

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: DSR

SUMMER – 2022 EXAMINATION

<u>Model Answer</u>

Subject Code: 22502

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. No.	Sub Q. N.	Answer			
1.		Attempt any <u>FIVE</u> of the following:	10 MARKS		
	a)	Enlist four steel structures with their functions.			
	Ans.	1. Steel tower	ANY		
		a) Lightening tower: It is used to prevent or to reduce lightning strike	FOUR ¹ / ₂ MARKS		
		b) Transmission tower: It is used to support high tension cable	EACH		
		2 Roof trusses			
		A roof truss is used to support purlins and roof over it.			
		It is used in industries for large span working space.			
		3. Steel water tank			
		Steel tank are used to store of water, oil or any other liquids and gases			
		Different in shapes like rectangular, circular or spherical			
		4. Steel bridges			
		Steel bridges are generally used in railways to cross highways, rivers and valley etc.			
		5. Crane girders			
		Crane girders are used in large scale industries to lift and move heavy materials and machinery			
		6. Steel chimney			
		Steel chimney are used for emission of flue gases higher in the atmosphere			
		and reduce pollution.			
		7. Building frames			
		The building frames is three-dimensional skeleton system it consists of			
		slabs, beams, columns and foundation connected with each other to act as one unit			

b)	Define parti	al safety factor and state it's type.		1
Ans.	The load fact	tor and material factored are contribut	e partially to safety so they are called	Marks
	as partial saf	ety factors.		
	Two types o	f partial safety factor are:		1/2
	1. Partia	al safety factor for load		MARKS
	2. Partia	al safety factor for material strength		ЕАСП
c)	Write two	advantages and two disadvantage	es bolted connection over welded	
Ang	Advantages	of holted connection over welded	opposition	
Alls.	Auvantages 1 Maki	ng Joints is noiseless	onnection	ANY
	2 Their	no risk of fire in case of bolted conn	ection	TWO 1/2
	3. Conn	ections can be made quickly		MARKS
	4. Need	s less Labour.		ЕАСП
	5. Do no	ot need skilled labour.		
	6. Alter	ations, if any, can be done easily.		ANY
	7. Work	king area required in the field is less.		TWO 1/2
	Disadvantag	ges of bolted connection over welde	d connection	EACH
	1. Cost	of material is high		2
	2. Due t	to vibration bolts are likes to loose		
	3. Tensi	ile strength is reduce considerably du	e to bolt holes	
	4. Over	all weight of structure is increased du	e to weight of bolts	
	5. Bolte	ed connection are not suitable gas or f	luid retaining structure.	
	6. Lot o	f noise is produced in bolting process	3	
d)	Write expre	ssion for minimum and maximum	reinforcement in beam.	
Ans.	Minimum T	ension reinforcement in beam:		1 M
	Δst	$\min = \frac{0.85 \ b \ d}{100}$		I IVI
		Fy		1 M
	Maximum 1	Tension or Compression reinforcen	ient in beam:	
	Ast m	ax < 0.04% gross area or 0.04 b D		
e)	State two us	es of bent up bar.		
Ans.	1) Bent up	b bar are provided to complement th	e vertical stirrups in resisting shear	
	2) Bent up	bars are good in controlling cracks v	width which may be developed due	
	to diago	onal tension		Any Two 1 M
	3) No add	itional steel is required because only	unwanted tension bar are used by	Each
	hending	these bars. Hence it provides econ	omy	
	(1) In most	cases half of the total shear reinford	sement in contributed by bent up	
	bar		in contributed by bent up	
P \				
I)	Differentiat	e between one way slab and two v	way slab with respect to spanning	
Ans	direction an	d bending curvature.		
4 1113.		One way slab	Two way slab	1 M
	Spanning	Main reinforcement is required in	Main reinforcement is required	
	direction	such slabs in one direction	in such slabs in two direction	1 M
	Bending	It is supported on two opposite	It is supported on all four edges	T TAT
	curvature	edges hence bends in one direction	hence bends in on both direction	

	g)	Define effective length and Effective length:	slenderness ratio in colum	n.	
	Ans.	The effective length of the c the buckled column. Slenderness ratio for colum	olumn is the length between	the point of contra flexure of	1 M
		The slenderness ratio for col of column (Ld). Slenderness ratio = Effective	lumn is the ratio of effective e length/ Lateral dimension	(Le) to the lateral dimension	1 M
2.		Attempt any THREE of th	e following:		12 MARKS
	a) Ans.	 Write four advantages and Advantages of steel as cons 1) Steel has good mech strength 2) Steel structure are high 	disadvantages of steel as c struction material anical properties like mallea ghly suitable for prefabrication	onstruction material. bility and ductility with high on and mass production	
		 3) It has high scrap valu 4) It can erected quite ra 5) Suitable for gas resis 6) It is very useful for la 7) It can easily fabricate 8) It has high ratio of st small cross section 	apidly tance structures arge span bridges, tall structured to any desired shape and s rength to weight which make	rres. Etc. ize es it to resist high load over a	ANY FOUR 1/2 MARKS EACH
		 Disadvantages of steel a 1) Steel is very costlier if 2) It has affinity of corresperiodically. 3) It requires skill labou 4) It creates noise and response of the steel construction if 	as construction material material. osion and hence required corr r for erection equires electricity during con it should not be monolithic co	rosion treatment nection of members. onstruction	ANY FOUR 1/2 MARKS EACH
	b)	Differentiate between un percentage of steel provide member.	der-reinforced and over- d, position of N.A., moment	reinforced section w.r. to t of resistance and failure of	
	Ans.		Under-reinforced section	Over-reinforced section	1 M
		Percentage of steel provided	The percentage of steel is less than the balanced section	The percentage of steel is more than the balanced section	
		Position of N.A	The actual neutral axis lies above the critical neutral axis Xu < Xu max	The actual neutral axis lies below the critical neutral axis Xu > Xu max	1 M
		moment of resistance	The moment of resistance is less than balanced section.	The moment of resistance over-reinforcement beam bends under bending moment, resulting in	1 M
		Failure of member.	Under-reinforced section is ductile failure	Small curvature. Over-reinforced section is sudden failure	1 M

