.
When we have the large amount of data, the dictionary data
type is used. Items in dictionaries are enclosed in curly braces
{ } and separated by the comma (,). A colon (:) is used to
separate key from value. Values can be assigned and
accessed using square braces ([]).
Example: For dictionary data type.
>>> dic1={1:"First","Second":2}
>>> dic1
{1: 'First', 'Second': 2}
>>> type(dic1)
<class 'dict'>
>>> dic1[3]="Third"
>>> dic1
{1: 'First', 'Second': 2, 3: 'Third'}
>>> dic1.keys()
dict_keys([1, 'Second', 3])
>>> dic1.values()
dict_values(['First', 2, 'Third'])
>>>

 b) Explain membership and assignment operators with
example
Membership Operators: The membership operators in Python are
used to find the existence of a particular element in the sequence,
and used only with sequences like string, tuple, list, dictionary etc.
Membership operators are used to check an item or an element
that is part of a string, a list or a tuple. A membership operator
reduces the effort of searching an element in the list. Python
provides ‘in’ and ‘not in’ operators which are called membership
operators and used to test whether a value or variable is in a
sequence.

Sr.
No

Operator Description Example

1 in True if value is
found in list or in
sequence, and false
it item is not in list
or in sequence

>>> x="Hello
World"
>>> print('H' in x)
True

2 not in True if value is not
found in list or in
sequence, and false

>>> x="Hello
World"

4M: 2m for
membership
operators and
2m for
assignment
operators

Page 9 of 23

it item is in list or in
sequence.

>>> print("Hello"
not in x)
False

Assignment Operators (Augmented Assignment Operators):
Assignment operators are used in Python programming to assign
values to variables. The assignment operator is used to store the
value on the right-hand side of the expression on the left-hand side
variable in the expression.
For example, a = 5 is a simple assignment operator that assigns the
value 5 on the right to the variable a on the left.
There are various compound operators in Python like a += 5 that
adds to the variable and later assigns the same. It is equivalent to
a = a + 5.
Following table shows assignment operators in Python
programming:

Sr.
No.

Operator Description Example

1 = Assigns values from right
side operands to

left side operand.

c = a + b
assigns value
of a + b

into c

2 += It adds right operand to
the left operand and

assign the result to left
operand.

c += a is
equivalent to

c = c + a

3 −= It subtracts right operand
from the left

operand and assign the
result to left operand.

c −= a is
equivalent to

c = c − a

4 *= It multiplies right operand
with the left

operand and assign the
result to left operand.

operand and
assign the
result to left
operand.

c *= a is
equivalent to

c = c * a

5 /= It divides left operand
with the right operand
and assign the result to
left operand.

c /= a is
equivalent to

 c = c / a

6 %= It takes modulus using
two operands and assign
the result to left operand.

c %= a is
equivalent to

Page 10 of 23

c = c % a

7 **= Performs exponential
(power) calculation on
operators and assign
value to the left operand.

c **= a is
equivalent to

c = c ** a

8 //= Performs exponential
(power) calculation on
operators and assign
value to the left operand.

c //= a is
equivalent to

c = c // a

 c) Explain indexing and slicing in list with example
Indexing: An individual item in the list can be referenced by
using an index, which is an integer number that indicates the
relative position of the item in the list.
There are various ways in which we can access the elements
of a list some as them are given below:
1. List Index: We can use the index operator [] to access an
item in a list. Index starts from 0. So, a list having 5 elements
will have index from 0 to 4.
Example: For list index in list.
>>> list1=[10,20,30,40,50]
>>> list1[0]
10
>>> list1[3:] # list[m:] will return elements indexed from mth
index to last index
[40, 50]
>>>list1[:4] # list[:n] will return elements indexed from first
index to n-1th index
[10, 20, 30, 40]
>>> list1[1:3] # list[m:n] will return elements indexed from m
to n-1.
[20, 30]
>>> list1[5]
Traceback (most recent call last):
 File "<pyshell#71>", line 1, in <module>
 list1[5]
IndexError: list index out of range
2. Negative Indexing: Python allows negative indexing for its
sequences. The index of −1 refers to the last item, −2 to the
second last item and so on.
Example: For negative indexing in list.
>>> list2=['p','y','t','h','o','n']
>>> list2[-1]
'n'
>>> list2[-6]
'p'
>>> list2[-3:]

