

SUMMER – 2022 EXAMINATION

Subject Name: Mechanical Engineering Measurement Model Answer Subject Code:

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1		Attempt any FIVE	5 X 2 = 10
	(a) ANS	State the working principle of RVDT This is called as Rotary Variable Differential Transformer (RVDT) and is used for measurement of angular displacement. Iron core is having angular motion and is having windings. Two secondary and one primary winding is used in RVDT. Input supply is given to primary winding and output is taken across secondary winding. Output is the difference of voltage across two secondary windings. This output depends on the movement of central iron cores angular displacement.	2 Mark
	(b)	Name different Torque Measuring Instruments.	
	ANS	i) Inline Torque Measurement	2 Mark for
		ii) Reaction Torque Measurement	any four points
		iii) Slip Ring	
		iv) Rotary Transformer	

22443

	v) Infrared Sensor	
	vi) FM Transmitter	
(c)	State the law of Intermediate Temperature.	
ANS	If a simple thermocouple circuit develops an emf e1, when its junctions are at temperature T2 and T3, it will develop an emf e1 + e2 when its junctions are at temperature T1 and T3. M_1 M_2 M_2 M_2 M_2 M_2 M_3 M_2 M_3 M_4 M_2 M_2 M_3 M_4 M_2 M_3 M_4 M_2 M_3 M_4 M	1Mark for Statement
	M ₂ Figure: Law of Intermediate Temperature	rig.
(d)	M2 Figure: Law of Intermediate Temperature Enlist types of flow meters.	гıд.
(d) ANS	M ₂ Figure: Law of Intermediate Temperature Enlist types of flow meters.	гıд.
(d) ANS	M ₂ Figure: Law of Intermediate Temperature Enlist types of flow meters.	2Marks for
(d) ANS	M ₂ Figure: Law of Intermediate Temperature Enlist types of flow meters. i) Orifice meter ii) Venturi meter iii) Rotameter	2Marks for Any four types.
(d) ANS	M ₂ Figure: Law of Intermediate Temperature Enlist types of flow meters. i) Orifice meter ii) Venturi meter iii) Rotameter iv) Hot wire Anemometer	2Marks for Any four types.
(d) ANS	M ₂ Figure: Law of Intermediate Temperature Enlist types of flow meters. i) Orifice meter ii) Venturi meter iii) Rotameter iv) Hot wire Anemometer v) Hot film Anemometer	2Marks for Any four types.
(d) ANS	M2 Figure: Law of Intermediate Temperature Enlist types of flow meters. i) Orifice meter ii) Venturi meter iii) Rotameter iv) Hot wire Anemometer v) Hot film Anemometer vi) Electromagnetic Flowmeter	2Marks for Any four types.
(d) ANS	M ₂ Figure: Law of Intermediate Temperature Enlist types of flow meters. i) Orifice meter ii) Venturi meter ii) Venturi meter iii) Rotameter iv) Hot wire Anemometer v) Hot film Anemometer v) Hot film Anemometer vi) Electromagnetic Flowmeter vi) Ultrasonic Flowmeter.	2Marks for Any four types.

	ix) Vortex shedding Flow meter.	
 (e) ANS	Define term Natural Frequency. The frequency at which a system tends to oscillate in the absence of any driving or damping force is called as Natural Frequency.	2 Marks
(f)	Enlist types of speed measurement devices.	
ANS	i) Mechanical Counter	2Marks for
	ii) Revolution counter.	any four types.
	iii) Tachoscope	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	iv) Mechanical Tachometer (Hand Speed Indicator)	
	v) Slip-Ring Clutch Tachometer	
	vi) Centrifugal-Force Tachometer	
	vii) Vibrating Read Tachometer.	
	viii) Electrical Tachometer:- D.C. or A.C. tachometer generator	
	ix) Photoelectric tachometer	
	x) Toothed rotor Variable Reluctance Tachometer.	
	xi) Stroboscopic tachometer.	
 (g)	List desirable characteristics for force measuring sensor.	
ANS	i) Nominal Force	2 Marks for
	ii) Sensitivity	types.
	iii) Zero signal	
	iv) Nominal displacement	
	v) Stiffness	
	vi) Fundamental frequency	