Q. 3		Attempt any TWO of the following	Marks
	a)	Determine bolt value of 16mm diameter bolt of 4.6 grade to connect two angles 90 \times 60 \times 6mm back to back on opposite side of gusset plate of 8 mm thickness. Also determine number of bolts required if it carries a direct factored load of 110 kN. Take pitch = 50 mm and edge distance = 40 mm. Draw neat sketch of designed	6 M
	A	STEP 1) Given Data:	
	Ans.	i) Diameter of bolt $d = 16 \text{ mm}$	
		ii) Diameter of bolt $d_0 = 18 \text{ mm}$	
		iii) Class of bolt = 4.6 grade	
		which means i.e. & $f_{ub} = 4 \times 100 = 400 \text{ N/mm}^2$ &	
		f_{yb} = 400 x 0.6 = 240 N/mm ²	1/2 M
		iv) Two angles 90 x 60 x 6 mm are connected back to back to gusset plate of 8 mm thick	
		Thickness will be minimum of angle (6 x $2=12$ mm) and gusset plate (8 mm),	
		Hence $t = 8 \text{ mm}$	
		v) Factored load $P_u = 110 \text{ kN} = 110 \text{ x} 10^3 \text{ N}$	
		vi) Pitch; $p = 50 \text{ mm}$	
		vii) Edge distance; $e = 40 \text{ mm}$	
		STEP 2) To find;	
		i) Bolt Value	
		ii) Number of Bolts	
		STEP 3) Calculate design shearing strength of bolt (V _{dsb})	
		$V_{dsb} = \frac{V_{nsb}}{\gamma_{mb}}$	
		$V_{nsb} = \frac{f_{ub}}{\sqrt{3}} [n_n * A_{nb} + n_s * A_{sb}]$	1/2 M
		As two angles placed back to back there will be double shear, hence assuming the shear	
		plane is intercepting at threaded portion only,	
		Therefore, $n_n = 2 \& n_s = 0$	
		$A_{sb} = \frac{\pi}{4} d^2$	1/2 M
		$A_{\rm sb} = \frac{\pi}{4} 16^2$	
		$A_{sb} = 201.06 \text{ mm}^2$	
		$A_{nb} = 0.78 * A_{sb}$	1/2 M

$A_{\rm nb} = 0.78 \ge 201.06$	
$A_{nb} = 156.83 \text{ mm}^2$	
$V_{\rm nsb} = \frac{410}{\sqrt{3}} \left[2 * 156.83 + 0 \right]$	1/2 M
$V_{nsb} = 74246.79 \text{ N}$	
$V_{nsb} = 74.25 \text{ kN}$	
$V_{dsb} = \frac{74.25}{1.25}$	
$V_{dsb} = 59.40 \text{ kN}$	1/2 M
STEP 4) Calculate design bearing strength of bolt (V_{dpb})	
$V_{dpb} = \frac{V_{npb}}{\gamma_{mb}}$	
$V_{npb} = 2.5 \text{ x } \text{k}_{b} \text{ x } \text{d} \text{ x } \text{t} \text{ x } \text{f}_{u}$	
Where k_b is the minimum of the following;	
k _b is the minimum of the following;	
i) $K_{b1} = \frac{e}{3d_0} = \frac{40}{3*18} = 0.741$	
ii) $K_{b2} = \frac{f_{ub}}{f_u} = \frac{400}{410} = 0.97$	1/2 M
iii) $K_{b3}=1$	
iv) $K_{b4} = \frac{p}{3*d_0} - 0.25 = \frac{50}{3*18} - 0.25 = 0.67$	
Therefore, $K_b = 0.67$	1/2 M
$V_{npb} = 2.5 * 0.67 * 16 * 8 * 410$	
$V_{npb} = 87904 \text{ N}$	
$V_{npb} = 87.90 \text{ kN}$	
Now, $V_{dpb} = \frac{87.90}{1.25}$	
$V_{dpb} = 70.32 \text{ kN}$	1/2 M
STEP 5) Decide bolt value	
Bolt value is a minimum between design shearing and bearing strength of	
bolt. Minimum between $V_{dsb} = 59.40$ kN & $V_{dpb} = 70.32$ kN	
Therefore, $B_v = 59.40 \text{ kN}$	1/2 M
STEP 6) Calculate Number of bolts required (n)	
No. of Bolts (n) = $\frac{\text{Design load }(P_u)}{\frac{P_u}{P_u}}$	
Bolt Value (B _v)	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

		And	
		$(L_1 \times P_{dw}) \times 52.7 = (L_2 \times P_{dw}) \times 27.3$	1 M
		Rearranging the terms;	
		52.7 $L_1 - 27.3 L_2 = 0$ Eq. No. (2)	
		Solving equation No. (1) & (2)	1/2 M
		$L_1 = 117.99 \text{ mm}$	-//-
		$L_1\cong 118\ mm$	
		$L_2 = 227.769 \text{ mm}$	1/2 M
		$L_1 \cong 228 \ mm$	1/2 111
	c)	Draw stress-strain diagram for singly reinforced beam. Show all design parameters	6 M
		by mentioning meaning of notations used in it.	
	Ans.	b = breadth of beam d = effective depth of beam MA = neutral axis $x_u = neutral axis$ $x_u = neutral axis$	4M For dia.
		ϵ_c = maximum compressive strain in concrete in axial compression ϵ_{cu} = maximum strain in concrete f_{ck} = Characteristic strength of concrete A_{st} = Area of steel in tension Z = lever arm	2 M for meaning the term
Q.4		Attempt any TWO of the following:	12 M
	a)	Find limiting moment of resistance and steel required for a beam 300x 550 mm effective, if concrete M20 and steel Fe 415 is used.	6 M
	Ans.	Given, b = 300 mm, d=550mm A=bxd = $300x550 = 16500 \text{ mm}^2$. F _{ck} = 20 N/mm^2	

