

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION Model Answer

Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page 1 of 21

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.
 - 8)As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION <u>Model Answer</u>

Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page 2 of 21

Q I	No.	Answer	Marking	g
			scheme	e
	1	Attempt any five	10	0
1	a	List of Indian Petroleum refinery(any four)	½ mark	
		Reliance petroleum Ltd at Jamnagar	each	
		2. Indian Oil Corporation Limited atKoyali in Gujarat		
		3. Manglore Refinery and Petrochemicals Ltd at Mangl	ore in Karnataka	
		4. Chennai Petroleum Corporation Ltd at Manali		
		5. Indian Oil Corporation Limited at Mathura in Uttar l	Pradesh	
		6. Cochin Refineries Ltd. at Cochin, Kerala		
		7. Hindustan Petroleum Corporation Ltd. at Visakhapat	tanam in	
		Andhra Pradesh		
		8. Bharat Petroleum Corporation Ltdat Mumbai.		
		9. Indian Oil Corporation Limited at Panipat in Haryana	a	
		10. Indian Oil Corporation Limited at Barauni in Bihar		
		11. Hindustan Petroleum Corporation Ltd at Mumbai		
1	b	Composition of crude oil	2	
		Crude oil is made up of the following elements		
		1. carbon-84% 2. hydrogen -14%		
		3. sulphur-1-3% 4. nitrogen, oxygen,	metals, salts- <1%	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION <u>Model Answer</u>

Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page 3 of 21

		The major compounds present in crude oil are:	
		A. hydrocarbon	
		i)Paraffins	
		ii)Aromatics	
		iii) Napthenesiv) dienes	
		B. Non hydrocarbon	
		i) S compounds ii)O ₂ compounds	
		iii)N ₂ compounds	
		C. Metallic compounds.	
1	c	Flash Point	1
		Flash pointis the lowest temperature at which the oil gives off enough vapors	
		that ignite for a moment when a tiny flame is brought near it.	
		Fire point:	
		It is the minimum temperature at which oil will give enough vapors which will	1
		burn continuously for at least 5 seconds when a flame is brought near it.	
1	d	Cracking:	2
		Cracking is the treatment by which heavy molecular weight hydrocarbons are	
		broken up in to light hydrocarbon molecules by the application of heat and	
		pressure, with or without the use of a catalyst to produce valuable products	
		such as gasoline, fuel oil and gas oil.	
1	e	Hyrogenation:	2
		It is the type of chemical reaction which takes place with the addition of	
		hydrogen.	
1	f	Chemicals derived from C3 Hydrocarbon(any four)	½ marks
		Acetaldehyde, propylene oxide, glycerin, acetone, Propane, Isopropanol,	each
	1		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION <u>Model Answer</u>

Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page 4 of 21

		Acetone, Cumene		
1	_	·		
1	g	Uses of		
		i. Benzene(any two)		½ mark
		In the production of phenol, styrene	e, aniline, sulfonated detergents,	each
		chlorobenzene, Maleic anhydride		
		ii. Butadiene (any two)		
		In the manufacture of synthetic rub	ber, as a chemical intermediate,in	½ mark
		the manufacture of cycloalkanes and	cycloalkenes.	each
2	ı	Attempt any three		12
2	a	Explanation of crude oil reserves available	e in India	4
		Reserves are known quantities of crude petro	oleum usually expressed in barrels,	
		which are available for further processing. In	ndia had estimated crude oil	
		reserves of 500 million tonnes (MT), ranking	g 24th in the world and accounting	
		for about 0.3% of the world's total oil reserv	es. The reserves of India are going	
		day by day due to the improved technologic	eal skills and massive investments.	
		The largest reserves are found in the Wester.	n Offshore (37%) and Assam	
		(27%). Reserves are also found in Arunacha	l Pradesh, Andhra Pradesh,	
		Gujarat, Nagaland, Rajasthan, Tamilnadu, a		
2	b	Fractions obtained in crude oil with their	boiling range	2marks for
		Fractions	Boiling point	listing the
			range	fractions
		1. Uncondensed gases	< 30°C	and 2 marks
				for writing
		2. Petroleum ether	30-70°C	the boiling
		3.Gasoline or petrol or motor spirit	40-120°C	range
		5. Susonine of petrol of motor spirit	10 120 0	-6-

