SUMMER - 2022 EXAMINATION

Subject Name: Analog Circuits

Model Answer
Subject Code:
22433

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.
8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English + Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answer	Marking Scheme
1.		Attempt any FIVE of the following:	10 M
	a	Draw circuit diagram of antilog amplifier. Ans: Fig: Antilog amplifier	02
	b	Describe virtual ground concept with reference to op-amp. Ans:	

	In circuit point V_{A} is virtual ground. Figure shows inverting amplifier using op-amp. In this circuit non-inverting terminal is connected to the actual ground. Due to this potential of inverting terminal become zero. Thus, inverting terminal is not actually connected to the ground. There after its potential is zero. Thus point V_{A} is known as virtual ground point. This phenomenon of having zero potential without actually grounding is known as virtual ground concept.	01
c	Identify the given circuit as shown in Fig No. 1 Fig. No. 1. P.T.O. Ans: Fig. No 1 is First order Low pass Butterworth Filter	02
d	Draw bistable multivibrator using IC555. Ans:	02

2.		Attempt any THREE of the following:	12 M
	a	Draw and explain the circuit diagram of antilog multiplier using op-amp. Ans: Fig. 3.16 shows the block diagram of analog multiplier. It is the application of \log and antilog amplifier. Fig. 3.16: Analog Multiplier It consists of two \log amplifiers, an adder circuit and an antilog amplifier as shown in Fig. 3.16 . It is the application of \log and antilog amplifiers. The output of each \log amplifier is given by $\begin{equation*} V_{01}=-K_{1} \log V_{1} \text { and } V_{02}=-K_{1} \log V_{2} \tag{3.26} \end{equation*}$ The output of adder is $\begin{align*} V_{03} & =-\left(V_{01}+V_{02}\right) \tag{3.27}\\ & =K_{1} \log V_{1}+K_{1} \log V_{2}=K_{1} \log V_{1} \cdot V_{2} \end{align*}$ The output of antilog amplifier will become $\begin{align*} & V_{0}=K_{2} \log ^{-1}\left(K_{3} \cdot V_{03}\right)=K_{2} \log ^{-1}\left(K_{3} K_{1} \log V_{1} \cdot V_{2}\right) \\ & V_{0}=K_{2} K_{3} K_{1} V_{1} \cdot V_{2} \\ & V_{0}=K_{4} V_{1} \cdot V_{2} \text { as } K_{4}=K_{2} \cdot K_{3} \cdot K_{1} \tag{3.28} \end{align*}$	02
	b	With neat sketch derive the expression for output voltage of Inverting amplifier. Ans: Fig. OP-Amp as an inverting amplifier	02

		Level shifting stage is used to bring the dc level to zero volts w.r.t. ground. Explanation:-Op-amp is a direct coupled amplifier, So when input is zero or at ground potential, the output of op-amp will be at some positive DC level which an error voltage is called as offset voltage. So in order to pull this o/p DC offset voltage to zero, the DC level shifter is used.	02
	b	Design and draw the circuit diagram following operation using op-amp $V_{0}=V_{1}+V_{2}-2 V_{3}$ Ans: Ans. Assume $\quad \ddot{R}=1 \mathrm{k} \Omega$ Hence output of first inverting amplifier $V_{01}=\frac{-R}{R}\left(V_{1}+V_{2}\right)=-\left(V_{1}+V_{2}\right)$. Output of second inverting amplifier is $V_{02}=\frac{-2 R}{R}\left(V_{3}\right)=-2 V_{3}$ Therefore, final output of third difference amplifier is derived as, $\mathrm{V}_{0}=\mathrm{V}_{02}-\mathrm{V}_{01}=\left[-2 \mathrm{~V}_{3}+\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)\right]=\mathrm{V}_{1}+\mathrm{V}_{2}-2 \mathrm{~V}_{3}$ The designed circuit to get the output :	02
	c	Draw the circuit diagram of Astable multivibrator using IC 555 to obtain 50% duty cycle. Determine the components used at 1 KHz frequency when $\mathrm{C}_{\mathrm{T}}=1 \mu \mathrm{~F}$ and draw the waveform of Astable Multivibrator. Ans:	

Solution: If the duty cycle $\leq 50 \%$, the diode should be used to bypass resistor R_{B} (ie. circuit of square wave ?nerator using actable).