	$F_y = 415 \text{ N/mm}^2$	
	Step 1) To find X _{umax}	
	$X_{umax} = 0.48 \text{ d} = 0.48 \text{ x} 550 = 264 \text{ mm}.$	1 M
	Step 2) Mu $_{lim}= 0.138 \text{ x } f_{ck} \text{ x } b \text{ x } d^2$	1 M
		1 M
	$= 0.138 \times 20 \times 300 \times 550^2 = 250.47 \times 10^6 \text{ N.mm} = 250.47 \text{ kNm}$	1 M
	Step 3) $X_{u max} = \frac{0.87 fy.Ast}{0.36. fck.b}$	
	Step 4) $A_{+} = \frac{0.36* fck * b * Xu \max}{1000}$	1 M
	$\frac{5 \text{cp} + f x_{\text{st}}}{0.87 * f y}$	1 \ 7
	$=\frac{0.36*20*300*264}{0.87*415}=1579.3 \text{ mm}^2.$	I IVI
	0.8/*415	
	OR	
	For Fe 415, % pt = 0.048 x f_{ck} = 0.048 x 20 = 0.96	1 M
	Pt $_{\text{lim}} = 100 \text{ x A}_{\text{st}}/(\text{bd})$ Ast = Pt $_{\text{lim}} \text{ x b d} / 100 = 0.96 \text{ x } 300 \text{ x} 550/100 = 1584 \text{ mm}^2$	1 M
b)	Design the balanced section for the simply supported beam of span 4m. It carries a	6 M
	working load of 35 kN/m including self weight. Use M20 concrete and Fe 415 steel.	
Ans.	Take $b = 230 \text{ mm}$.	
	W = 35 KN/m h = 230 mm	
		1/2 M
	Io Find: - d, D and Ast	
	Solutions: -	1/2 M
	Step 1) Calculate Mur max	
	Mur max = 0.138 Fck b d ² Fe 415	
	$= 0.138 \times 20 \times 230 \times d^2 = 634.8 d^2$	1 M
	Step 2) Calculate Mu	
	Wu = 1.5 x 35 = 52.5 KN/m	1/2 M
	Ultimate or Factored Bending Moment (Mu) = $\frac{Wu l^2}{8} = \frac{52.5x 4^2}{8}$	
	= 105 KN.m	
	= 105 x 10 ⁶ N.mm	1 M
	Step 3) Calculate d	
	By Using Relation Mu = Mur max	1 M

_								
		105 x10 ⁶ =	= 634.8 d ²					
		d = 406.7 r	mm = 410 r	mm (say)				
	Step 4) Overall D	epth (D)						1/0.3.5
	Assume	d' = betwee	n 30 to 35	mm = 35 mn	n			1/2 M
	D = d + d'	= 410 + 35= 4	145 = 450 r	nm(Say)				
	Step 5) Calculate	Ast						
	Ast for Ba	alaned section	n					
	Act -	0.36 Fck b X	'u max	0.36x 20	x 230 x 0.42	79 <i>x</i> 410		
	Ast =	0.87 Fj	V		0.87 <i>x</i> 415			1.11
				= 900.77 m	m²			1 M
 c)	Design shear reinf for a beam of 6m s (effective) in size. ' M20 concrete and	orcement in pan having s The reinforce Fe 415 steel.	the form a service loa ement con . Use folloy	nd two legg d of 20 kN/i sists of 6 ba ving table.	ged vertical s m. Beam is 3 rs of 20mm	stirrups of 300 x 450 m in diameter	6mm im r. Use	6 M
	Pt%	1.0	1.25	1.5	1.75	2.0		
	Tc in N/mm2	0.6	0.64	0.68	0.71	0.79		
Ans.							J	
	Given- Service Loa Factored Lo Simply supp size of bean	d (w) =20 kN ad (W_u) = 20 orted beam, s n = 300 x 450	V/m x 1.5 = 30 pan (1) = 6 pmm effection	h kN/ m. m ive				1/2 M
	Step 1) calculate m $V_u = W_d l/2$	aximum shea 2 = 30 x 6/2 =	r Vu. 90 kN .					1/2 M
	Step 2) Calculate N $T_v = Vu/bd = 90 x 1$ $T_v < T_c max = 2.8 N$ Step 3) Calculate T	$0^{3}/(300 \text{ x45})$ $\sqrt{100 \text{ mm}^2}$ for M20	0) = 0.666 0 Concrete	N/mm ² . . Hence, OK	ζ.			1/2 M
	% P _{t =} 100 x Ast/bd	$=\frac{100x6x(\pi)}{300x^2}$	$\frac{(4)x20^2}{450} =$	1.39 %				1/2 M
	Tc = $0.64 + \frac{0.68 - 0.6}{1.5 - 1.25}$ Step 4) Compare T	$\frac{4}{5}$ x(1.39 -1.2 v_{v} and T _c	25) =0.662	2 N/mm ²				1 M
	As $T_{v} = T_{c} = 0.66$ N	/mm ² , Minin	mum shear	reinforceme	ent is require	ed.		
	Step 5) Minimum s	pacing of Stir	rups (Sv m	in)	π.	2		
	I) Use 6 mm	diameter 2 l	egged stirr	ups naving A	$x = 2 \times \frac{-}{4} \times 6$	o∸ = 56.52 m	1m ^	1/2 M
	ii) Spacing o a) M	i Stirrup = mi inimum snaci	nimum of ing of Stirri	une tollowing Jps (Sv min)				
	۵,۱۱		0 5. 50.10	· · · · · · · · · · · · · · · · · · ·				

