17104

11920

3 Hours / 100 Marks
Seat No. \square
Instructions - (1) All Questions are Compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Solve any TEN of the following:
a) Find the value of x if $\left|\begin{array}{lll}4 & 3 & 9 \\ 3 & 2 & 7 \\ 1 & 4 & x\end{array}\right|=0$
b) Find X if, $\left[\begin{array}{rr}4 & 5 \\ -3 & 6\end{array}\right]+X=\left[\begin{array}{rr}10 & -1 \\ 0 & -5\end{array}\right]$
c) If $\mathrm{A}=\left[\begin{array}{ll}4 & 2 \\ 8 & 4\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{rr}2 & 6 \\ -4 & -12\end{array}\right] \begin{aligned} & \text { show that } \mathrm{AB} \text { is null } \\ & \text { matrix. }\end{aligned}$
d) If $\mathrm{A}=\left[\begin{array}{ll}5 & 4 \\ 4 & 3\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{rr}-3 & 4 \\ 4 & -5\end{array}\right]$ verify that $\mathrm{AB}=\mathrm{BA}$.
e) Resolve into partial fractions $\frac{1}{x(x-1)}$
f) Prove that $\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$
g) Prove that $\sin \left(\theta+\frac{\pi}{6}\right)-\sin \left(\theta-\frac{\pi}{6}\right)=\cos \theta$
h) Without calculator find the value of $\sin 15^{\circ}$.
i) If $\sin \mathrm{A}=\frac{1}{2}$, find $\sin 3 \mathrm{~A}$
j) Show that $3 x-2 y+6=0$ and $2 x+3 y-1=0$ are perpendicular lines.
k) Find equation of line passing through $(4,5)$ and parallel to $2 x-3 y-5=0$.
1) Find the range and co-efficient of range of following distribution $3,6,10,1,15,16,21,19,18$
2. Solve any FOUR of the following:
a) Solve by using Cramer's rule :

$$
x+y+z=3, \quad x-y+z=1, \quad x+y-2 z=0
$$

b) If $A=\left[\begin{array}{lll}2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2\end{array}\right]$ find A^{2}.
c) If $\mathrm{A}=\left[\begin{array}{rr}2 & -3 \\ 1 & 5\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{rrr}3 & -1 & 2 \\ 1 & 0 & 1\end{array}\right]$ verify that $(A B)^{T}=B^{T} A^{T}$
d) Find x, y, z if $\left\{\left[\begin{array}{lll}1 & 3 & 2 \\ 2 & 0 & 1 \\ 3 & 1 & 2\end{array}\right]+2\left[\begin{array}{lll}3 & 0 & 2 \\ 1 & 4 & 5 \\ 2 & 1 & 0\end{array}\right]\right\}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
e) Resolve into partial fraction $\frac{(x+1)}{x(x+2)(x+3)}$
f) Resolve into partial fraction $\frac{3 x+2}{(x+1)\left(x^{2}-1\right)}$
3. Solve any FOUR of the following:
a) Find the inverse of the matrix using adjoint method

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 0
\end{array}\right]
$$

b) Resolve into partial fraction $\frac{2 x+1}{(x-1)\left(x^{2}+1\right)}$
c) Resolve into partial fraction $\frac{(\sin \theta+1)}{(\sin \theta+2)(\sin \theta+3)}$
d) Prove that $\sin 3 \mathrm{~A}=3 \sin \mathrm{~A}-4 \sin ^{3} \mathrm{~A}$
e) Show that $\frac{\sin A+\sin 2 A+\sin 3 A+\sin 4 A}{\cos A+\cos 2 A+\cos 3 A+\cos 4 A}=\tan \left(\frac{5 A}{2}\right)$
f) Show that $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{4}$
4. Solve any FOUR of the following:
a) Prove that $\frac{1+\sec 2 \theta}{\tan 2 \theta}=\cot \theta$
b) Prove that $\sqrt{2+\sqrt{2+\sqrt{2+2 \cos 8 \mathrm{~A}}}}=2 \cos \mathrm{~A}$
c) Without using calculator find the value of $\sin 150^{\circ}-\tan 315^{\circ}+\cos 300^{\circ}+\sec 3660^{\circ}$
d) If $A+B=\frac{\pi}{4}$ show that $(1+\tan A)(1+\tan B)=2$
e) Prove that $\tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3)=\pi$
f) Prove that $\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$
5. Solve any FOUR of the following:
a) Prove that $\tan ^{-1}(x)+\tan ^{-1}(y)=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$ If $x>0, \quad y>0, \quad x y<1$
b) Prove that $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\frac{3}{16}$
c) Prove that $\cos \mathrm{C}+\cos \mathrm{D}=2 \cos \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \cdot \cos \left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$.
d) Find the angle between two lines $2 x+3 y+5=0$ and $x-2 y-4=0$.
e) Prove that the distance between two parallel line $a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$ is $\left|\frac{\mathrm{C}_{2}-\mathrm{C}_{1}}{\sqrt{a^{2}+b^{2}}}\right|$
f) Find the equation of line passing through the point of intersection of lines $x+y=0,2 x-y=9$ and through the point $(2,5)$.
6. Solve any FOUR of the following:
a) If m_{1} and m_{2} are slopes of any two lines L_{1} and L_{2} then prove that angle between two lines L_{1} and L_{2} is $\theta=\tan ^{-1}\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
b) Find the equation of straight line passing through $(4,5)$ and perpendicular to the line $7 x+5 y=2019$.
c) Find the mean deviation from the mean of the following:

Class interval	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	4	6	10	18	9	3

d) Find the standard deviation of the following distribution.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of Students	3	5	8	3	1

e) Find variance and co-efficient of variance for the following data.

Class interval	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
Frequency	3	5	9	15	20	16	10	2

f) The two sets of observations are given below

$$
\begin{array}{cc}
\text { Set I } & \text { Set II } \\
\overline{\mathrm{X}}=82.5 & \overline{\mathrm{X}}=48.75 \\
\sigma=7.3 & \sigma=8.35
\end{array}
$$

Which set is more consistant ?