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION <u>Model Answer</u>

Subject title: Petroleum and Petrochemical Technology

Subject code

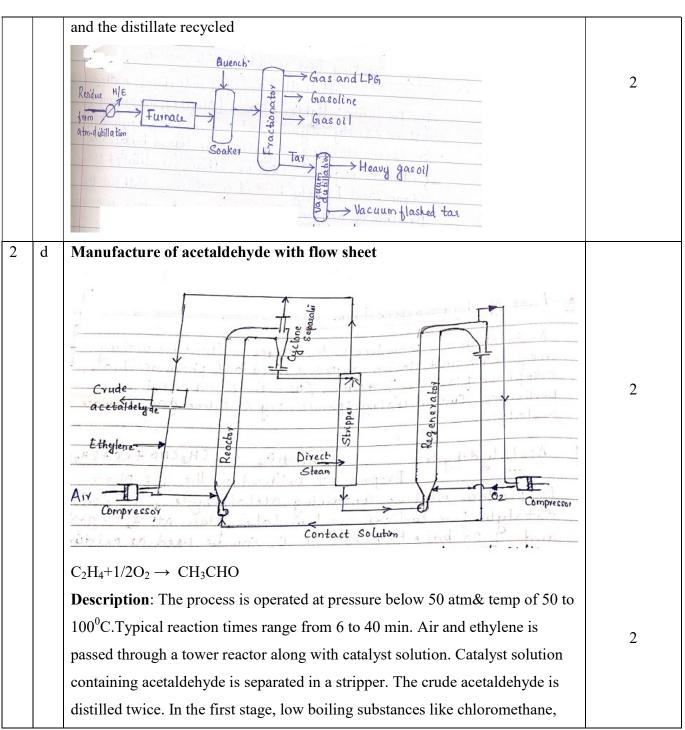
22611

Page **5** of **21**

					F
		4. Naphtha	120-180°C		
		5. Kerosene oil	180-250°C	_	
		6. Diesel oil	250-320°C		
		7.Heavy oil	320-400°C	_	
		On vacuum distillation of heavy of gives	pil		
		a. lubricating oil			
		b. petroleum jelly			
		c. greases			
		d. paraffin wax etc.			
		8.Residue	> 400°C		
2	С	Visbreaking:			
		It is a mild form of thermal cracking	g which cracks larg	ge hydrocarbon	
		molecules in the oil by heating in a fu	rnace to reduce its v	riscosity and to	2
		produce small quantities of light hydrocar	bons (LPG and gasoli	ne)	
		Residue from the atmospheric distillation	tower is heated in a h	eat exchanger	
		to 250°C and then heated to 425-510°c at	atmospheric pressure	and mildly	
		cracked in a heater. It is then quenched w	ith cool gas oil to cont	rol over	
		cracking and flashed in a distillation tower	r. The thermally crack	ted residue tar	
		which accumulates at the bottom of the to	wer is vacuum flashed	d in a stripper	
	1	1			

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-22 EXAMINATION Model Answer

Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page **6** of **21**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION <u>Model Answer</u>