	-		
		Sv min = $\frac{0.87 Fy Asv}{0.4 h}$	
		$\begin{array}{c} 0.47 \\ 0.87 \\ x \\ 250 \\ x \\ 56.52 \end{array}$	
		- 0.4 x 300	1 M
		= 102.44 mm = 102 mm (Say)	
		b) Maximum spacing of Stirrups (Sv max)	
		Sv max = 0.75 d or 300 mm whichever is less	
		= 0.75 x 450 or 300 mm	1/2 M
		= 337.5 mm	1/2 M
		Spacing of Stirrups = minimum of 102 mm and 337.5 mm = 102 mm	1/2 IVI
		Provide 6mm diameter 2 legged vertical stirrups at 102 mm center to center	1/2 M
Q. 5		Attempt any TWO of the following	Marks
	a)	Design one way slab for the effective span of 3.5 m. the super imposed load including	6 M
		floor finish is 4 kN/m ² . Take M.F. = 1.2 Use M20 concrete and Fe 415 Steel. Do not	
		apply check for shear and bond, sketch the cross section along the shorted span.	
	Ans.	Effective span = 3.5 m , Super Imposed Load = 4 kN/m2 , M-20, Fe-415, M.F. = 1.2 .	
		Depth of slab required = span / (M.F. x 20)	
		= 3500 / (1.2 x 20)	
		$d = 145.83 \approx 145 \text{ mm.}$	1/2 M
		Assuming cover 25 mm, (Note: Students may assume different cover)	
		D = 145 + 25 = 170 mm.	
		Effective span:	
		1) Clear span + $d = 3.5 + 0.145 = 3.645$ m. Hence $le = 3.645$ m.	1/2 M
		Loading.	
		1) Server Lucred Local A O I-NI/m ²	1/2 M
		1) Super Imposed Load = 4.0 km/m^2	
		2) Self-weight = $0.17 \times 25 = 4.25 \text{ kN/m}^2$	
		Total = 8.25 kN/m ² Factored load = 1.5 x 8.25 = 12.375 kN/m ²	
		Bending Moment Calculation , $Mu = 12.375 \times 3.6452 / 8$	1/2 M
		20.55 kN-m.	
		Depth required for strength = $\sqrt{\frac{Mu}{0.138 \text{ x fck x b}}}$	1/2 M
		$d_{req.} = \sqrt{\frac{20.55 \times 10^6}{0.138 \times 20 \times 1000}}$	
		= $86.29 \text{ mm} < \text{assumed hence O.K.}$ Provide D = 170 mm and d = 145 mm .	1/2 M

	Area of Steel Calculation	
	$A_{st} = \frac{0.5 f_{ck}}{f_y} \left[1 - \sqrt{1 - \frac{4.6 Md}{f c k b d^2}} \right] bd$	1/2 M
	$A_{st} = \frac{0.5 \times 20}{415} \left[1 - \sqrt{1 - \frac{4.6 \times 20.55 \times 10^6}{20 \times 1000 \times 145^2}} \right] 145 \times 1000$	1/2 M
	$A_{st} = 417.70 \text{mm}^2$	1/2 IVI
	Providing 8 mm dia. Bars Area of one bar $A_1 = \pi \ge \frac{1}{2} = \pi \ge \frac{1}{2} = \frac{1}{2} =$	
	(Note: Students may assume different bar dia.)	
	Spacing = $1000 \ge A_1 / A_{st}$	1/2 1/4
	= 1000 x 50.27 / 417.70 = 120.35 mm.	1/2 M
	Provide 8 mm dia. @ 120 mm c/c.	
	Distribution steel : Area = $0.12 \times 1000 \times 150 / 100$	1/2M
	= 180 mm2.	
	Spacing for 8 mm dia. Bars = 1000 x 50.27 / 180 = 279.3 mm Provide 8 mm dia. @ 275	1/2M
	mm c/c.	
	170 MM	1/2 M
b	Design a suitable slab for an internal room size of 4 x 7 m. Take a live load 2 kN/m2	
	& Floor finish load 1.0 kN/m2. Assume width of support = 230 mm. Take M.F. =	6M
	1.4, $\alpha x = 0.100$ and $\alpha y = 0.056$. Use M20 concrete & Fe415 steel. Do not apply check	
	for shear and bond. Sketch the cross section along shorter span.	
Ans.	Shorter span = 4.00 m, Longer span = 7.00 m, L.L. = 2 kN/m2, F.F. = 1 kN/m2, M-20,	
	Fe-415, M.F. = 1.3, $x = 0.100$, $y = 0.056$.	
	Aspect ratio = Longer span / Shorter span = 7.00 / 4.00 = 1.75 < 2.0 Hence Two way	1/2 M
	slab. Depth of slab required = shorter span / (M.F. x 20)	
	= 4000 / (1.4 x 20)	
	d= 142.85 mm.	1/2 M
	Assuming cover 25 mm, (Note: Students may assume different cover)	
	D = 142.85 + 25 = 167.85 mm.	
	Assume overall depth (D) = 175 mm and Effective depth (d) = 150 mm . Effective span:	
	1) Clear span + d = $4.0 + 0.175 = 4.175$ m.	1/2 M