		Attempt any THREE		3 X 4 = 1
(a)	Differentiate between Accuracy and Precision	on.	574-1
		Accuracy	Precision	
		It is the closeness with which an instrument reading approaches to the true value of the quantity being measured.	It is the degree of reproducibility among several independent reading of the same true value under specified condition.	
		It is expressed as the limit of error of a measuring device	It is composed of two characteristics, conformity and no of significant digits	
		Accuracy of measurement means conformity of the truth.	Precision refers to degree of agreement within group of measurement.	differen (01 mar
		Expressed on the basis of % actual scale or full scale reading. Accuracy necessarily is with precision	Precision in measurement does not guaranty accuracy	each)
		Measurements are dependent on the systematic errors	Measurements are dependent on the random errors.	
		Determined by proper calibration	Determined by statistical analysis.	
((b)	Explain working principle of Slip Ring with n	eat sketch.	
Æ	ANS	The principle is based on torsion part of shat the shaft is possible in several ways. For a strain gauge in this way. For pressure, tensic strain gauges are different for the transfer terminals the slip rings are used in this w possible to use instead of slip rings the sp telemetry datatransfer.	ft and its torsion. Measurement of torsion of torque measurement we must place these on and bending measurement the position of r of the signal from moving rotor to stator ray the signal is partly interfered. It is also becial contacts with mercury or contactless	2 Marks Explana
		Potors required of	Lever mm Bearing	
		Stator Bearing Bearing	potors	2 Marks Fig.

(c)	Compare Radiation and Optical Pyrometer	<u>.</u>	
ANS	Radiation pyrometer	Optical Pyrometer	
	Temp Range: 15° C to 3000° C	Temp Range: 700 to 4000° C	
	Sensitivity is fair	Sensitivity is good	
	Calibration by comparing with standard optical pyrometer.	Calibration against standard tungsten strip lamp	Any 4 Pts (1 Mark for each)
	All radiations are considered	Monochromatic radiation	each
	More Accurate	Comparatively less Accurate	
	Explain the working of Hot Wire Anemone GAS FLOW HOT WIRE ANEMOMETER REFEOSTAT ANALON REFEOSTAT ANALON Constant Current Method Hot wire anemometer measure the mean a micron diameter platinum-tungsten wire	eter.	2 Marks for Fig.
	heated electrically as part of a wheat-stone into the flowing fluid, it tends to be coole the electrical resistance to diminish.	e bridge circuit. When the probe is introduced ed by instantaneous velocity. So, tendency for	
	The rate of cooling of wire depends upon th	ne -	2 Marks for Explanation
	 → Dimension and physical properties → Diff. of the temp. between wire and → Physical properties of the fluid → Stream velocity under measuremen 	of wire I the fluid t	
	 First three conditions are effectively constant directmeasurement of the velocity change. Depending on the electronic equipment, how → Constant current mode: 	ant and the instrument response is then a ot wire may be operated in two ways;	

		→ Constant temperature mode: Constant current mode:	
		The heating current i.e. voltage across the bridge is kept constant. Initially the circuit is adjusted such that the galvanometer reads zero when the heated wirelies in stationary air.	
		When the air flows, the hot wire cools and resistance changes and the galvanometerdeflects. The galvanometer deflection are amplified, measured and correlated with air velocity	
		Temperature of filament is kept constant. Hot wire loses heat (decreases temperature) by the flowing fluid. The external bridge voltage is applied to the wire to maintain a sensibly constant temp. The bridge voltage is varied so as to bring the galvanometer needle to zero. The reading on the voltmeter is recorded and correlated with air velocity.	
3		Attempt any THREE	
	(a)	Explain term drift and sensitivity.	3 X 4 = 12
		Drift: Drift is an undesired gradual departure of instrument output over a period of time that is not related to change inputs or load. It is nothing but undesired reading shown by instrument. Factors responsible to cause drift such as long time uses without calibration, friction and environmental factors.	2 marks
		<u>Sensitivity</u> : It is define as the faster response given by instrument after changing input. It is the ratio of the magnitude of output signal to the magnitude of input signal. Represented by (K).	2 marks
	(b)	K = Change in output signal / Change in Input signal	
		Draw block diagram of generalized measurement system	4 marks for fig.

Figure: Photoelectric pressure transducer

		transducer	
		It consist of port for input pressure ,Pressure sensing member like diaphragm ,light source a small window, a photo tube with output circuit. The function of pressure sensing element is to control the aperture of small window. The amount of output is entirely depends upon the amount of incident light falling on phototube. When the pressure to be measured is applied through port to the pressure sensing member, it changes the position of window. As the light source and phototube are separated by a window it changes the amount of light falling on phototube, causing change in the current. This change in current is approximately linear with displacement of window i.e applied pressure. The current in phototube is amplified by a suitable output circuit. A meter connected across output terminal can directly calibrate in terms of pressure measurement. An A.C Modulated light or stable source of light can be used for incident light.	2 marks
		Advantages:	
		 It can measure both static & dynamic pressure. It is highly efficient Easy portability Compact size. 	
4.			3 X 4 = 12
	(a)	Creep of a force transducer is usually define as the change of output with time following a step increase in force from one value to another	
		Output F ₂ F ₁ Creep recovery 0 t ₁ t ₂ Time	4 marks For fig.
	(b)	Enlist any four applications of Optical pyrometer. 1. It is useful to measure furnace temperature.	4 marks for four Applica

