

Subject Name: Fertiliser Technology

Model Answer

Subject Code: 22615

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. No	Su b Q. N.	Answer	Marking Scheme
1	a	Nutrients available form Fertilizer	1 mark
		• Nitrogen	each for any 2
		Phosphorous	
		• Potassium	
		(Above are three mail nutrients. Apart from these following micronutrients are available from	
		mixed fertilizers)	
		Calcium	
		• Sulfur	
		• Boron	
		• Iron	
	b	Public Sector Fertilizer Companies	1⁄2 mark
		• FCI Aravali Gypsum & Minerals India Limited (FAGMIL)	each for any 4
		Brahmaputra Valley Fertilizer Corporation Limited (BVFCL)	
		• The Fertilizer Corporation of India Limited (FCIL)	

Subje	ct Na	me: Fertiliser Technology	Model Answer	Subject Code: 2	2615
		Project & Development India	Limited (PDIL)		
		Hindustan Fertilizer Corporat	ion Limited (HFCL)		
		• Rashtriya Chemicals and Fert	ilizers Limited (RCF)		
		• National Fertilizers Limited (I	NFL)		
		• The Fertilizers and Chemicals	s Travancore Limited (FACT)		
		Madras Fertilizers Limited			
	c	Industrial applications of Ammonia	a		¹ / ₂ mark
		For the production of			each for any 4
		• Urea			
		• Nitric Acid			
		• Ammonium nitrate			
		• Ammonium phosphate			
		• Hydrazine			
		• As a refrigerant			
	d	Availability of P2O5 in triple superpl	hosphate is approximately 43 to 46%		2 marks
	e	Raw material used for the manufac	cturing of triple superphosphate		2 marks
		Phosphoric Aid			
		Phosphate Rock			
	f	Terms used in NPK			2 marks
		N- Nitrogen			
		P- Phosphorus			
		K- Potassium			
	g	Feedstock for biofertilizer			1 mark each for
		Agri Waste			any 2
		• Food waste			
		Garden Waste			
		• Livestock manure (Cattle, Pig	g, Poultry)		
		Sewage Sludge			

ect N	ame: Fertiliser Technology <u>Model Answer</u> <u>Subject Code:</u> 2261	.5
a	Importance of micronutrients	4 mai
	Micronutrients are essential elements that are used by plants in small quantities. Yield and	
	quality of agricultural products increased with micronutrients application, therefore human	
	and animal health is protected with feed of enrichment plant materials. Each essential element	
	only when can perform its role in plant nutrition properly that other necessary elements are	
	available in balanced ratios for plant. Micronutrients play a supporting role in overall plant	
	health and development. Micronutrients promote essential plant processes and growth, which	
	translates into nutrient-rich food for animals and humans. Micronutrients include boron,	
	chlorine, copper, iron, manganese, molybdenum, and zinc, which are often in short supply for	
	growing crops. Importance of these micronutrients are s follows	
	Boron: This important nutrient ensures healthy cell growth and assists in the formation of	
	pollen. A lack of boron may also stunt plant growth.	
	Chlorine: Used primarily in small grains like wheat, chlorine helps plants manage water	
	stress and resist fungal diseases.	
	Copper: Copper plays an essential role as a catalyst, promoting chemical reactions without	
	becoming a product of those reactions. It also assists in the formation of protein pigments	
	in red blood cells, making it a key micronutrient for animals and humans.	
	Iron: This nutrient works as a catalyst in the formation of chlorophyll and promotes root	
	function in legumes such as peanuts and beans.	
	Manganese: Another chlorophyll catalyst, manganese also helps regulate several plant	
	enzymes. Ensuring plants have enough manganese translates into manganese-rich food for	
	humans.	
	Molybdenum: This nutrient helps plants use nitrogen and phosphorus (two of the "Big 3"	
	nutrients) more efficiently and gives farmers greater yields and more return on their	
	investment in fertilizer.	
	Zinc: This vital nutrient plays key roles in human health as well as plant health. It helps	
	plants form proteins, starches and growth hormones, which helps people grow healthy skin	
	and bones.	
	If we use introduce these micronutrients into soil, it will increase its fertility.	