4M: (2m for
indexing and 2m
for slicing)

Page 11 of 23

['h', 'o', 'n']
>>> list2[-7]
Traceback (most recent call last):
 File "<pyshell#76>", line 1, in <module>
 list2[-7]
 IndexError: list index out of range

List Slicing: Slicing is an operation that allows us to extract
elements from units. The slicing feature used by Python to
obtain a specific subset or element of the data structure
using the colon (:) operator.
The slicing operator returns a subset of a list called slice by
specifying two indices, i.e. start and end.
Syntax: list_variable[start_index:end_index]
This will return the subset of the list starting from start_index
to one index less than that of the endind
Example: For slicing list.
>>> l1=([10,20,30,40,50])
>>> l1[1:4]
[20, 30, 40]
>>>l1[2:5]
[30,40,50]

 d) Write a program for importing module for addition and
subtraction of two numbers
calculation.py:
def add(x,y):
 return (x+y)
def sub(x,y):
 return (x-y)

operation.py:
import calculation
print(calculation.add(1,2))
print(calculation.sub(4,2))
Output:
3
2

4M (for correct
logic and
program)

4 Attempt any THREE of the following 12

 a) Write a program to create dictionary of student the
includes their ROLL NO and NAME
i) Add three students in above dictionary
ii) Update name=’Shreyas’ of ROLL NO=2
iii) Delete information of ROLL NO=1

4M (2m for i),
1m for ii) and
1m for iii))

Page 12 of 23

Ans:
1)
>>> dict1={1:"Vijay",2:"Santosh",3:"Yogita"}
>>>print(dict1)
{1: 'Vijay', 2: 'Santosh', 3: 'Yogita'}

ii)
>>>dict1[2]="Shreyas"
>>>print(dict1)
{1: 'Vijay', 2: 'Shreyas', 3: 'Yogita'}

iii)
>>>dict1.pop(1)
 ‘Vijay'
>>>print(dict1)
{2: 'Shreyas', 3: 'Yogita'}

 b) Explain decision making statements If-else, if-elif-else with
example
The if-else statement: if statements executes when the
conditions following if is true and it does nothing when the
condition is false. The if-else statement takes care of a true
as well as false condition.

Syntax-1:
If condition:
 Statement(s)
else:
 Statement(s)

Or Syntax-2:
If condition:
 If_Block
else:
 else_Block

Example:
i=20
if(i<15):
 print(" less than 15")
else:
 print("greater than 15")

output:
greater than 15
Concept Diagram:

4M (2m for if-
else and 2m for
if-elif-else)

Page 13 of 23

if-elif-else (ladder) statements: Here, a user can decide among
multiple options. The if statements are executed from the top
down. As soon as one of the conditions controlling the if is true,
the statement associated with that if is executed, and the rest of
the ladder is bypassed. If none of the conditions is true, then the
final else statement will be executed.
Syntax:
if (condition-1):
 statement
elif (condition-2):
 statements
.
.
elif(condition-n):
 statements
else:
 statements

Example:
Example:
i = 20
if (i == 10):
 print ("i is 10")
elif (i == 15):
 print ("i is 15")
elif (i == 20):
 print ("i is 20")
else:
 print ("i is not present")

output:
i is 20

Concept Diagram:

Page 14 of 23

 c) Explain use of format() method with example
The format() method formats the specified value(s) and insert
them inside the string's placeholder.
The placeholder is defined using curly brackets: {}.
The format() method returns the formatted string.
Syntax
string.format(value1, value2...)

