11920 3 Hours / 70 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions:

- (1) All Questions are *compulsory*.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- (a) Give any two application of SCILAB software to solve algebraic equation.
- (b) Define Matrix Inversion method.
- (c) Give the conditions for Simpson's 1/3 rule and state the formula
- (d) Write any two application of Newton Raphson method.
- (e) Differentiate between Euler's method and Modified Euler's method (any two points).
- (f) Write any two application of SCILAB software to solve integration method.

[1 of 4]

P.T.O.

22515 [2 of 4]

(g) State the formula to solve second order differential equation using Runge Kutta method.

2. Attempt any THREE of the following:

12

- (a) Explain the use of SCILAB software for solution of differential equation.
- (b) Explain the concept of Gauss elimination method.
- (c) Evaluate $\log_e 7$ by Simpson's 3/8 rule.
- (d) Find the position root of $x^3 4x 9 = 0$ by bisection method.

3. Attempt any THREE of the following:

12

- (a) Evaluate $\int_{0}^{\pi} \frac{\sin^{2} \theta}{5 + 4 \cos \theta} d\theta$ by Simpson's 3/8 rule taking $h = \pi/\sigma$
- (b) Find the smallest positive root of $x^3 5x + 3 = 0$ by Newton Raphson method. Correct to three decimal places.
- (c) Use bisection method to find the positive root of eqⁿ $x^3 + 3x 1 = 0$
- (d) Explain Runge Kutta method for solving differential equation.

4. Attempt any THREE of the following:

12

(a) Evaluate $\int_{0}^{\pi/2} \sqrt{\sin x \, dx}$ by using Simpson's rule taking six equal intervals.

22515

- (b) Use Euler's method to solve the equation y' = -y, y(0) = 1 find y(0.01), y(0.02), y(0.04) taking h = 0.01.
- (c) Calculate the approximate value of $\int_{0}^{\pi/2} \sin x \, dx$ by Simpon's 1/3 rule by using 6 ordinates.
- (d) Find the real root of $xe^x 2 = 0$ by false position method.
- (e) Compute the value of $\int_{0.2}^{1.4} (\sin x \log x + e^x) dx$ taking h = 0.2 by using Trapezoidal rule.

5. Attempt any TWO of the following:

- 12
- (a) Describe the features of SCILAB software in detail for numerical method.
- (b) Solve the system of equation by Gauss Jordan method :

$$x + 2y + z = 3$$

$$2x + 3y + 3z = 10$$

$$3x - y + 2z = 13$$

(c) Determine 'h' so that the value of integration $\int_{0}^{1} e^{x} dx$ obtained by trapezoidal orule is correct to 4 decimal places, hence find the numerical value of the integration.

22515

12

6. Attempt any TWO of the following:

- (a) Use the Newton Raphson method to find the real roots of the eqⁿ $x = e^{-x}$
- (b) Using Taylor's series method, solve the equation $y' = 3 e^x + 2y$, y(0) = 0 find y(0.1), y(0.2)
- (c) Use Runge Kutta method to solve the equation :

$$Y' = x^2 + y^2$$
, $y(0) = 1$. Find $y(0, 1) y(0, 2)$