		 The Wheatstone bridge circuit get unbalance due to change in resistance This change in resistance is calculated and can be taken as strain of the cantilever beam. With every increasing load the value of strain get changed. 	2marks for fig.
		Fig. Cantilever beam with four strain gauges	
	(e)		4 marks
		Write sound level norms as per API	
		Four cylinder IC engine - 70-80 dB	1 moule for
		Centrifugal pump - 80-85 dB	each
		Lathe machine - 70-85 dB	
		Industrial exhaust fan - 85 dB	
5.		Attempt any TWO	2 X 6 = 12
	(a)	Write two application of following	
		i) Contact Transducer :	2 Marks
		Hand Tachometer is used for speed measurement of rotating member	(Any Two)
		Thermometer is used to measure temperature	
		Burdon tube pressure gauge is used to measure pressure	
		 veturimeter is used to measure flow of fluid 	
		ii) Active transducer:	2Marks
		• Piezoelectric transducer is used to measure pressure, strain, torque etc.	(Any Two)
		• Dial Indicator is used for surface roughness, calibration, displacement etc.	

	Draw the constructional details of 'sling psychrometer'. Write the procedure of measuring air properties using sling psychrometer and Psychometric chart	
(c)	Construction details :	
(•)	•The equipment used to measure dry bulb and wet bulb temperature simultaneously is known as 'Psychrometer'.	
	• The sling psychrometer consists of two mercury thermometers mounted on frame, which has handle provided for rotation of psychrometer.	(2 Marks for const.)
	Dry bulb thermometer Wet bulb thermometer Weated wick	(1 Marks Dig.)
	• One bulb among the two is covered with the wet cotton to read wet bulb temperature. And the other shows the dry bulb temperature.	
	• After getting both the temperature find relative humidity by using psychromrtic chart, the method of measurement is explain bellow.	
	Humidity Measurement By Dry And Wet Bulb Thermometer - Psychometric Chart	
	• The absolute and relative humidity is determined by a psychrometer, a device containing two thermometers.	
	• The temperature sensing bulb of one measure the environmental temperature indicates the dry bulb temperature.	
	• Around the bulb of other thermometer wet cloth is wound which evaporate water to produce cooling which indicates the web bulb temperature.	
	• For this reason, the psychrometer is known as dry and wet bulb thermometer.	(2 Marks
	• Relative humidity is related to the difference between the dry and wet bulb thermometer.	Expl.)
	• Also, the key to humidity measurement is the psychometric chart, which graphically describes the properties of moist air.	

		The relationship between various humidity variables such as wet and dry bulb temperatures, dew point and percent relative humidity and grains of moisture per cubic meter of air etc. at specified atmospheric pressures are given in the form of chart known as the psychometric chart shown in Fig.	(1 marks
		Dry Bulb Temp. Specific Volume m ³ /Kg	dig.)
		 As shown in Fig. The dry bulb temperature lines are vertical, and dry bulb temperature read at the bottom of the chart. The wet bulb and dew point temperature lines run diagonally downward to right, and their values are read at the left where the lines intersect with the 100% relative humidity line. 	
		 The percent lines of relative humidity curve upwards to the right, with the percent values indicated on the lines themselves. The absolute humidity in grains per pound of air is read on the vertical scale at the horizontal line that leads from intersection of a wet bulb or dew point temperature line with a thy bulb line. 	
6.		Attempt any TWO	2 X 6 = 12
	(a)	Write any two applications of following	
		 Orifice meter: It is used to measure the flow rate of fluids in their single state (i.e. gaseous state or liquid state). It can also be used to measure the flow rate of fluids in a mixed state (both gaseous and liquid states) such as, wet steam, or natural gas with water. Also used where robust construction of device is required. ii. Venturi meter: Used where the permanent pressure loss is main problem and where the maximum accuracy is desired in the measurement of high viscous fluids. Used to handle slurries and dirty liquids. 	(2 Marks for each)
		 iii. Pitot tube: It is a device used for measuring the velocity of flow at any point in a pipe or a channel. 	

	and spring attached to it.	
•	The torque on the spring is calibrated in terms of speed which is indicated by pointer moving over a calibrated scale.	