Example:
#named indexes:
>>>txt1 = ("My name is {fname}, I'm {age}".format(fname =
"abc", age = 36))
>>>print(txt1)
My name is abc, I'm 36

#numbered indexes:
>>>txt2 =("My name is {0}, I'm {1}".format("xyz",36))
>>>print(txt2)
My name is xyz, I'm 36

#empty placeholders:
>>>txt3 = ("My name is {}, I'm {}".format("pqr",36))
>>>print(txt3)
My name is pqr, I'm 36

4M (2m for use
and 2m for
example)

 d) Explain building blocks of python
Character set: All characters that python can recognize. The
below table illustrates the Python character set along with
examples.

character Set Examples

Letters: Upper case and
lower case english
alphabets

A-Z,a-z

Digits: all digits 0-9

Special symbols space,+,-,**,*,%,//,/,==,!=,>,<

Whitespaces Blank space,tabs

Other unicode characters All ASCII and Unicode characters

Tokens: Tokens in python are building blocks of the Python
programming language. The role letters and words play for the
English language, Similar to role token play for a python
programming language.
Python has the following tokens:
1)keywords
2)identifiers
3)literals
 a)String literals
 b)Numeric literals
 c)Boolean Literals
 d)Special literal None

Tokens Example

Keywords: Words that are
already defined and convey a

False,True,if,elif,else,for,
while,pass,continue,lambda,

4M

Page 15 of 23

special meaning to the
language
compiler/interpreter

return,finally,import,def

Identifiers: names given to
different parts of program
like variables, functions,
object, class, names given to
different datatypes.

def square,num=20,
a_lst=[1,2,3];
here square,num and a_lst are
identifiers.

Literals/Constants: Data
items that have fixed values

String: ‘Mayank‘,’abc‘,’anish‘;
Numeric: 1,1.2,4,-3.95;
Boolean: True,False

Special literal None; meaning nothing

 e) Write a program illustrating use of user defined package in
python
A package is a hierarchical file directory structure that defines a
single Python application environment that consists of modules
and subpackages and sub-subpackages, and so on.
Packages allow for a hierarchical structuring of the module
namespace using dot notation.
Creating a package is quite straightforward, since it makes use of
the operating system’s inherent hierarchical file structure.
Consider the following arrangement:

Here, there is a directory named pkg that contains two
modules, mod1.py and mod2.py. The contents of the modules
are:
mod1.py
def m1():
 print("first module")

mod2.py
def m2():
 print("second module")

If the pkg directory resides in a location where it can be found, you
can refer to the two modules with dot
notation(pkg.mod1, pkg.mod2) and import them with the
syntax:

Syntax-1
import <module_name>[, <module_name> ...]
Example:
>>>import pkg.mod1, pkg.mod2
>>> pkg.mod1.m1()
first module

4M (2m for
defining
package and 2m
for import
package in
program)

https://files.realpython.com/media/pkg1.9af1c7aea48f.png

Page 16 of 23

Syntax-2:
from <module_name> import <name(s)>
Example:
>>> from pkg.mod1 import m1
>>> m1()
First module
>>>

Syntax-3:
from <module_name> import <name> as <alt_name>
Example:
>>> from pkg.mod1 import m1 as module
>>> module()
first module

You can import modules with these statements as well:
from <package_name> import <modules_name>[,
<module_name> ...]
from <package_name> import <module_name> as <alt_name>
Example:
>>> from pkg import mod1
>>> mod1.m1()
First module

5 Attempt any TWO of the following 12

 a) Write the output of the following
i) >>> a=[2,5,1,3,6,9,7]

>>> a[2:6]=[2,4,9,0]
>>> print(a)
Output: [2, 5, 2, 4, 9, 0, 7]

ii) >>> b=[“Hello”,”Good”]
>>> b.append(“python”)
>>>print(b)
Output: ['Hello', 'Good', 'python']

iii) >>>t1=[3,5,6,7] output:
>>>print(t1[2]) >>>6
>>>print(t1[-1]) >>>7
>>>print(t1[2:]) >>>[6, 7]
>>>print(t1[:]) >>>[3, 5, 6, 7]

6M
(2m for each)

 b) Explain method overloading in python with example
Method overloading is the ability to define the method with
the same name but with a different number of arguments
and data types.
With this ability one method can perform different tasks,
depending on the number of arguments or the types of the
arguments given.