Subject title: Petroleum and Petrochemical Technology

Subject code

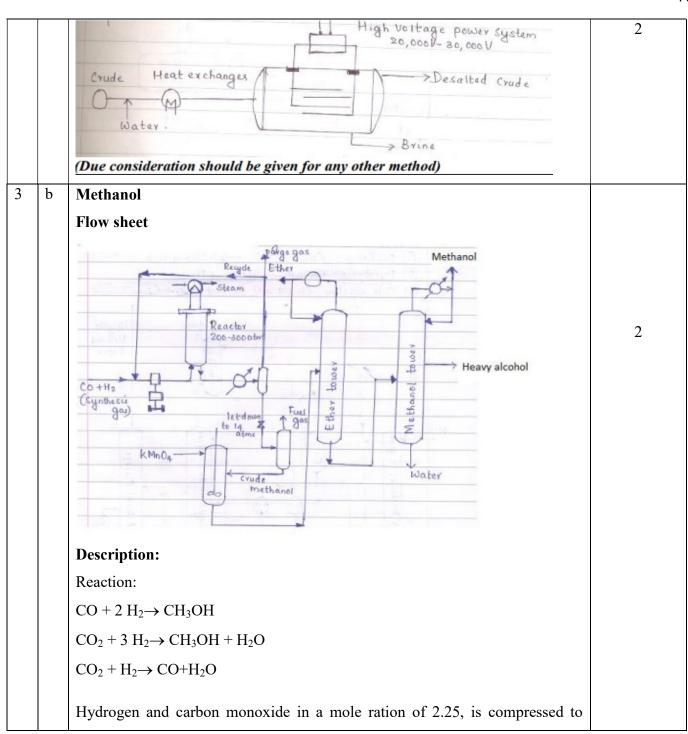
22611

Page **7** of **21**

				Pa
		chloromethaneetcare separated. In the second stage, water and high boiling		
		biproducts like acetic acid are removed and acetaldehyde is obtained in pure		
		form from overhead.		
		OR		
		Reaction: $C_3H_8 + 1.5 O_2 \rightarrow CH_3CHO + CO + 2H_2O$		
		Propane is oxidized in the gas phase to produce mixture containing		
		acetaldehyde. The non-catalytic free radical reaction takes place at 425-460°C		
		and 7-20 bar. Either air or oxygen can be used as the oxidizing agent. About		
		15-20% of hydrocarbon is completely oxidized. The remaining complex		
		reaction mixture contains besides acetaldehyde formaldehyde, methanol, acetic		
		acid, n-propanol and numerous other oxidation products. (Since it is		
		uneconomical to separate acetaldehyde from other oxidation products, it is no		
		longer practiced)		
3		Attempt any three		12
3	a	Desalting of crude:		
		Electric desalting: The feedstock crude is heated between 1500 & 3500 F to		
		reduce viscosity & surface tension for easier mixing & separation of the water.	2	
		The principle of operation is that under a charged electric field, the polar		
		molecules orient. A potential of 20,000-30,000 volts is applied between		
		electrodes through which crude is passed. Water present in the form of		
		emulsion also coalesces and agglomerates into a stream entrapping all the salts		
		in the process. Brine collects at the bottom of the desalter, while crude floats		
		above and forms a separate stream.		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-22 EXAMINATION Model Answer

Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page 8 of 21

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION <u>Model Answer</u>

Subject title: Petroleum and Petrochemical Technology

Subject code

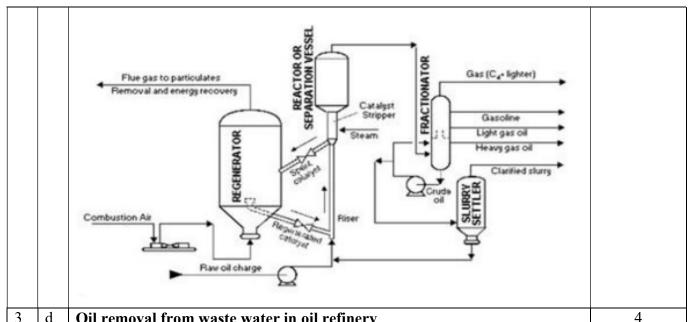
22611

Page **9** of **21**

		3000-5000 psi, mixed with recycle gas and fed to high pressure convertor.	2
		Internal preheat is usually employed. The reactor is copper lined steel and	
		contains a mixed catalytic of zinc, chromium, manganese or aluminum oxides.	
		The temperature is maintained at 300-375 0 C by proper space velocity and heat	
		exchange design.	
		The exit gases are cooled by heat exchange with reactants, then with water.	
		The methanol condenses under full operating pressure to maximize yields. The	
		liquid methanol is depressurized, purified by permanganate to remove traces of	
		ketone, aldehydes, and other impurities and then send to striper to remove light	
		ends such as dimethyl ether and other to fractionator to separate the methanol	
		from higher molecular compounds	
3	С	Fluidized bed catalytic cracking	
		A typical FCC process involves mixing of a preheated hydrocarbon charge	
		with hot, regenerated catalyst .The charge is combined with a recycle stream	
		within the riser, vaporized & raised to the reactor temp. (480 to 540° c) by the	
		hot catalyst. As the mixture travels up the raiser, the charge is cracked. The	4
		cracking continues as the oil vapors are separated from the catalyst in the	
		reactor cyclone. The resultant product stream is then charged to a fractionating	
		column where it is separated into fractions & some of the heavy oil is recycled	
		to the riser. Spent catalyst flows through the catalyst stripper to the regenerator	
		where most of the coke deposit burn off at the bottom where preheated air &	
		spent catalyst are mixed. Fresh catalyst are added & worn out catalyst is	
		removed to optimize cracking process.	
	1		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-22 EXAMINATION **Model Answer**

Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page 10 of 21

3 d Oil removal from waste water in oil refinery

Primary treatment consists of oil removal in two stages by physical methods.