2) Clear Span + width of Support = $4 + 0.23 = 4.23$ m Hence le = 4.175 m.	
Loading:	
1) Live load = 2.0 kN/m^2	
2) Floor finish = 1.0 kN/m^2	
3) Self-weight = $0.175 \times 25 = 4.375 \text{ kN/m}^2$	
$Total = 7.375 \text{ kN/m}^2$	1/2 M
factored load = $1.5 \times 7.375 = 11.06 \text{ kN/m}^2$	
Ultimate bending moment calculations:	
$Mux = \alpha x x wu x lex^2$	
$= 0.100 \text{ x} 11.06 \text{ x} 4.175^2 = 19.28 \text{ kN-m}$	1/2 M
$Muy = \alpha x x wu x lex^2$	
$= 0.056 \text{ x } 11.06 \text{ x } 4.175^2 = 10.80 \text{ kN-m}.$	1/2 M
Mu	
Depth required for strength = $\sqrt{\frac{Mu}{2422}}$	
$\sqrt{0.138 \times \text{fck x b}}$	1/2 M
19.28x10 ⁶	
Depth required for strength = $\sqrt{\frac{0.138 \times 20 \times 1000}{0.138 \times 20 \times 1000}}$	
$a_{req.} = 83.58 \text{ mm} < \text{assumed hence O.K.}$	1/2 M
Provide $D = 175 \text{ mm}$	
dx = 150 mm. and dy = 150 - 10 = 140 mm (assuming bar dia. 10 mm)	
$\Lambda_{\rm ev} = \frac{0.5 f_{\rm ck}}{1} \left[1 - \frac{4.6 {\rm Md}}{1} \right] {\rm hd}$	
$A_{\text{Stx}} = \int_{f_y} \int_{f_y}$	1/2 M
r	
$A_{\text{str}} = \frac{0.5 \text{ x } 20}{1 - 1} \left[1 - \frac{4.6 \text{ x } 19.28 \text{ x } 10^6}{1 - 1000} \right] 150 \text{ x } 1000$	
415 $\sqrt{1-20 \times 1000 \times 150^2}$	
$A_{st} = 375 \ 70 \text{mm}^2$	1/2 M
Providing 8 mm dia. Bars Area of one bar A1 = $\pi x \phi^2 / 4 = \pi x 8^2 / 4 = 50.27$ mm2	
(Note: Students may assume different bar dia.)	
Spacing = $1000 \text{ x A}_1 / \text{Ast}$	
$= 1000 \times 50.27 / 375.70 = 133.80 \text{ mm.}$	
Provide 8 mm dia. @ 130 mm c/c along shorter span.	
$A_{\rm eff} = \frac{0.5 f_{\rm ck}}{1} \left[1 - \frac{4.6 {\rm Md}}{1} \right] {\rm hd}$	
$f_y = f_y \int f_y dt f ck b dx^2 \int dt$	
$A_{\text{sty}} = \frac{0.5 \text{ x } 20}{1 - 1} \left[1 - \frac{4.6 \text{ x } 19.28 \text{ x } 10^6}{1 - 1 - 1 - 1} \right] 140 \text{ x } 1000$	
415 $\sqrt{-20 \times 1000 \times 140^2}$	1/2M
$A_{st} = 221 mm^2$	
Minimum Ast = 0.12 x 1000 x 175 / 100 = 210 mm2. Astv > Min. Ast. Hence Ok.	
Providing 8 mm dia. Bars Area of one bar A1 = $\pi \propto \phi^2 / 4 = \pi \propto 8^2 / 4 = 50.27$ mm2	

	(Note: Students may assume different bar dia.)	
	Spacing = $1000 \text{ x A}_1 / \text{Ast}$	
	= 1000 x 50.27 / 221 = 227.47 mm.	
	Provide 8 mm dia. @ 225 mm c/c along longer span.	
	175 MM @ 225 MM C/C	
	O MM (2130 MM C/C	1/2M
	4175 MM	1/2111
	C/S ALONG SHORTER SPAN	
С	Design a Chajja for a span of 0.75 m. Take L.L. = 2 kN/m ² , F.F. = 0.5 kN/m ² , Use	6M
	M20 concrete & Fe415 steel. Size of lintel supporting chajja is 230 x 230 mm. do not	
	apply check for shear and bond. Sketch the chajja.	
	Span = 0.75 m, L.L. = 2 kN/m2, F.F. = 0.5 kN/m2, M-20, Fe-415, Assume M.F. = 1.3	
Ans.	(Note: Students may assume different M.F.)	1/2M
_	Depth of slab required = span / (M.F. x 7)	
	= 750 / (1.3 x 7)	1/2M
	= 82.42 mm.	
	Assuming cover 25 mm, (Note: Students may assume different cover)	1/2M
	D = 82.42 + 25 = 107.41 mm.	1/2111
	Assume overall depth = 110 mm and effective depth = 85 mm . Effective span:	
	1) Clear span + $d/2 = 0.75 + 0.85/2 = 1.175$ m.	
	(Note: Students may consider given span as effective span)	
	Loading:	
	1) Live load $= 2.0 \text{ kN/m2}$	
	2) Floor finish $= 0.5 \text{ kN/m2}$	
	3) Self weight = $0.11 \times 25 = 2.75 \text{ kN/m2}$	1/2M
	Total = 5.25 kN/m^2 Factored load = $1.5 \text{ x} 5.25 = 7.875 \text{ kN/m}^2$	
	$Mu = 7.875 \times 1.1752 / 2$	
	Mu = 5.44 kN-m.	
	Depth required for strength = $\frac{Mu}{Mu}$	1/2M
	$\sqrt{0.138 \mathrm{x}\mathrm{fck}\mathrm{x}\mathrm{b}}$	_,
	5 44x106	
	Depth required for strength = $\sqrt{\frac{3.14\times10}{0.128\times20\times1000}}$	
	V 0.138 X 20 X 1000	
	$d_{req.} = 44.40 \text{ mm} < \text{assumed hence O.K.}$	
	Provide $D = 110 \text{ mm}$	1/2M
	d = 85 mm.	
	$0.5f_{ck} = 4.6Md$	
	$A_{st} = \frac{1}{f_v} \left[1 - \sqrt{1 - \frac{1}{fck bdx^2}}\right] bd$	
	-y N	1/2M
	0.5×20 $4.6 \times 5.44 \times 10^{6}$ 3.67×10^{6}	
	$A_{st} = \frac{1}{415} \left[1 - \sqrt{1 - \frac{20 \times 1000 \times 85^2}{20 \times 1000 \times 85^2}} \right] 85 \times 1000 = 185.77 \text{ mm}^2$	
	V	