Subject	Subject Name: Fertiliser Technology <u>Model Answer</u> <u>Subject Code:</u> 2262		15	
	b	Importance of Fertiliser industry in green revolution	4 marks	
		Food security has been and will continue to be one of the major challenges confronting the		
	world, including India, as the country faces the challenge and pressure to feed more			
		billion people today. Chemical Fertilisers have played a major role in improving crop yields		
		and increasing agricultural production. After independence India was importer of grains.		
		Traditional framing methods could not yield sufficient crop production. The Green		
		Revolution, or the Third Agricultural Revolution is the set of research technology transfer		
		initiatives occurring between 1950 and the late 1960s, that increased agricultural production in		
		parts of the world, beginning most markedly in the late 1960s. The initiatives resulted in the		
		adoption of new technologies, including high-yielding varieties (HYVs) of cereals, especially		
		dwarf wheat and rice. It was associated with chemical fertilizers, agrochemicals, and		
	controlled water-supply (usually involving irrigation) and newer methods of cultivation			
	including mechanization.			
		Fertilizers enhance the growth of plants. This goal is met in two ways, the traditional one		
		being additives that provide nutrients. The second mode by which some fertilizers act is to		
		enhance the effectiveness of the soil by modifying its water retention and aeration. Fertilizers		
		typically provide, in varying proportions. As a result, yield of crop production increased.		
		Fertilizer industry played key role in providing massive amount of various fertilizers during		
		green revolution		
	c	Feedstock for Nitrogenous Fertilizer	2 marks	
		Basic raw material is Ammonia		
		Gases feedstock: Natural gas, Refinery gas, Coke Oven gas		
		Solid Feedstock: Coal, Coke, Lignite		
		Application of nitrogenous fertilizer		
		Urea: As a fertilizer, Source of Protein, to produce urea formaldehyde		
		Ammonium Nitrate: As a fertilizer, As explosive	2 marks	
		Ammonium Phosphate: As a fertilizer, Used as components of intumescent paints		
	d	Applications of plant nutrients	1 mark	
		Nitrogen	each for any 4	

Subject Name: Fertiliser Technology	Model Answer	Subject Code: 226	515
Nitrogen is a key element in plant g	growth. It is found in all plant cells,	in plant proteins and	
hormones, and in chlorophyll.			
Phosphorus			
Phosphorus helps transfer energy fr	com sunlight to plants, stimulates ea	rly root and plant growth,	
and hastens maturity.			
Potassium			
Potassium increases vigour and dise	ease resistance of plants, helps form	and move starches, sugars	
and oils in plants, and can improve	fruit quality.		
Calcium			
Calcium is essential for root health,	, growth of new roots and root hairs	, and the development of	
leaves.			
Magnesium			
Magnesium is a key component of	chlorophyll, the green colouring ma	aterial of plants, and is vital	
for photosynthesis (the conversion	of the sun's energy to food for the p	lant). Deficiencies occur	
mainly on sandy acid soils in high r	rainfall areas, especially if used for	intensive horticulture or	
dairying.			
Sulfur			
Sulfur is a constituent of amino acid	ds in plant proteins and is involved	in energy-producing	
processes in plants. It is responsible	e for many flavour and odour comp	ounds in plants such as the	
aroma of onions and cabbage.			
Boron			
This important nutrient ensures he	althy cell growth and assists in the	e formation of pollen. A	
lack of boron may also stunt plant	growth.		
Chlorine			
Used primarily in small grains like	e wheat, chlorine helps plants man	age water stress and resist	
fungal diseases.			
Copper			
Copper plays an essential role as a	a catalyst, promoting chemical reac	ctions without becoming a	
product of those reactions. It also	assists in the formation of protein	pigments in red blood	
cells, making it a key micronutrier	nt for animals and humans.		
			$\frac{1}{2}$

