17419

11920

3 Hours / 100 Marks
Seat No. \square
Instructions - (1) All Questions are Compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. a) Attempt any SIX of the following:
(i) Define horizontal equivalent
(ii) State the uses of contour maps
(iii) State the advantages of digital planimeter
(iv) Define the terms-Latitude and departure
(v) Define swing of telescope
(vi) State any four objective of tacheometry
(vii) Define degree of curve
(viii) State the fundamental axes of theodolite
b) Attempt any TWO of the following:
(i) Explain the procedure of establishing grade contour on ground.
(ii) What is GPS? State any four uses of GPS.
(iii) Explain the method of repetition to measure horizontal angle using transit theodolite.
2. Attempt any FOUR of the following:
a) Draw neat sketch of contour for the following:
(i) Hill
(ii) Valley
(iii) Gentle slope
(iv) Ridge line
b) State direct and indirect methods of contouring? Explain tacheometric method
c) State the procedure for computing the volume by prizmoidal formula.
d) Describe the temporary adjustment of theodolite.
e) Explain the procedure of measurement of deflection angle.
f) What is meant by permanent adjustment of a theodolite? Enlist any two such adjustment.
3. Attempt any FOUR of the following: $\mathbf{1 6}$
a) State any four advantages of total station over dumpy level and theodolite.
b) Enlist any four component parts of digital level. State the functions of each.
c) Explain the working principle of EDM with a neat sketch.
d) Explain the procedure for measurement of vertical angle using digital theodolite.
e) State any four applications of digital theodolite.
f) Describe the method of setting out simple curve by using the method of offset from long chord with sketch.
4. Attempt any FOUR of the following:
a) Define zero circle. How it is found out?
b) Give the application of remote sensing.
c) Define GIS. Enlist the key components of GIS.
d) How would you determine the constants of given tacheometer on field?
e) What is the difference between a theodolite and a tacheometer. Give any two characteristics of tacheometer.
f) Derive the relation between the radius and degree of curve.
5. Attempt any TWO of the following: 16
a) Following are the lengths and bearings of a closed traverse ABCDA

Line	AB	BC	CD	DA
Length(m)	260	240	250	$?$
Bearing	341°	295°	147°	$?$

Determine the length and bearing of line DA
b) Enlist any eight components of transit theodolite and write their functions.
c) A tacheometer was set up at station A and following reading were obtained on a staff held vertically

Station	Staff st $^{\mathrm{n}}$	Vertical angle	Hair reading
A	BM	$+7^{\circ} 30^{\prime}$	$0.900,1.175,1.530$
A	B	$-2^{\circ} 20^{\prime}$	$1.125,1.330,1.445$

The constant of instrument were 100 and 0.10 . Find the horizontal distance $A B$ and R.L of B. if R. L of B. M is 500.00 m .
6. Attempt any TWO of the following: $\mathbf{1 6}$
a) Enlist component parts of mechanical planimeter. Calculate area of fig form following data:
(i) initial reading - 1.586
(ii) final reading - 0.392
(iii) Multiplying constant - 100
(iv) Additive constant - 20
(v) Rotation of disc-once in reverse direction.
b) Two tangent intersect at chainage 2140 mt . The deflection angle being 36°. Calculate all the data necessary for setting out curve with a radius 300 mt . by deflection angle.
c) Describe layout of small buildings by using total station.