		^		
		Minimum $A_{st} = 0.12 \times 1000 \times 110 / 100 = 132 \text{ mm}^2$. Ast > Min. Ast, Hence O.K.	1/2M	
		Providing 8 mm dia. Bars Area of one bar A1 = $\pi \propto \varphi_2 / 4 = \pi \propto 82 / 4 = 50.2 / \text{ mm}^2$ (Note: Students may assume different bar dia.)		
		Spacing = $1000 \text{ x A}_1 / \text{Ast}$	1/2M	
		$= 1000 \times 50.27 / 185.77 = 270.60 \text{ mm}.$		
		Provide 8 mm dia. @ 270 mm c/c.		
		Distribution steel: Area = $0.12 \times 1000 \times 190 / 100$		
		$= 228 \text{ mm}^2$.		
		Spacing for 8 mm dia. Bars = $1000 \times 50.27 / 228 = 220.5$ mm		
		Distribution steel 8 mm dia 220 mm c/c D = 230 mm L = 230 mm C/s of Cantilever Slab	1 M	
Q. 6		Attempt any TWO of the following	Marks	
Q. 6	a	Attempt any TWO of the following Design a square column to carry an axial load of 1000 kN using ms lateral ties. Use M25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1 % steel and apply check for minimum eccentricity and for short column.	Marks 6 M	
Q. 6	a Ans.	Attempt any TWO of the followingDesign a square column to carry an axial load of 1000 kN using ms lateral ties. UseM25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1% steel and apply check for minimum eccentricity and for short column.le = 3 m, Pu = 1000 kN, M-25, Fe-415. Asc = 1% of Ag= 0.01Ag mm ²	Marks 6 M	
Q. 6	a Ans.	Attempt any TWO of the followingDesign a square column to carry an axial load of 1000 kN using ms lateral ties. UseM25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1% steel and apply check for minimum eccentricity and for short column.le = 3 m, Pu = 1000 kN, M-25, Fe-415. $A_{sc} = 1\%$ of $Ag= 0.01Ag mm^2$ $A_c = A_g - A_{sc} = A_g - 0.01 A_g = 0.99A_g$	Marks 6 M 1/2M	
Q. 6	a Ans.	Attempt any TWO of the followingDesign a square column to carry an axial load of 1000 kN using ms lateral ties. UseM25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1% steel and apply check for minimum eccentricity and for short column.le = 3 m, Pu = 1000 kN, M-25, Fe-415. $A_{sc} = 1\%$ of $Ag= 0.01Ag mm^2$ $A_c = A_g - A_{sc} = A_g - 0.01 A_g = 0.99A_g$ Factored Load = $P_u = P x 1.5 = 1000 x 1.5 = 1500 kN$.	Marks 6 M 1/2M	
Q. 6	a Ans.	Attempt any TWO of the followingDesign a square column to carry an axial load of 1000 kN using ms lateral ties. UseM25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1% steel and apply check for minimum eccentricity and for short column.le = 3 m, Pu = 1000 kN, M-25, Fe-415. $A_{sc} = 1\%$ of $Ag= 0.01Ag mm^2$ $A_c = A_g - A_{sc} = A_g - 0.01 A_g = 0.99A_g$ Factored Load = $P_u = P x 1.5 = 1000 x 1.5 = 1500 kN$. $P_u = (0.4 x f_{ck} x A_c) + (0.67 x f_y x A_{sc})$	Marks 6 M 1/2M 1/2M	
Q. 6	a Ans.	Attempt any TWO of the followingDesign a square column to carry an axial load of 1000 kN using ms lateral ties. UseM25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1% steel and apply check for minimum eccentricity and for short column.le = 3 m, Pu = 1000 kN, M-25, Fe-415. $A_{sc} = 1\%$ of $Ag= 0.01Ag mm^2$ $A_c = A_g - A_{sc} = A_g - 0.01 A_g = 0.99A_g$ Factored Load = $P_u = P x 1.5 = 1000 x 1.5 = 1500 kN$. $P_u = (0.4 x f_{ck} x A_c) + (0.67 x f_y x A_{sc})$ 1500 x $10^3 = [(0.4 x 20 x 0.99Ag) + (0.67 x 415 x 0.01Ag)]$	Marks 6 M 1/2M 1/2M	
Q. 6	a Ans.	Attempt any TWO of the followingDesign a square column to carry an axial load of 1000 kN using ms lateral ties. UseM25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1% steel and apply check for minimum eccentricity and for short column.le = 3 m, Pu = 1000 kN, M-25, Fe-415. $A_{sc} = 1\%$ of $Ag= 0.01Ag mm^2$ $A_c = A_g - A_{sc} = A_g - 0.01 A_g = 0.99A_g$ Factored Load = $P_u = P x 1.5 = 1000 x 1.5 = 1500 kN$. $P_u = (0.4 x f_{ck} x A_c) + (0.67 x f_y x A_{sc})$ 1500 x $10^3 = [(0.4 x 20 x 0.99Ag) + (0.67 x 415 x 0.01Ag)]$	Marks 6 M 1/2M 1/2M 1/2M	
Q. 6	a Ans.	Attempt any TWO of the following Design a square column to carry an axial load of 1000 kN using ms lateral ties. Use M25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1 % steel and apply check for minimum eccentricity and for short column. le = 3 m, Pu = 1000 kN, M-25, Fe-415. $A_{sc} = 1\%$ of $Ag= 0.01Ag mm^2$ $A_c = A_g - A_{sc} = A_g - 0.01 A_g = 0.99A_g$ Factored Load = $P_u = P x 1.5 = 1000 x 1.5 = 1500 kN$. $P_u = (0.4 x f_{ck} x A_c) + (0.67 x f_y x A_{sc})$ 1500 x 10 ³ = [(0.4 x 20 x 0.99Ag) + (0.67 x 415 x 0.01Ag)] 1500 x 10 ³ = 7.92Ag + 2.78Ag 1500 x 10 ³ = 10.70Ag	Marks 6 M 1/2M 1/2M 1/2M	
Q. 6	a Ans.	Attempt any TWO of the following Design a square column to carry an axial load of 1000 kN using ms lateral ties. Use M25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1 % steel and apply check for minimum eccentricity and for short column. le = 3 m, Pu = 1000 kN, M-25, Fe-415. $A_{sc} = 1\%$ of $Ag= 0.01Ag mm^2$ $A_c = A_g - A_{sc} = A_g - 0.01 A_g = 0.99A_g$ Factored Load = $P_u = P x 1.5 = 1000 x 1.5 = 1500 kN$. $P_u = (0.4 x f_{ck} x A_c) + (0.67 x f_y x A_{sc})$ $1500 x 10^3 = [(0.4 x 20 x 0.99Ag) + (0.67 x 415 x 0.01Ag)]$ $1500 x 10^3 = 7.92Ag + 2.78Ag$ $1500 x 10^3 = 10.70Ag$ $Ag = (1500x 1000)/10.70 = 140186.92 mm^2$	Marks 6 M 1/2M 1/2M 1/2M 1/2M	
Q. 6	a Ans.	Attempt any TWO of the following Design a square column to carry an axial load of 1000 kN using ms lateral ties. Use M25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1 % steel and apply check for minimum eccentricity and for short column. le = 3 m, Pu = 1000 kN, M-25, Fe-415. $A_{sc} = 1\%$ of $Ag= 0.01Ag mm^2$ $A_c = A_g - A_{sc} = A_g - 0.01 A_g = 0.99A_g$ Factored Load = Pu = P x 1.5 = 1000 x 1.5 = 1500 kN. $P_u = (0.4 x f_{ck} x A_c) + (0.67 x f_y x A_{sc})$ 1500 x 10 ³ = [(0.4 x 20 x 0.99Ag) + (0.67 x 415 x 0.01Ag)] 1500 x 10 ³ = 7.92Ag + 2.78Ag 1500 x 10 ³ = 10.70Ag $Ag = (1500x 1000)/10.70 = 140186.92 mm^2$ Size of Column = $\sqrt{140186.92} = 274.42 mm$ Say 275 mm	Marks 6 M 1/2M 1/2M 1/2M 1/2M	
Q. 6	a Ans.	Attempt any TWO of the following Design a square column to carry an axial load of 1000 kN using ms lateral ties. Use M25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1 % steel and apply check for minimum eccentricity and for short column. le = 3 m, Pu = 1000 kN, M-25, Fe-415. A _{sc} = 1% of Ag= 0.01Ag mm ² A _c = A _g - A _{sc} = A _g - 0.01 A _g = 0.99A _g Factored Load = P _u = P x 1.5 = 1000 x 1.5 = 1500 kN. P _u = $(0.4 \text{ x } f_{ck} \text{ x } A_c) + (0.67 \text{ x } f_y \text{ x } A_{sc})$ 1500 x 10 ³ = $[(0.4 \text{ x } 20 \text{ x } 0.99Ag) + (0.67 \text{ x } 415 \text{ x } 0.01Ag)]$ 1500 x 10 ³ = $7.92Ag + 2.78Ag$ 1500 x 10 ³ = $10.70Ag$ Ag = $(1500x \ 1000)/10.70 = 140186.92 \text{ mm}^2$ Size of Column = $\sqrt{140186.92} = 374.42 \text{ mm}$ Say 375 mm	Marks 6 M 1/2M 1/2M 1/2M 1/2M	
Q. 6	a Ans.	Attempt any TWO of the following Design a square column to carry an axial load of 1000 kN using ms lateral ties. Use M25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1 % steel and apply check for minimum eccentricity and for short column. le = 3 m, Pu = 1000 kN, M-25, Fe-415. A _{sc} = 1% of Ag= 0.01Ag mm ² A _c = A _g - A _{sc} = A _g - 0.01 A _g = 0.99A _g Factored Load = P _u = P x 1.5 = 1000 x 1.5 = 1500 kN. P _u = (0.4 x f _{ck} x A _c) + (0.67 x f _y x A _{sc}) 1500 x 10 ³ = [(0.4 x 20 x 0.99Ag) + (0.67 x 415 x 0.01Ag)] 1500 x 10 ³ = 7.92Ag + 2.78Ag 1500 x 10 ³ = 10.70Ag Ag = (1500x 1000)/10.70 = 140186.92 mm ² Size of Column = $\sqrt{140186.92}$ = 374.42 mm Say 375 mm Therefore provide 375 mm x 375 mm	Marks 6 M 1/2M 1/2M 1/2M 1/2M	
Q. 6	a Ans.	Attempt any TWO of the following Design a square column to carry an axial load of 1000 kN using ms lateral ties. Use M25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1 % steel and apply check for minimum eccentricity and for short column. le = 3 m, Pu = 1000 kN, M-25, Fe-415. $A_{sc} = 1\%$ of $Ag= 0.01Ag \text{ mm}^2$ $A_c = A_g - A_{sc} = A_g - 0.01 A_g = 0.99A_g$ Factored Load = $P_u = P x 1.5 = 1000 x 1.5 = 1500 \text{ kN}$. $P_u = (0.4 x f_{ck} x A_c) + (0.67 x f_y x A_{sc})$ 1500 x 10 ³ = [(0.4 x 20 x 0.99Ag) + (0.67 x 415 x 0.01Ag)] 1500 x 10 ³ = 7.92Ag + 2.78Ag 1500 x 10 ³ = 10.70Ag $Ag = (1500x 1000)/10.70 = 140186.92 \text{ mm}^2$ Size of Column = $\sqrt{140186.92} = 374.42 \text{ mm}$ Say 375 mm Therefore provide 375 mm x 375 mm A_g provided = 140625 mm ²	Marks 6 M 1/2M 1/2M 1/2M 1/2M	
Q. 6	a Ans.	Attempt any TWO of the following Design a square column to carry an axial load of 1000 kN using ms lateral ties. Use M25 concrete and Fe415 steel. Take unsupported length of column = 3.0 m. Use 1 % steel and apply check for minimum eccentricity and for short column. le = 3 m, Pu = 1000 kN, M-25, Fe-415. $A_{sc} = 1\%$ of $Ag= 0.01Ag mm^2$ $A_c = A_g - A_{sc} = A_g - 0.01 A_g = 0.99A_g$ Factored Load = Pu = P x 1.5 = 1000 x 1.5 = 1500 kN. Pu = $(0.4 x f_{ck} x A_c) + (0.67 x f_y x A_{sc})$ 1500 x 10 ³ = $[(0.4 x 20 x 0.99Ag) + (0.67 x 415 x 0.01Ag)]$ 1500 x 10 ³ = $7.92Ag + 2.78Ag$ 1500 x 10 ³ = $10.70Ag$ $Ag = (1500x 1000)/10.70 = 140186.92 mm^2$ Size of Column = $\sqrt{140186.92} = 374.42 mm$ Say 375 mm Therefore provide 375 mm x 375 mm A_g provided = $140625 mm^2$ $Ac = 0.99 x 140625 = 139218.75 mm^2$	Marks 6 M 1/2M 1/2M 1/2M 1/2M 1/2M	

