

SUMMER – 2022 EXAMINATION

Subject Name: Analog Circuits

Model Answer

Subject Code:

22433

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1.		Attempt any <u>FIVE</u> of the following:	10 M
	a	Draw circuit diagram of antilog amplifier. Ans: $V_{in} \circ \underbrace{P}_{I_{i}} = \underbrace{P}_{I_{i}} + \underbrace{P}_{I$	02
	b	Describe virtual ground concept with reference to op-amp. Ans:	

02

	d	Compare linear and non-linear op-amp (any four points) Ans:				
		Sr. No	Parameters	Linear op- amp	non-linear op-amp	
		1	Definition	The output voltage or current which is directly proportional to either input voltage or current are called linear Op-Amp Circuits	A non linear OP-Amp is one in which the output signal is not directly proportional to the input signal.	04
		2	Example	Inverting amplifier Non-inverting amplifier. Integrator, differentiator	Zero crossing detector, Schmitt trigger, Voltage comparator	
		3	Working mode	In linear application op-amp works in amplifier mode	In nonlinear application op- amp works in switching mode	
		4	Bandwidth Gain	Bandwidth is high Voltage gain is low as compared to non-linear op- amp	Bandwidth is low Voltage gain is very high	
3.		Attempt an	y <u>THREE</u> of the fol	.		12 M
	a	Describe th	e level shifting stage	Input from the intermediate stage	ircuit diagram.	02
					-V _{EE}	

Level	l shifting stage is used to bring the dc level to zero volts w.r.t. ground.	
grour error	anation:-Op-amp is a direct coupled amplifier, So when input is zero or at and potential, the output of op-amp will be at some positive DC level which an voltage is called as offset voltage. So in order to pull this o/p DC offset ge to zero, the DC level shifter is used.	02
b Desig	gn and draw the circuit diagram following operation using op-amp	
Vo = Ans:	$V_1+V_2-2V_3$ ns. Assume, $R = 1 k\Omega$ Hence output of first inverting amplifier $V_{01} = \frac{-R}{R} (V_1 + V_2) = -(V_1 + V_2)$. Output of second inverting amplifier is $V_{02} = \frac{-2R}{R} (V_3) = -2V_3$ Therefore, final output of third difference amplifier is derived as,	02
	$V_{o} = V_{o2} - V_{o1} = [-2V_{3} + (V_{1} + V_{2})] = V_{1} + V_{2} - 2V_{3}$ The designed circuit to get the output : $V_{1} = V_{02} - V_{01} = [-2V_{3} + (V_{1} + V_{2})] = V_{1} + V_{2} - 2V_{3}$ $V_{1} = V_{02} - V_{01} + V_{02} - (V_{1} + V_{2}) + V_{02} + V_{02$	02
cycle	w the circuit diagram of Astable multivibrator using IC 555 to obtain 50% duty . Determine the components used at 1 KHz frequency when $C_T = 1\mu F$ and the waveform of Astable Multivibrator.	

		$V_{in} \bigotimes_{I=1}^{V_{d}} \underbrace{\downarrow_{vd}}_{I=2} \underbrace{\downarrow_{vd}}_{V_{eE}} \underbrace{\downarrow_{vo}}_{V_{EE}} \underbrace{\downarrow_{vo}}_{I=2} OR$ Inverting mode comparator	$2V + V_{U} +$	06	
6.		Attempt any <u>TWO</u> of the following:		12 M	
	a	Compare the features of integrator and differentiator. (any six points) Ans:			
		IntegratorA circuit that gives an output voltage directly proportional to the integral of its input is known as an integrating circuit.Output Voltage $V_o = -\frac{1}{R_1 C_F} \int_{1}^{t} V_{in} dt + k$ It is used as low pass filter It works good in low frequencyFeedback element is capacitorGain decreases with increase in frequencyMore stabilityEffect noise is less	DifferentiatorA circuit that gives an output voltage directly proportional to the derivative of its input is known as a differentiating circuit.Output Voltage $V_o = -R_F C_1 \frac{d}{dt} V_{in}$ It is used as high pass filter It works good in high frequency Feedback element is ResistorGain increases with increase in frequencyLess stabilityEffect noise is more	06	
	b	List ideal and practical parameter of op-an Ans: Ideal parameter of op-amp (Any three) 1. Infinite Voltage Gain 2. Infinite Input Impedance 3. Zero Output Impedance 4. Zero Input Offset Voltage 5. Zero Output Offset Voltage 6. Zero Input Offset current 7. Zero Input Bias current 8. Infinite Bandwidth 9. Infinite CMRR 10. Infinite Slew Rate 11. Zero Power Supply Rejection Ratio(H 12. Zero Input capacitance	mp.	03	