The first stage of oil removal is done in small ponds or basin where major portion of the oil is removed by using baffles, floatation and skimming methods. The second stage of oil removal is mainly by API separator or other gravity separator.

API Separators: API or American Petroleum Institute Separators are normally the first and most important step in a refineries wastewater treatment. It uses the differences in oil and water's specific gravity to filter out the majority of

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION <u>Model Answer</u>

Subject title: Petroleum and Petrochemical Technology

Subject code

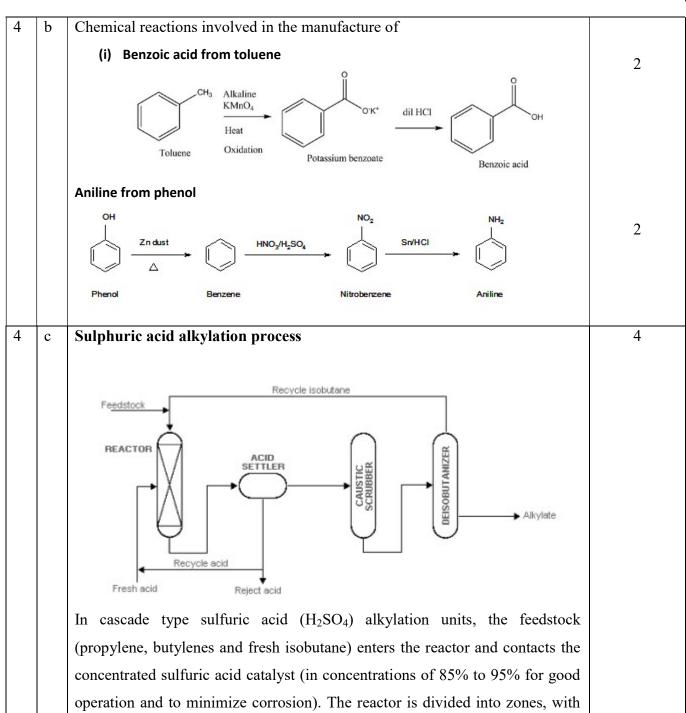
22611

Page **11** of **21**

			Fa
		free oil within the mixture. The lighter oils will remain at the top of the liquid	
		and can be skimmed off, while the heavier oil will settle to the bottom.	
		The above figure shows a detail drawing of a typical API separator. A	
		conventional oil-water separator contains a conveyor to assist in the separation	
		of the heavier oils and grease, a scraper/skimmer and a baffle.	
		(Due consideration should be given for any other method of oil removal)	
4		Attempt any three	12
4	a	Properties of	
		(i) Natural Gas (any two):	
		I. The state of matter of this gas is gaseous.	1 1 1
		II. It doesn't have any color and is a tasteless gas.	1 mark each
		III. It is free of any kind of toxic, there is no smoke on burning and it has	
		high calorific value.	
		IV. The gas is odorless.	
		V. It is a combustible gas and a fossil fuel.	
		(ii) Gasoline (any two):	
		I. This is a volatile fraction and is known as motor spirit.	1 mark each
		II. The boiling range from 37°C to 180°C	
		III. The specific gravity of gasoline ranges from 0.71 to 0.77	
		IV. Quality gasoline should be stable for six months if stored properly,	
		but as gasoline is a mixture rather than a single compound, it will	
		break down slowly over time due to the separation of the	
		components	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-22 EXAMINATION Model Answer

Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page **12** of **21**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION <u>Model Answer</u>

Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page **13** of **21**

		olefins fed through distributors to each zone, and the sulfuric acid and	
		isobutanes flowing over baffles from zone to zone. The reactor effluent is	
		separated into hydrocarbon and acid phases in a settler, and the acid is	
		returned to the reactor. The hydrocarbon phase is hot-water washed with	
		caustic for pH control before being successively depropanized,	
		deisobutanized, and debutanized. The alkylate obtained from the	
		deisobutanizer can then go directly to motor-fuel blending or be rerun to	
		produce aviation-grade blending stock. The isobutane is recycled to the feed.	
4	d	Definition:	
		(i) Cloud point: When oil is cooled slowly, the temperature at which it	1
		becomes cloudy is called as cloud point.	
		(ii) Pour point: The temperature at which oil stops flowing or getting	1
		poured is called pour point of oil.	
		(iii) Drop Point : The droping point is the temperature at which the grease	1
		passes from a semisolid to a liquid state under the conditions of test.	
		(iv)Smoke point: The smoke point, also referred to as the burning point,	
		is the temperature at which an oil or fat begins to produce a	1
		continuous bluish smoke that becomes clearly visible, dependent upon	
		specific and defined conditions.	
4	e	Chemicals derived from aromatics: BTX refers to mixtures of benzene,	½ mark
		toluene, and the three xylene isomers, all of which are aromatic hydrocarbons	each for any two
		Uses of benzene: Used in the production of phenol, styrene, cyclohexane,	
		aniline, sulfonated detergents, chlorobenzene, maleic anhydride (any two)	1.5 each
		Uses of toluene: Used in refinery streams such as gasoline for blending to	
		improve the octane value. In the production of detergents, benzoic acid, used	
-	-		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION <u>Model Answer</u>

Subject title: Petroleum and Petrochemical Technology

Subject code

22611

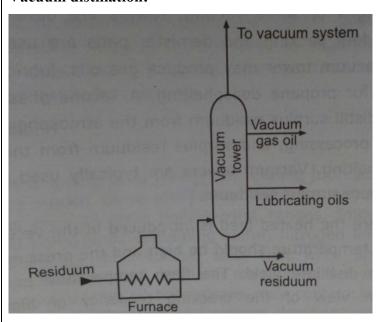
Page 14 of 21

	as plasticizer, solve	ents for paint, rubber etc (any two)	
	Uses of xylene: U	Used in refinery streams for gasoline blending or further	
	separated by isome	ers for chemical applications. Solvent for alkyd resins, in the	
	production of phtha	alic anhydride, dimethyl terephthalate (any two)	
<u> </u>	Attempt any two		1
а	Atmospheric Disti	illation-	
a	Atmospheric Distr	mation-	
		-> Gases (C1-C4)	
		-> Petroleum	
	3	ether (Cs-C7)	
		-> Graeoline	
		(C5-C9)	
		Naphtha (Cq-Clo)	
	As T	- kerosene	
	La what had	(C16-C16)	
	all the state of the	> Diesel oil	
	4 1 1 1 2 1 2 1 5	(2 c ₁₀ -C ₁₅)	
	5		
	Crude :>		
	Oil Fuenau at 4	400°C Heavy oit (Heavy distillate) > (Residue)	
	At the refinery, d	lesalted crude feedstock is preheated. The feedstock then	
	flows to a direct	fired crude charge heater where it is fed into the vertical	2
		in just above the bottom at pressure slightly above	3
		ure & temperature ranging from 340 to 370 °c. Heavy fuel	
	oil or asphalt resid	due is taken from bottom. At successively higher points on	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION Model Answer

Subject title: Petroleum and Petrochemical Technology


Subject code

22611

Page **15** of **21**

the tower, the various products such as lubricating oil, kerosene, gasoline &uncondensed gases are drawn off. The fractionating tower a steel cylinder about 120 feet high, contains horizontal steel trays for separating & collecting liquids. At each tray vapors from below enter perforations and bubble caps. They permit the vapors to bubble through the liquid on the tray causing some condensation at the temperature of that tray. An overflow pipe drains the condensed liquid from each tray back to the tray below, where the higher temperature causes re-evaporation. Products ranging from uncondensed fixed gases at the top to heavy fuel oils at the bottom can be taken continuously from a fractionating tower.