	Provide 16 mm dia. 8 bars. (Note: Students may provide c	lifferent combination of no.		
	and dia. of bars.)				
	lateral Ties:				
	Diameter of bar: (Greater of below)				
	i. $\frac{1}{4}$ of main bar dia. = $16/4 = 4$ mm				
	ii. 6 mm.				
	Provide 6 mm dia. bars. Pitch: (Least of below)				
	i. 16 times dia. of main bar = $16 \times 16 = 256$ mm. ii. Least lateral dim. = 375 mm.				
	iii. 300 mm. Provide pitch 250 mm.				
	Hence provide 6 mm dia. @ 250 mm c/c.				
	Check for Minimum eccent	tricity $e_{min} = L/500 + D/30$ or	r 20 mm whichever is greater		
	$e_{min} = 3000/500 + 375/30 = 18.5 \text{ or } 20 \text{ mm}$				
	$e_{min} \! < \! 0.05 \ D$				
	$e_{min} < 0.05 \ x \ 375 = 18.75$			1	
	18.5 < 18.75 Hence O.K.				
	column is 1200 kN. Take sa concrete and Fe415 Steel. (fe bearing capacity of soil = Calculate depth from BM cr	= 200 kN/m². Use M20 iteria only. Also Draw the		
	c/s of Footing showing rein	forcement details.			
	8 8				
15.	Column 300 mm x 300 mm, $P = 1200$ kN, SBC of soil = 200 kN/m ² , M-20, Fe-415.				
	Note: Students may assume ultimate bearing capacity as only SBC or 1.5 times.				
	Ultimate bearing	200 kN/m ²	1.5 x 200 = 300 kN/m ²		
	capacity				
	Factored Load =Pu = P x 1.5	1200 kN	1800 kN		
	Self-weight of footing =	60 kN	90 kN		
	5% of load on column.				
	Total ultimate load on soil	1260 kN	1890 kN	1	
	Area of footing required	1260 / 200 = 6.3 m ²	1890 / 300 = 6.3 m ²		
	= Total ultimate load on				
	soil/ Ultimate bearing				
	capacity of soil				
	Size = \sqrt{A}	2.50 m	2.50 m		
	Provide size	2.50 m x 2.50 m	2.50 m x 2.50 m	1	
	Actual area provided	6.25 m ²	6.25 m ²		
	Net ultimate upward	1200 / 6.25 = 192 kN/m ²	1800 / 6.25 = 288 kN/m ²		
	pressure (q _{nu}) =			1	
	Ultimate load on			1	
	column / Actual				
	area provided				

