

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-22 EXAMINATION Model Answer

Subject Title: Mass Transfer Operation

Subject code

22609

Page **1** of **18**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

SUMMER-22 EXAMINATION Model Answer

Subject Title: Mass Transfer Operation

Subject code

22609

Page **2** of **18**

Q No.	Answer	
		scheme
1 a	Attempt any 5	10
1a	Molecular Diffusion:	1
	When diffusion results from the random movement of molecules, it is called	
	molecular diffusion.	
	Eddy Diffusion:	
	When the movement of molecules occurs with the help of an external force,	1
	then it is called eddy or turbulent diffusion.	
1b	Types of gas absorption:	
	1. Physical absorption: It is a purely physical phenomenon.	1⁄2
	Example: Absorption of ammonia from ammonia- air mixture by water	1/2
	2. Absorption accompanied by a chemical reaction.	1⁄2
	Example: Absorption of NO ₂ in water to produce nitric acid.	1/2
1c	Volatility: It is the ratio of partial pressure of a component to its mole fraction	2
	in the liquid phase.	
	Volatility of $A = p_A / x_A$	
1d	Different types of packings (any 2):	1 mark
	1) Raschig rings.	each for
	2) Pall rings.	any 2
	3) Hy-pak.	
	4) Berl saddles.	
	5) Intalox saddles.	
	6) Super intalox saddles	
	7) Lessing ring	

Title:	Mass Transfer OperationSubject code22609	Page 3 of 18
1e	Moisture content on wet basis:	
	It is the ratio of weight of moisture to the weight of wet feed material.	1
	Moisture content on dry basis:	
	It is the ratio of weight of moisture to the weight of dry solids in wet fee material.	d 1
lf	Selectivity: The ratio of concentration ratio of solute to feed solvent in extrac	et 2
	It is the measure of effectiveness of solvent for separating the constituents	2
	When selectivity = 1, separation is not possible. Selectivity should be greated	er
	than 1.	
1g	Supersaturation: It is the quantity of solute present in the solution in which	h 2
	crystals are growing compared with the quantity of the solute that is i	n
	equilibrium with the solution.	
2	Attempt any 3	12
2-a	Derivation of Equation of flux for steady state equimolar counter diffusion	n 4

t Title:	Mass Transfer OperationSubject code22609P	age 5 of 18
	For quimolar counter diffusian, NA = - NB NA = - DAB dPA RT dz ib DAB is constant, fluis can be integrated 22 NA S dz = - DAB S dPA Z, PA2 PA1	
	$N_{A}(z_{2}-2,) = -\frac{D_{AB}}{RT}(P_{A2}-P_{A1})$ $N_{A} = +\frac{D_{AB}}{RT}(P_{A1}-P_{A2})$ R_{T} $N_{A} = -\frac{D_{AB}}{RT}(P_{A1}-P_{A2}).$ $R_{T} = -\frac{D_{AB}}{RT}$	
2-b	Rayleigh equation:	
	Let F be moles of liquid mixture containing x_F mol fraction of A, D kmoles of	
	distillate and W kmoles of residual liquid in still which are obtained at the end	
	of operation. Let y_D and x_W be the mol fr of A in distillate and bottom residual	
	liquid.	
	Let L be kmoles of liquid in the still at any time during the course of distillation	1
	and let x be mol fr of A in liquid.Let very small amount dD kmol of distillate of	
	composition y in equilibrium with the liquid is vaporized. Then composition	
	and quantity of liquid decreases to (x-dx) and L to (L-dL) respectively.	
	Overall material balance is L=L-dL+dD	1
	Or dL = dD	
	Material balance for component A is $Lx=(L-dL)(x-dx)+ydD$	

ect Title:	Mass Transfer Operation Subject co	le	22609	Page 6 of 18
	Lx = Lx - Ldx - xdL + dLdx + ydD			<u>-</u>
	dLdx=0			
	0 = -Ldx - xdL + ydL			
	But dD=dL			1
	i.e. 0=-Ldx-xdL+ydL			
	Ldx=(y-x)dL			
	dL/L=dx/(y-x)			
	Integrating the equation between the limits L=F, x=x _F , L=V F xF	V x=x	ζW	
	$\int dL/L = \int dx/(y-x)$			
	W xW			
	X _F			
	$Ln(F/W) = \int dx/(y-x)$			1
	X _W			
	This is Rayleigh's equation			
2-c	Situations where liquid- liquid extraction is preferred			4
	1. Whenever very large amounts of latent heats are rec	quired	l	
	2. Whenever we are dealing with substances which are	e heat	sensitive	
	3. Whenever we are dealing with liquid mixture for	ormin	ig azeotrope	or
	close boiling mixture.			
2-d	Selection criteria for solvent in gas absorption : (any 4)			1 mark
	While selecting a particular solvent for absorption operation	on , th	e following	each for
	properties of the solvent are considered.			any 4
	1) Gas solubility : the solubility of solute gas in a solvent	shou	ld be high . (the
	solvent selected should have a high solubility for the so	olute	to be absorbe	ed
	2) Volatility : As the gas leaving an absorption unit is gen	erally	y saturated w	<i>'</i> ith