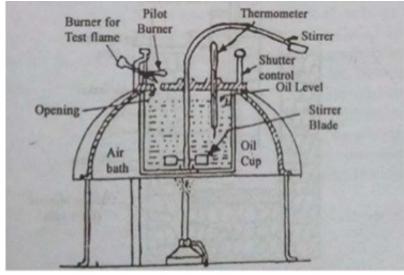
Vacuum distillation:

Heavier fractions from atmospheric distillation unit that cannot be distilled without cracking under its pressure & temperatureconditions are vacuum distilled. Vacuum distillation is simply distillation of petroleum fractions at

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Model Answer

SUMMER-22 EXAMINATION


Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page 16 of 21

	Diagram	
b	Pensky martens apparatus	
	upgrading, as bitumen feedstock or as fuel component.	
	oil. The residue from vacuum distillation can be used as feedstock for further	
	process has become an important chain in maximizing the upgrading of crude	
	comparable vapor velocities at the reduced pressure. This vacuum distillation	
	distillation except that larger diameter columns are used to maintain	
	separation. The principle of vacuum distillation resembles those of fractional	
	partial pressure of hydrocarbons in the tower, facilitating vaporization &	
	superheated steam at the base of vacuum fractionators further reduces the	3
	pumps, barometric condensers or surface condensers. The injection of	
	vacuum inside the fractionators is maintained with steam ejector & vacuum	
	very low pressure to increase volatilization & separation. In most system	

Clean the cup & fill it with given sample of oil up to the filling mark. Cover the cup with lid. Thermometer is inserted and it should not be touch the metallic cup. Heat the oil by means of electric heater or burner so that the 3

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION <u>Model Answer</u>

Subject title: Petroleum and Petrochemical Technology

Subject code

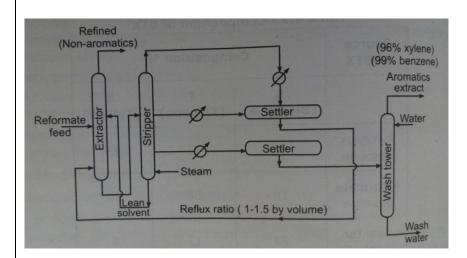
22611

Page **17** of **21**

		sample of oil gives out vapour at the rate of 5-6 0 C per minute. Stir the samples	
		at one or two revolutions per seconds. When the oil gives out vapours,	3
		introduce the test flame above lid, wait for flash. Introducing test flame should	
		be continued at regular intervals until the first flash is observed with peak	
		flickering sound. The temperature corresponding to the flickering sound is	
		noticed & it is the flash point temperature. Continue the process of heating &	
		introducing the test flame until the oil will begin to burn continuously (for 5	
		seconds) and observe the temperature. This is the fire point temperature of oil.	
5	С	Uses of	
		(i) Formaldehyde(any two)	
		i)It is used in pressed-wood products, such as particleboard, plywood.	1.5 mark
		ii) glues and adhesives	each
		iii) Used as an antiseptic in medicine.	
		iv) disinfectant in funeral home	
		(ii) Ethylene oxide(any two)	
		i)It is used as a chemical intermediate in the manufacture of ethylene glycol.	1.5mark
		ii) Used in textiles, detergents, polyurethane foam, antifreeze, solvents,	each
		medicinal, adhesives.	
6		Attempt any TWO of the following	12
6	a	Production of BTX:	
		Udex Process-	
		Reformate as a feed can be send to the extraction column where reformate is	
		heated to about 140-150°c in presence of lean solvent. During extraction we	
		get two phases extract phase &raffinate phase. Extract phase contains aromatic	3
		compounds &raffinate phase contains non aromatic compounds. Solvent is	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION Model Answer


Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page 18 of 21

used to extract aromatic compounds from reformate feed & then it sends to the stripper. In stripping column, recovery of solvent takes place which is removed from bottom side, aromatic extract can be exit from top side. Aromatic extract phase is cooled & then sent to settler. Two settlers can be used, part of one settler is feed back again to extraction column as a reflux. Now the remaining part of aromatic extract phase is fed to wash tower, for washing with water. Higher % of concentrated aromatic extract component can be withdrawn from top as a product, whereas water with impurity can be obtained from bottom side.

Separation of BTX into Benzene, Toluene, xylene:

The aromatic mixture from Udex process containing BTX is fractionated in column 1,2,3. The separation is according to relative volatility. This mixture is preheated to about 230-270°C. Then it is send to clay tower. Bottom effluent send to the series of three fractionating column where benzene toluene can be obtained as pure components by fractionation. C₈ aromatics consists of ethyl benzene, o,m,p-xylenes and are taken out as overhead product of column 3.