6M (3m for
explanation, 3m
for example)

Page 17 of 23

Method overloading is a concept in which a method in a class
performs operations according to the parameters passed to
it.
As in other languages we can write a program having two
methods with same name but with different number of
arguments or order of arguments but in python if we will try
to do the same we will get the following issue with method
overloading in Python:
to calculate area of rectangle
def area(length, breadth):
 calc = length * breadth
 print calc
#to calculate area of square
def area(size):
 calc = size * size
 print calc
area(3)
area(4,5)
Output:
9
TypeError: area() takes exactly 1 argument (2 given)
Python does not support method overloading, that is, it is
not possible to define more than one method with the
same name in a class in Python.
This is because method arguments in python do not have a
type. A method accepting one argument can be called with
an integer value, a string or a double as shown in next
example.
class Demo:
def method(self, a):
 print(a)
obj= Demo()
obj.method(50)
obj.method('Meenakshi')
 obj.method(100.2)
Output:
50
Meenakshi
 100.2
Same method works for three different data types. Thus, we
cannot define two methods with the same name and same
number of arguments but having different type as shown in
the above example. They will be treated as the same
method.
It is clear that method overloading is not supported in python
but that does not mean that we cannot call a method with
different number of arguments. There are a couple of

Page 18 of 23

alternatives available in python that make it possible to call
the same method but with different number of arguments.

 c) Write a program to open a file in write mode and append
some content at the end of file
file1 = open("myfile.txt", "w")
L = ["This is Delhi \n", "This is Paris \n", "This is London"]
file1.writelines(L)
file1.close()

Append-adds at last
append mode
file1 = open("myfile.txt", "a")

writing newline character
file1.write("\n")
file1.write("Today")

without newline character
file1.write("Tomorrow")

file1 = open("myfile.txt", "r")
print("Output of Readlines after appending")
print(file1.read())
print()
file1.close()

Output:
Output of Readlines after appending
This is Delhi
This is Paris
This is London
TodayTomorrow

6M for any
program with
suitable logic

6 Attempt any TWO of the following 12

 a) Explain package Numpy with example

• NumPy is the fundamental package for scientific
computing with Python. NumPy stands for
"Numerical Python". It provides a high-performance
multidimensional array object, and tools for working
with these arrays.

• An array is a table of elements (usually numbers), all
of the same type, indexed by a tuple of positive
integers and represented by a single variable.
NumPy's array class is called ndarray. It is also known
by the alias array.

• In NumPy arrays, the individual data items are called
elements. All elements of an array should be of the

6M (3m for
explanation and
3m for example)

Page 19 of 23

same type. Arrays can be made up of any number of
dimensions.

• In NumPy, dimensions are called axes. Each
dimension of an array has a length which is the total
number of elements in that direction.

• The size of an array is the total number of elements
contained in an array in all the dimension. The size of
NumPy arrays are fixed; once created it cannot be
changed again.

• Numpy arrays are great alternatives to Python Lists.
Some of the key advantages of Numpy arrays are that
they are fast, easy to work with, and give users the
opportunity to perform calculations across entire
arrays.

• A one dimensional array has one axis indicated by
Axis-0. That axis has five elements in it, so we say it
has length of five.

• A two dimensional array is made up of rows and
columns. All rows are indicated by Axis-0 and all
columns are indicated by Axis-1. If Axis-0 in two
dimensional array has three elements, so its length it
three and Axis-1 has six elements, so its length is six.

Execute Following command to install numpy in window,
Linux and MAC OS:
 python -m pip install numpy
To use NumPy you need to import Numpy:
 import numpy as np # alias np

Using NumPy, a developer can perform the following
operations:
1. Mathematical and logical operations on arrays.
2. Fourier transforms and routines for shape manipulation.
3. Operations related to linear algebra.
4. NumPy has in-built functions for linear algebra and
random number generation

Example:
For NumPy with array object.
>>> import numpy as np
>>> a=np.array([1,2,3]) # one dimensional array
>>> print(a)
[1 2 3]
>>> arr=np.array([[1,2,3],[4,5,6]]) # two dimensional array
>>> print(arr)
[[1 2 3]
 [4 5 6]]

Page 20 of 23

>>> type(arr)
<class 'numpy.ndarray'>
>>> print("No. of dimension: ", arr.ndim)
No. of dimension: 2
>>> print("Shape of array: ", arr.shape)
Shape of array: (2, 3)
>> >print("size of array: ", arr.size)
size of array: 6
>>> print("Type of elements in array: ", arr.dtype)
Type of elements in array: int32
>>> print("No of bytes:", arr.nbytes)
No of bytes: 24

 b) Write a program to implement the concept of inheritance
in python

• In inheritance objects of one class procure the
properties of objects of another class.