me: Fertiliser Technology	Model Answer	Subject Code: 22	615
 Iron This nutrient works as a catalyst in the filegumes such as peanuts and beans. Manganese: Another chlorophyll cataly enzymes. Ensuring plants have enough humans. Molybdenum This nutrient helps plants use nitrogen a efficiently and gives farmers greater yie Zinc This vital nutrient plays key roles in humans 	formation of chlorophyll and pro- st, manganese also helps regulat manganese translates into mang and phosphorus (two of the "Big elds and more return on their inv man health as well as plant health s, which helps people grow health the specific of the	omotes root function in te several plant anese-rich food for 3" nutrients) more restment in fertilizer. th. It helps plants form thy skin and bones.	
N2 Manufacturing of Ammonia Chloride • Raw Material: Ammonium sulphate & Na • Reaction:	+ H₂ aCl		1 mark for reaction and 3 marks for descriptio
	Iron This nutrient works as a catalyst in the filegumes such as peanuts and beans. Manganese: Another chlorophyll cataly enzymes. Ensuring plants have enough humans. Molybdenum This nutrient helps plants use nitrogen a efficiently and gives farmers greater yie Zinc This vital nutrient plays key roles in hur proteins, starches and growth hormones Ammonia Converter Heat exchanger Heat exchanger Nz Manufacturing of Ammonia Chloride • Raw Material: Ammonium sulphate & Na	Iron This nutrient works as a catalyst in the formation of chlorophyll and prolegumes such as peanuts and beans. Manganese: Another chlorophyll catalyst, manganese also helps regulatenzymes. Ensuring plants have enough manganese translates into manghumans. Molybdenum This nutrient helps plants use nitrogen and phosphorus (two of the "Big efficiently and gives farmers greater yields and more return on their invitian nutrient plays key roles in human health as well as plant health proteins, starches and growth hormones, which helps people grow healther exchanger Heat Exchanger Heat Fe +Mo (450-Heating element) Naufacturing of Ammonia Chloride NaCl	Iron This nutrient works as a catalyst in the formation of chlorophyll and promotes root function in legumes such as peanuts and beans. Manganese: Another chlorophyll catalyst, manganese also helps regulate several plant enzymes. Ensuring plants have enough manganese translates into manganese-rich food for humans. Molybdenum This nutrient helps plants use nitrogen and phosphorus (two of the "Big 3" nutrients) more efficiently and gives farmers greater yields and more return on their investment in fertilizer. Zine This vital nutrient plays key roles in human health as well as plant health. It helps plants form proteins, starches and growth hormones, which helps people grow healthy skin and bones. Ammonia Converter Heat exchanger Heating element Naufacturing of Ammonia Chloride • Raw Material: Ammonium sulphate & NaCl

Sodium bicarbonate crystals out and is separated by filtration while ammonium chloride remains in the filtrate. Ammonium chloride solution thus obtained is cooled to subzero temperature and pure sodium chloride salt is added for crystallization of ammonium chloride. Ammonium chloride crystals are separated by centrifugation and the brine is recirculated to the carbonation tower. The ammonium chloride crystals are dried in rotary driers to obtain the product.

Subject Name: Fertiliser Technology Model Answer Subject Code:		22615		
Subject N	Ammenia is almost invariably transport refrigerated, semi refrigerated and equipment. Any ammonia containing contained environment. They should kept out ventilated & free of flammable mater Buildings used to hold ammonia of building and fire codes. If the storage fire wall must be built to segregate recommended and ammonia gas monitors should lighter than air so gas monitors should be for quick and accurate detection. All opening exits. Ventilation should be facility should not have any heavy containers be placed near elevators should be maintained at 60-70 °F (15)	of ammonia) ported in a liquid state, therefore 1 a similar classification can er should be place in a cool, at of direct sunlight. The stora rials containers and equipment shoul ge facility is to have any flammat te the two areas. Non-combust onitors should be installed in the uld be mounted approximately to ll facilities should be designed to e installed in accordance with 1 y objects placed above the co s or other quick leak paths. Ar 5-20 °C) to facilitate safe and con	it must be compressed be applied to transp dry, temperature stal age area should be w d comply with all low ble materials inside ther ible building material facility. Ammonia gas wo feet below the ceili with at least two outwa ocal building codes. To intainers, nor should to mmonia storage facilit nsistent discharge rates	4 marks or ort ell cal h a is is ng urd he he ies of
d	 large pressure build up leading to a spaces in working areas Manufacturing of calcium ammon Calcium Ammonium Nitrate Molecuto use on acid soil. It is made by adding powdered ammonium nitrate is not allowed for 	ia nitrate Ilar formula:- 5Ca(NO3)2.NH4N lime stone to ammonium nitr	O3.10H2O It is prefer	red 2 marks for diagram and 2 marks for