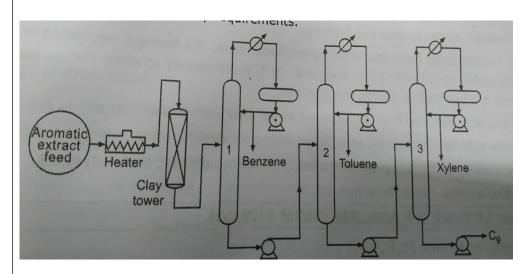
3

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION Model Answer

Subject title: Petroleum and Petrochemical Technology


Subject code

22611

Page 19 of 21

3

The heavier fraction C₉ is obtained as bottom product. Further purification of benzene & toluene can be done by selective treatment depending upon purity requirements.

6 b Manufacture of Vinyl chloride

Explanation:

Chemical Reaction:

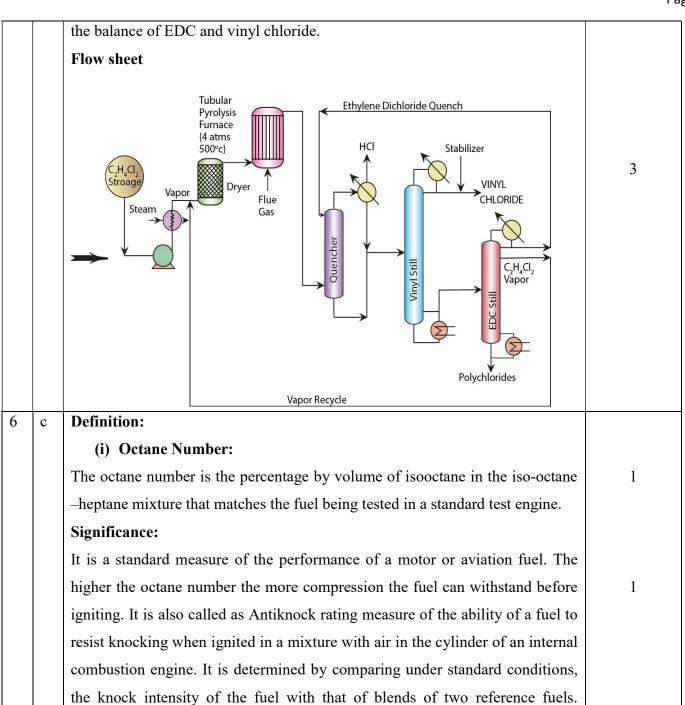
 $CH_2Cl.CH_2Cl \rightarrow CH_2=CHCl+HCl$

Temp- 500° c

Pressure- 4 atms.

Ethylene dichloride vapours at 4 atmospheres are dried by silica gel & sent to a stainless steel tubular cracking furnace. This is externally flue gas fired and controlled at 480-520^oC. The contact surface catalyst within the tubes is pumice or charcoal. The conversion per pass is around 50 % & the ultimate yield is 90-96%. Spray quenching with cold ethylene dichloride prevents back reaction. Uncondensed gases are sent to a surface heat exchanger to remove

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)


SUMMER-22 EXAMINATION Model Answer

Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page 20 of 21

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION <u>Model Answer</u>

Subject title: Petroleum and Petrochemical Technology

Subject code

22611

Page **21** of **21**

To o otomo vehicle modist lemosleimo and hantau a vehicle lemante mandile.	
Isooctane which resist knocking and heptane which knocks readily.	
ii) Cetane number:	
Cetanenumber is defined as the percentage volume of n-cetane in a mixture of	
n-cetane and heptamethylnonane, which gives the same ignition delay as the	
fuel under consideration.	
Significance:	
Cetane Number is a measure of fuels ignition delay, the time period between	
the start of the injection and the first identifiable pressure increase during	
combustion of the fuel. In a diesel engine higher cetane fuels will have shorter	
ignition delay periods than lower cetane fuels. The higher the cetanenumber,	
the more easily the fuel wills combust in a compression setting. A higher	
cetane fuel usually causes an engine to run smoothly and quietly.	
iii) Aniline point :	
The aniline point of oil is defined as the minimum temperature at which equal	
volumes of aniline & the oil are miscible.i.e. form a single phase upon mixing.	
Significance:	
Aniline point gives an approximation for the content of aromatic compounds	
in the oil, since the miscibility of aniline which is also an aromatic compound	
suggest the presence of similar compounds in the oil. It gives an indication of	
the aromatic hydrocarbon content in a hydrocarbon mixture and can also be an	
indicator of the ignition point of a diesel fraction.	