Projection (a)	2.50 – 0.30 / 2 = 1.10 m	2.50 – 0.30 / 2 = 1.10 m	
$Mu = q_{nu} x a^2 / 2$	116.16 kN.m	174.24 kN.m	1/2 M
d required = SQRT(Mu /	SQRT(116.16 x 10 ⁶ / 0.138	SQRT(174.24 x 10 ⁶ / 0.138	
0.138 x fck x b)	x 20 x 1000) = 205.15	x 20 x 1000) = 251.25	1/2 M
	mm 270 mm	mm 220 mm	
Overall depth D = d +	270 mm	320 mm	1/2 M
Provide	D = 270 mm & d = 210 mm	D = 320 mm & d = 260 mm	
Ast =	0.5 x 20	0.5 x 20	
$\Lambda_{\rm c} = \frac{0.5 f_{\rm ck}}{1}$	$A_{st} = \frac{1}{415}$	$A_{st} = \frac{1}{415}$	
$A_{st} - \frac{f_y}{f_y}$			
A (Md	$1 - \frac{4.6 \text{ x} 116.16 \text{ x} 10^6}{1000000000000000000000000000000000000$	$1 - \frac{4.6 \text{ x } 174.24 \text{ x } 10^6}{1000000000000000000000000000000000000$	1/2 M
$\left[1 - \frac{4.6 \text{Md}}{\text{fck} \text{ bdx}^2}\right] \text{bd}$	$\sqrt{20 \times 1000 \times 210^2}$	$\sqrt{20 \times 1000 \times 260^2}$	
N ICK DUX-] 260 x 1000] 260 x 1000	
	=1883.24 mm ²	=2267.33mm ²	
Spacing for 16 mm dia. Bars = 1000 x A1 / Ast	105 mm	85 mm	
Provided	16 mm dia. @ 105 mm c/c	16 mm dia. @ 85 mm c/c	1/2 M

С	State the six assumptions made in limit state of Collapse in flexure.	
Ans.	i. Plane sections normal to the axis remain plane after bending.	
	ii. The maximum strain in concrete at the outer most compression fiber is taken as	
	0.0035 in bending.	
	iii. The acceptable stress-strain curve of concrete is assumed to be parabolic.	
	iv. The maximum compressive stress-strain curve in the structure is obtained by	
	reducing the values of the top parabolic curve in two stages. First, dividing by 1.5	1 M
	due to size effect and secondly, again dividing by 1.5 considering the partial	For
	safety factor of the material. The middle and bottom curves represents these	Each
	stages.	
	v. Thus, the maximum compressive stress in bending is limited to the constant value	
	of 0.446 fck for the strain ranging from 0.002 to 0.0035	
	vi. The tensile strength of concrete is ignored.	
	vii. The design stresses of the reinforcement are derived from the representative	
	stress- strain curves, for the type of steel used using the partial safety factor y _m as	
	1.15.	
	viii. The maximum strain in the tension reinforcement in the section at failure shall	
	not be less than fy/(1.15 Es) + 0.002, where fy is the characteristic strength of	
	steel and $E5 = modulus$ of elasticity of steel.	
	ix. The perfect bond exists between steel and concrete	