• Inheritance provide code usability, which means that
some of the new features can be added to the code
while using the existing code.

• The mechanism of designing or constructing classes
from other classes is called inheritance.

• The new class is called derived class or child class and
the class from which this derived class has been
inherited is the base class or parent class.

• In inheritance, the child class acquires the properties
and can access all the data members and functions
defined in the parent class. A child class can also
provide its specific implementation to the functions
of the parent class.

Syntax:
 class A:
 # properties of class A
 class B(A):
 # class B inheriting property of class A
 # more properties of class B

Example 1: Inheritance without using constructor.
class Vehicle: #parent class
 name="Maruti"
 def display(self):
 print("Name= ",self.name)
class Category(Vehicle): #derived class
 price=2000
 def disp_price(self):
 print("Price=$",self.price)
car1=Category()
car1.display()

6M for any
suitable
example of
inheritance

Page 21 of 23

car1.disp_price()
Output:
Name= Maruti
Price=$ 2000

Example 2: Inheritance using constructor.
class Vehicle: #parent class
 def __init__(self,name):
 self.name=name
 def display(self):
 print("Name= ",self.name)
class Category(Vehicle): #derived class
 def __init__(self,name,price):
 Vehicle.__init__(self,name)
 # passing data to base class constructor
 self.price=price
 def disp_price(self):
 print("Price=$ ",self.price)
car1=Category("Maruti",2000)
car1.display()
car1.disp_price()
car2=Category("BMW",5000)
car2.display()
car2.disp_price()
Output:
Name= Maruti
Price=$ 2000
Name= BMW
Price=$ 5000

 c) Explain Try-except block used in exception handling in
python with example

• In Python, exceptions can be handled using a try
statement. A try block consisting of one or more
statements is used by programmers to partition code
that might be affected by an exception.

• A critical operation which can raise exception is
placed inside the try clause and the code that handles
exception is written in except clause.

• The associated except blocks are used to handle any
resulting exceptions thrown in the try block. That is
we want the try block to succeed and if it does not
succeed, we want to control to pass to the catch
block.

• If any statement within the try block throws an
exception, control immediately shifts to the catch
block. If no exception is thrown in the try block, the
catch block is skipped.

6M (3m for
explanation and
3m for program)

Page 22 of 23

• There can be one or more except blocks. Multiple
except blocks with different exception names can be
chained together.

• The except blocks are evaluated from top to bottom
in the code, but only one except block is executed for
each exception that is thrown.

• The first except block that specifies the exact
exception name of the thrown exception is executed.
If no except block specifies a matching exception
name then an except block that does not have an
exception name is selected, if one is present in the
code.

• For handling exception in Python, the exception
handler block needs to be written which consists of
set of statements that need to be executed according
to raised exception. There are three blocks that are
used in the exception handling process, namely, try,
except and finally.

1. try Block: A set of statements that may cause error during
runtime are to be written in the try block.
2. except Block: It is written to display the execution details
to the user when certain exception occurs in the program.
The except block executed only when a certain type as
exception occurs in the execution of statements written in
the try block.
3. finally Block: This is the last block written while writing an
exception handler in the program which indicates the set of
statements that many use to clean up to resources used by
the program.

Syntax:
try:
 D the operations here

except Exception1:
 If there is Exception1, then execute this block.
except Exception2:
 If there is Exception2, then execute this block.

else:
 If there is no exception then execute this block.

Example: For try-except clause/statement.
try:
 fh = open("testfile", "w")
 fh.write("This is my test file for exception handling!!")

Page 23 of 23

except IOError:
 print ("Error: can\'t find file or read data")
else:
 print ("Written content in the file successfully")
 fh.close()