et Title:	Mass Transfer Operation	Subject code	22609	Page 7 of 18
	 the solvent, there will be a loss of the operation, hence to minimize the solv volatile. 3) Corrosive nature : the solvent should materials of construction so that the c equipment will not be too expensive. 4) Viscosity : the solvent should have a rates, low pumping cost and better he viscous. 5) Cost and availability : the solvent should be 	solvent with the gas leavent loss, the solvent sh not be corrosive toward onstruction material for low viscosity for rapid at transfer. The solvent ould be cheap and readil	aving the uni ould be less ls common c an absorption absorption should be no y available able, non-	t on on
	foaming, and chemically stable from	a handling and storage	point of view	/.
3	Attempt any 3			12
3-a	Purpose of drying operation in industry	y(Any 4)		1 mark
	1. For reducing the transportation co	st.		each
	 For purifying a crystalline product crystal is removed. To meet the market specification of 4. For making the material more shipping. For providing definite properties the formation of the material over prolume for the material over proleme for the material over prolume for the material over prol	ct so that the solvent a of solid product. suitable for handling o the materials. onged period.	adhering to a	und
	7. As a part of the process 8. To prevent corresion occurring du	e to the presence of mo	icture	
3-b	Mier's supersaturation theory:	e to the presence of mo		

ect Title: N	Aass Transfer Operation	Subject code	22609	Page 8 of 18
	According to Mier's theory there is a defit temp at which crystals will spontaneously relationship is represented by the super se parallel tp the solubility curve. The curve PQ is the super solubility curve. The curv solution which can be achieved by bringin solvent. If a solution having the composite cooled in the direction shown by the arrow AB and it is expected to start of crystallize with initially unseeded solution crystal for solution is super cooled considerably pass theory, crystallization will start in the nei- concentration of the solution then follows initially unseeded solution , the curve PQ spontaneous nuclei formation begin and of	nite relationship betwe formed in a pure solut olubility curve which is AB is the solubility cu e AB represents maxin ng solid-solute into equ ion and temp indicated w it first crosses the sol ation. Actually if the pur- rmation will not begin sed the curve AB. Accor ghbourhood of the point roughly along the curve represents the limit at consequently, crystallize	en the conc a ion. This s approximate rve and curve num conc of n with liquid by point C is ubility curve rocess started until the ording to Mie nt D and the we DE. For an which zation can sta	and 3 ely 3 e 3 f 4 r's 1 n rt.
3-с	Compare Schubbly A Compare Schubbly A D B E B E D Comp Co			1

t Title:	Mass Transfer OperationSubject code22609Pa	age 9 of 18
	Interface Heavy liquid in Heavy Light liquid n Heavy Light liquid n Heavy Heavy liquid Heavy liquid Heavy liquid Heavy liquid Heavy liquid Heavy liquid Heavy liquid Heavy liquid Heavy liquid Heavy liquid Heavy liquid Heavy liquid Heavy liquid Heavy liquid Heavy liquid Heavy Heavy liquid Heavy	2
	Fig,Shows rotating disk contactor for light phase dispersed. In these units,disks disperse the liquid & impel them outward towards the tower wall, where stator rings create quiet zones wherein the 2 phases can separate. Rotating disc contactor is a mechanically agitated counter current extractor agitation is brought with the help of rotating disc.	2
3 d	Equation for q line $y = \frac{-q}{1-q} x + \frac{XF}{(1-q)}$	1
	Values of q lines for various feed conditions: $q = 0$ (saturated vapour) $q = 1$ (saturated liquid) $0 < q < 1$ (mix of liquid and vapour) $q > 1$ (subcooled liquid) $q < 0$ (superheated vapour)	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