		rtiliser Techno		Answer Subject Code: 2	7 1
	4	Phosphorus Percentage	About 7-90 %	About 44 – 46 %	
	5	Other Nutrients	Sulfur	No other plant nutrients present in this fertilizers	
	6	Production	Via the addition of Sulfuric acid to Phosphate rock	Via the addition of Phosphoric acid to Phosphate rock	
b	Diam	monium Phos	phate		2 marks
	_	$+$ H3PO4 \rightarrow N	H4H2PO4 → (NH4)2HPO4		for process and 2 marks fo diagram
	F	H ₃ PO ₄	Ammonium Phosphate Scre Granules	Reactor 2 Dryer	
	Proces	ss Description :			
	• Anh	ydrous & dry a	mmonia & phosphoric acid are	changed into the first reactor. About 809	%
			e in the first reactor. Further am mmonium salt is obtained.	monia is added to the second reactor. S	bo
	are gi	ven out. These		of reaction, the excess ammonia vapour e tank and recharged. This cut ammon	
	losses		d in the second reactor is allow	ved to pass to a rotary adiabatic dryer, i	n
	- 110	Siurry Obtaille		the to pass to a rotary adiabatic dryer, i	
	which	moisture is rec	luced to less than 1%.		
			luced to less than 1%. ticles is recycled by moving the	n through a rotating drum granulator. Th	ne

Subject Na	ame: Fertiliser Technology	Model Answer	Subject Code:	22615
d	PFD of triple super phosphate Phosphate rock Vent Cyclone Ring roll mill Continuous duct H ₂ O	65°C N ₃ PO ₄ , 50 ^{-1.4} 3 ^{PO₄} Rotary cylinder Rotary dryer	ole superphosphate	4 marks
e	Molecular FormulaSingle super phosphate $[Ca_3(PO4)_2]_3CaF_2 + 7H_2SO_4 = 3CaH_4(A)$ Triple super phosphate $[Ca_3(PO4)_2]_3CaF_2 + 14H_3PO_4 = 10CaH$			2 marks each
5 a	 Importance of mixed fertilizer over The mixed fertilizers typically consist potassium (NPK) for promoting the nare obtained by mixing manually or scientist to enhance the output of production of the nutrients. They are tailor made as per Mixed fertilizers are important because They provide all nutrient at once nutrient Available in granular form and easy Mixed fertilizers provide the micro 	Regular Fertilizer t of two or more elements of nit autritional growth of plants and y mechanically. These are recom- plants by giving specific and en- the soil and are crop specific. the soil and are crop specific. ee: and readily available in low cos y to apply to soil atrolled by using specific neutrali	vield high growth. The nmended by agricultu xclusive blend of pl st as compared to sin	ese ural ant gle 4 marks

	plant nutrients .	
	Use of mixed fertilizers results in reduction of labor cost as it can easily apply	
b	Manufacturing of Nitro phosphate with PFD	
U	Manufacturing of Millo phosphate with TFD	
	Nitro phosphates are mixtures of ammonium nitrate and various phosphates made by	
	acidulation of phosphate rock with nitric acid alone or in combination with sulfuric acid	2 mark
	Raw material	
	• Phosphate rock	
	• Nitric acid	
	• Sulfuric acid	
	• Ammonia	
	Reaction	
	Nitric acid Digestion	
	$Ca_{3}(PO_{4})_{2} + 6HNO_{3} + 4NH_{3} \rightarrow Ca(NO_{3})_{2} + 2CaHPO_{4} + 4NH_{4}NO_{3}$	
	Nitric acid –Sulfuric acid Digestion	
	$Ca_{3}(PO_{4})_{2} + 6HNO_{3} + 4NH_{3} + H_{2}SO_{4} \rightarrow 2CaHPO_{4} + 4NH_{4}NO_{3} + CaSO_{4}$	
	PFD	
	Prosphate rack OPP Pottash Prosphate rack Procedor-2 Mixing Reactor-2 tank	2 mark
	Kitson (rystalling) NHB 11 (rystalling) Nitrootusphate	