$$
\begin{aligned}
& \text { Time period for } 1 \mathrm{kHz} \text { frequency }
\end{aligned}=1 / \mathrm{f}=1 \mathrm{~ms}, ~ \begin{aligned}
T_{O n} & =T_{\text {Off }}=0.5 \mathrm{~ms} \\
C & =1 \mu F(\text { given }) \\
T_{O N} & =0.693 R_{A} C \\
\therefore \quad R_{A} & =\frac{T_{O N}}{0.693 \times C}=\frac{0.5 \times 10^{-3}}{0.693 \times 1 \times 10^{-6}}=721.5 \Omega \\
R_{B} & =\frac{T_{O f f}}{0.693 \times C}=\frac{0.5 \times 10^{-3}}{0.693 \times 1 \times 10^{-6}}=721.5 \Omega
\end{aligned}
$$

* Circuit diagram of astable multivibrator

* Output waveforms of Actable Multivibrator

	d	Design a second order Butterworth active HPF with cutoff frequency 1.5 KHz and $\mathrm{C}=0.01 \mu \mathrm{~F}$. Ans: designea cricuu uiu Solution : Given : $f_{L}=1.5 \mathrm{kHz}$. Let $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}$ and $\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}=0.01 \mu \mathrm{~F}$. Fia. 4.21	02
4.		Attempt any THREE of the following:	12 M
	a	Draw circuit diagram and write output equation of instrumentation amplifier using two op-amps. Anc. . 3.2 : Instrumentation Amplifier using Two OP-AMPs Output equation of instrumentation amplifier using two op-amps: $\mathrm{V}_{\mathrm{o}}=\left[1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right]\left[\mathrm{V}_{\mathrm{in2} 2}-\mathrm{V}_{\mathrm{in} 1}\right]$	03
	b	Design circuit diagram of open for non-inverting amplifier to obtain the gain of 15 calculate the output for i) $V_{\text {in }}=0.5 \mathrm{~V}_{\mathrm{dc}}$	

ii) $V_{\text {in }}=0.5 \mathrm{~V}_{\mathrm{pp}}$ sine wave

Ans:
Soln. :
Given : Non-inverting amplifier, $A_{V F} \cdots=15$.
Step 1: Draw the circuit diagram :

$$
\begin{align*}
\mathrm{A}_{\mathrm{VF}} & =15=\left(1+\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{1}}\right) \quad \ldots \text { (given) } \tag{given}\\
\frac{R_{\mathrm{F}}}{\mathrm{R}_{1}} & =14 \quad \therefore \quad \therefore \quad \mathrm{R}_{\mathrm{F}}=14 \mathrm{R}_{1} \\
\text { Let } \mathrm{R}_{1} & =1 \mathrm{k} \Omega \quad \\
\therefore \quad \mathrm{R}_{\mathrm{F}} & =14 \mathrm{k} \Omega \quad \text {...Ans. }
\end{align*}
$$

(k -1059)Fig. P. 2.4.5(a) : Circuit diagram of non-inverting amplifier
Step 2: Calculate output voltage :

1. $\mathrm{V}_{\mathrm{in}}=0.5 \mathrm{~V}_{\mathrm{dc}}$
2. $V_{\text {in }}=0.5 \mathrm{~V}_{\mathrm{PP}}$

$$
\text { Output voltage }=A_{V F} \times V_{\mathrm{in}}=15 \times 0.5=7.5 \mathrm{~V}_{\mathrm{dc}}
$$

Sten $2 \cdot$ n.n.... dr.

		 Input and output voltage waveforms of Differentiator	02
	d	Draw the ideal frequency response for LPF, HPF, BPF and BRF. Ans: (a) (c) (b) (d)	04
5.		Attempt any TWO of the following:	12 M
	a	Draw and explain circuit diagram of single input unbalanced output differential amplifier. Ans: In this case, only one input signal is given and the output is taken from only one of the two collectors with respect to ground as shown below.	

			06
6.		Attempt any TWO of the following:	12 M
	a	Compare the features of integrator and differentiator. (any six points) Ans:	06
	b	List ideal and practical parameter of op-amp. Ans: Ideal parameter of op-amp (Any three) 1. Infinite Voltage Gain 2. Infinite Input Impedance 3. Zero Output Impedance 4. Zero Input Offset Voltage 5. Zero Output Offset Voltage 6. Zero Input Offset current 7. Zero Input Bias current 8. Infinite Bandwidth 9. Infinite CMRR 10. Infinite Slew Rate 11. Zero Power Supply Rejection Ratio(PSRR) 12. Zero Input capacitance	03