bject Title:	ject Title: Mass Transfer Operation		Subject code	22609	Page 11 of 18	
	and	MIK is solvent for extracting the sol	ute. Apex C in the	e triangle AH	BC	
	repr	resent 100% acetone and apex Aand E	B represent 100% w	ater and 100	%	
	MIK respectively. Along line BC, concentration of Ais zero and the same is true					
	for	B and C along AC and AB.				
	The	ternary system represented by point P	consist of three com	ponents C,A	,B 1	
	in th	he ratio of perpendiculars PL,PJ and PK	respectively. The dis	stances AD a	nd	
	BE	represent the solubility of solvent B in	A and A in B. The	e curve the li	ne	
	ERI	F indicates composition of saturated M	IIK layer and the c	urve line D0	QF	
	repr	resent the composition of saturated wa	ater layer. The area	under binoc	lal	
	solu	bility curve represented by the curve l	line DQFRE represe	nt a two pha	se	
	regi	int 1				
	F of	es				
	and corresponds to tie line of zero length and is known as plate point.					
4 b	Differentiate between plate and packed columns(Any 4)					
		Packed column	Plate column		any 4	
		They are differential contactors	They are stagewise	contactors w	nere	
		where mass transfer occurs	mass transfer occurs	s stage wise a	nd	
		throughout the length of the	equilibrium is attain	ed between t	he	
		contactor and equilibrium is not	phases at a number	of separate		
		reached at any point between the	stages.			
		phases in contact.				
		Packings are used as gas- liquid	Plates are used as g	as – liquid		
		contacting devices	contacting devices.	-		
		Design mainly involves the	Design involves the	calculation of	of	
		calculation of height of transfer unit	number of theoretic	al stages requ	uirea	
				0		

et Title: Ma	ass Transfer Operation	Subject code	22609	Page 12 of 18
	and number of transfer units required	to effect a desired s	eparation.	
	to effect a desired separation.			
	Simple in construction.	Complex in constru	ction	
	Raschig ring, pall ring, berl saddles,	Bubble cap plate, si	eve plate , va	llve
	intalox saddles are types of packings.	plate are the types of	f plates used	in
		plate column.		
4 c				
	wet solids dryer	Moisture evaporate	ed	1
]	Basis: 100 kg dried product			
]]	Let X kg wet solids and Y kg moisture evap	porated		1
	Overall balance is $X = Y + 100$			
	Solid balance is $0.2 \text{ X} = 0.95 \text{ * } 100$			1
	Or X = 475 kg			
1	moisture evaporated $475-100 = 375 \text{ kg}$			1
4 d	An azeotrope is a mixture of two or more	liquids whose propor	tions cannot	be
á	altered by simple distillation. This happens because, when an azeotrope is			is 1
1	boiled, the vapor has the same proportion	ons of constituents a	s the unboil	led
1	mixture.			
	An azeotrope is a liquid mixture with	an equilibrium va	pour of same	me

		ge 13 of 18
	azeotropic composition and mixture vaporizes at single temperature, so	1
	azeotropes are called constant boiling mixture.	
	Azeotrope cannot be separated by distillation because the dew point and bubble	
	point are identical.	
	Complete separation of constituents of binary azeotrope can be done by	
	1. Adding third component to the binary mixture and	1
	2. Changing the system pressure.	
	The third component added to a binary azeotrope usually forms a low boiling	
	azeotrope with one of the feed constituents and withdrawn as distillate. The	
	third component added is called as entrainer or azeotrope breaker. The process	1
	of distillation where the third component is added to the binary azetrope to	
	effect the complete separation is called azeotropic distillation	
4 e	Swenson-walker Crystallizer:	
	Jacket Spirál Feed	2
	Agitator	
	Crystal	
	+ mother liquor	
	It is the cooling type continuous jacketed trough crystallizer. It is an example of	
	scrapped surface crystallizer.	
	Construction:	

that is u shaped trough, of width 0.6m and length 3-6m. The trough is jacketed	
externally for circulating the coolant during operation. A spiral agitator	2
rotating at about 7 rpm is incorporated in the trough in such a way that it is as	
close to the bottom of the trough as possible. It helps to transport crystals from	
one point to another point and doesn't allow crystals to settle at the bottom. At	
one end of the crystallizer an inlet foe hot solution isprovided.an at the other	
end, an over flow gate for the crystals and mother liquor discharge is provided,	
The function of spiral agitator include to scrap crystal, to lift and shower the	
crystal of uniform size, and to convey crystal from one end	
to the other end of equipment.	
5 Attempt any2	12
5-a Flux Equation for the diffusion of A through non-diffusing B for gases:	
$N_A = [D_{AB} P/ RT z P_{B,M}] (P_{A1} - P_{A2})$	1
Where $N_A = \text{molar flux of } A=?$, $D_{AB} = \text{Diffusivity of } A \text{ in } B = 2.3*10^{-5} \text{ m}^2/\text{s}$,	
R = Universal gas constant=8314.51 m ³ Pa / (Kmol K), P= 1.103×10^5 Pa	
T=absolute temperature=298K, z=distance through which diffusion	1
occurs=0.15m,	
P_{A1} = partial pressure of A at beginning of diffusion=1.5*10 ⁴ Pa, P_{B1} =8.63*10 ⁴	
Pa	1
P_{A2} = partial pressure of A at end of diffusion = 5*10 ³ Pa, P_{B2} = 9.63*10 ⁴ Pa	
$P_{B,M} = (P_{B2} - P_{B1}) / \ln (P_{B2} / P_{B1}) = 9.121 * 10^4 Pa$	1
$N_A = 7.484 * 10^{-7} \text{ kmol} / (\text{m}^2.\text{s})$	
Equation for steady state equimolar counter diffusion for gases:	
$N_A = D_{AB} / RTz (P_{A1} - P_{A2}) =$	1
6.19 * 10 ⁻⁷ kmol / (m ² .s)	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