Subje	ct Na	me: Fertiliser Technology	Model Answer	Subject Code:	22615
		Process:			
		Rock phosphate is pulverized similar to the wet process for producin digested slurry is pumped to an amme The slurry is granulated and dried and classifying circuit.	oniating tank where chemical rea	is 25-40 % HNO ₃ .	The ted. 2 marks
	c	Methods of Mixed Fertilizer with PF Mixed fertilizer typically refers to a nitrogen, phosphorus and potassium (and high crop yields. They are obtaine or mechanically. Mixed fertilizer reactions NH ₃ +H ₃ PO ₄ = NH ₄ H ₂ PO ₄ NH ₄ H ₂ PO ₄ +NH ₃ = (NH ₄)2HPO ₄ DAP+UREA+POTASH+FILLER = M 30-30-40 means 30% N2, 30% P and 4 All the plants are using the so called a ammonia reacts with phosphoric and operating conditions are regulated in neutralized by ammonia. The produced where it is mixed with solid recycle. F liquid ammonia. The produced granule is crushed, mixed with fines and return	fertilizer containing two or more (NPK) which are essential for pro- ed by thoroughly mixing the ingree (IIXED FERTILISER -0% K -0% K -0% K -0% K 	comoting plant gro edients either manu on of NPK's. Gase 1 (preneutralizer). foric acid is parti ting drum (granula ce in the granulator ed. The coarse mate	ous The ally itor) : by rial
		treated with anticaking agent and sent t	-	cial product is coo	ICU,

Subie	ect Na	me: Fertiliser Technology <u>Model Answer</u> <u>Subject Code:</u> 226	515
		3. Collect some garden waste.	
		To come up with a nutrient-rich fertilizer, you will also need to add some natural waste to your	
		compost. You can do this by collecting grass clippings and leaves from your lawn. When you	
		mow your lawn, all the organic waste will be sucked and mixed inside the lawnmower bag.	
		Remove all the contents from the lawnmower and place them into your compost bin.	
		4. Create the compost.	
		Add the prepared kitchen waste to the garden waste already in the compost bin. The compost	
		bin should have a handle you can use to turn as you rotate the compost for thorough mixing and	
		to incorporate oxygen into the mixture. Also, make sure the bin has some holes on the side to	
		enable excess moisture to escape as you spin the compost. Lawn care experts recommend	
		spinning the compost bin 2 to 3 times a day for best results.	
		5. Apply the fertilizer.	
		Wait for your compost to achieve a soil-like mixture that is dark in color. Once the compost	
		reaches this appearance, it is ready to be spread. Use a garden fork to spread the compost on the	
		garden fields you want to fertilize. Apply the right amount of compost and wait for the fertilizer	
		to seep in and see some effect on the areas applied before you adding more.	
		Composting your kitchen waste offers several benefits which include getting rid of unwanted	
		rubbish and having some fertilizer you can use on your lawn. Before throwing your leftovers	
		and other food remnants, determine if they will work great as compost materials first.	
	b	Reasons for popularity of biofertilizres.	
		1. The use of biofertilizers improves soil fertility status by increasing the organic matter,	3 marks
		microbial biomass, and available nutrient status, particularly that of nitrogen and	
		phosphorous.	
		2. They are eco-friendly and cost-effective. Biofertilizers protect the environment from	
		pollutants since they are natural fertilizers.	
		3. They destroy many harmful substances present in the soil that can cause plant	
		diseases	
		4. Biofertilizers are proved to be effective even under semi-arid conditions.	

Subject Na	me: Fertiliser Technology	Model Answer	Subject Code:	22615
	Initiative taken by government for	r the production of biofertilize	ers	3 marks
	• Government of India has be fertilizers through State Gov	en encouraging use of bio fertil vernments.	lizers instead of chemi	cal
	Mission (NFSM). ICAR une	eds and Oil Palm (NMOOP), der "Network project on soil bio nd efficient strains of biofertili	odiversity- bio fertilize	rs"
		biofertilizers can improve crop fertilizer (N, P) by nearly 20-2 nemical fertilizers.		
	programme, management pa	amme on Organic Farming ackage involving reduced applic ractices are being evaluated at lizers.	ation of nutrients through	lgh
c	Manufacturing of Ammonia with PFD			
	Raw material			1 marks
	 H₂ from synthesis gas N₂ from air 			
	Reaction			
	$N_2 + 3H_2 \rightarrow 2NH_3$			
	Process:-			2 montra
	Ammonia synthesis gas (3 moles pure H2 : 1 moles pure N2) is compressed to the operating			-
	pressure (100-1000 atms. depending on conversion required). It is sent through a filter to			
	remove compression oil and additionally through a high temperature guard converter. This is			5 18
	done by catalyst and suitable getter materials. The relatively cool gas is added along the outside of converter tube walls to provide			ida
	cooling so that carbon steel can be	-	_	
	The preheated gas flows next through			