ject Title: Mass Transfer Operation		Subject code	22609	Page 16 of 18
	F=100 kg. x_F =64.2/164.2=0.391			1
	Water in feed = $1000(1-0.391) = 609$ kg	5		
	Water evaporated $= 4 \text{ kg}$			1
	Mol wt of MgSO ₄ =120, Mol wt of Mg	$SO_47H_2O = 246$		
	Solvent balance is			1
	$F(1-x_F) = V + C(126/246) + L$			
	100 (1-0.391)=4+0.5122C+L			
	or L=60.9-4+0.5122C kg.			
	MgSO ₄ balance			1
	$MgSO_4$ in feed = $MgSO_4$ crystals + M	IgSO4 in mother liquor.		
	0.391*100=C(120/246)+[60.9-4-0.5122	C] * solubility of NaNO	3	
	39.1 = 0.488C+[60.9-4+0.5122C]*0.408	8		
	Or C=56.99 kg			1
	100 kg feed == 56.99 kg crystals			
	? $== 1000 \text{ kg crystals}$			
	Feed = 1000*100/56.99			
	= 1754.56 kg			1
6	Attempt any 2			12
6-a	Basis: 100 kmoles/hr feed			
	$F = 100 \ x_F = 0.5 \ x_D = 0.9 \ x_W = 0.1$			1
	F = D + W			
	$Fx_F = Dx_D + Wx_W$			
	Substituting the vales $D = 50$ kmol/hr			
	W = 50 kmoles/hr			1
	Construct equilibrium diagram with the	given x-y data.		
	Reflux ratio = 3			
	Rectifying section:			

ect Title: I	Mass Transfer Operation	Subject code	22609	Page 17 of 18
	Y intercept = $x_D/R+1$ = 0.9/(3+1) = 0.225 Draw operating line for rectifying section intercept = 0.225 Draw feed line parallel to y axis through (0. Draw operating line for stripping section meeting point of rectifying section line and Construct triangles starting from (0.9,0.9) of Total plates 4 including reboiler. Therefore Feed plate is 2 nd from top.	n with $(0.9,0.9)$ on $(0.5,0.5)$ on diagonal on with $(0.1,0.1)$ or feed line. on diagonal and endir number of plates = 4	diagonal and n diagonal a ng with(01,0. -1=3.	1 y and 1). 2
6-b	Basis: 1kmol of feed. X_F = mole fraction of hexane in the feed = 6	60/100=0.6		1
	Feed is 50 mole% vaporized f=50/100=0.5			1
	The operating line for flash distillation is Y=-((1-f)/f)X+XF/f $Slope=-(1-f)/f=-(1-0.5)/0.5=-1$			1

ect Title: Mass Transfer Operation		Subject code	22609	Page 18 of 18		
	The point of intersection of the operating lin	ne with the diagonal i	is (0.6,0.6).	1		
	Draw the equilibrium curve and draw the	operating line with	the slope to	-1		
	passing through (0.6,0.6) on the diagonal. It intersects the equilibrium curve at					
	P which gives us the equilibrium liquid an	and				
	0.79 mole fraction hexane respectively.			1		
	liquid compositions = 41% hexane					
	vapour compositions = 79% hexane					
6-с	Basis: Slabs of paper pulp 1m*1m*1.5 cm					
	Initial moisture content $X1 = 0.67/(1-0.67)$	= 2.03				
	Final moisture content $X2 = 0.3/(1-0.3) = 0$.428				
	Critical moisture content $Xc = 006/(1-0.6) =$	= 1.5				
	Equilibrium moisture content $X^* = 0.005/(1)$	1-0.005) = 0.005025		2		
	$Rc = 1.5 \text{ kg/ } \text{m}^2 \text{hr}$					
	W = 2.5 kg					
	Area A = $1*1*2 = 2 \text{ m}^2$			1		
	Time for drying $t = W'/(A.Rc)[(X1-Xc) + (X1-Xc)]$	(Xc-X*) ln ((Xc-X*)/	/(X2-X*))]	1		
	$= 2.5/2*1.5[(2.03-1.5) + (1.5-0.005025) \ln 10^{-1}]$	n ((1.5-0.005025)/(0.4	28-0.005025	5))] 1		
	t = 2.01 hrs			1		