22230

11920

11/20													
3	Hours	/	70	Marks	Seat No.								

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- Define natural and synthetic polymer with suitable examples of each.
- b) Define polymer and co-polymer.
- Define polymerization and state its types.
- Define co-ordination and chain transfer reaction.
- Determine the molecular weight of $R(CH_2 CH_2)_{200}R$
- State the factors affecting the glass transition temperature. f)
- g) Define photo degradation.

Marks

2. Attempt any THREE of the following:

12

- a) Define elastomers and fibers with suitable examples.
- b) Explain termination mechanism in free radical polymerization.
- c) Calculate the number average and weight average molecular weight of the polymer.

Molecular weight range (g/mol) x_i w_i

Mol. wt range (g/mol)	x_{i}	w _i
8000 - 20,000	0.05	0.02
20,000 - 32,000	0.15	0.08
32,000 - 44,000	0.21	0.17
44,000 - 56,000	0.28	0.29

d) Write one reactions of each from cationic and anionic initiation reaction.

3. Attempt any THREE of the following:

12

- a) Explain classification of polymers based on the structure with neat sketches.
- b) Compare suspension and emulsion polymerization techniques.
- c) Explain initiations in step polymerization.
- d) Explain the concept of numbers average and weight average molecular weight.

4. Attempt any <u>THREE</u> of the following:

12

- a) Explain termination step in ring opening polymerization.
- b) Write any four merits and demerits of bulk polymerization.
- c) For number average molecular weight show that $M_n = \sum_{ni} Mi / \sum_{ni}$
- d) Explain the effect of plasticizers on glass transition temperature.
- e) Describe thermal degradation of polymer. Also state the method of prevention for the same.

[3] 22230

22230		[3]						
		Marl	KS					
5.		Attempt any <u>TWO</u> of the following:						
	a)	Classify co-polymers with suitable examples from each category.						
	b)	Describe the following:						
		(i) Electrochemical polymerization.						
		(ii) Propagation mechanism in free radical polymerization.						
	c)	Explain the factors affecting the glass transition temperature.						
6.		Attempt any TWO of the following:	12					
	a)	Compare bulk and solution polymerization with suitable example of both (min six points).						
	b)	Describe - oxidative and mechanical polymer degradation with a neat sketch.						
	c)	If a polymer sample has the population as follows:						
		1 Molecule of molecular weight each = 8,000						
		3 Molecules of molecular wight each = 7,500						
		5 Molecules of molecular wight each = 7,000						
		8 Molecules of molecular wight each = 6,500						
		10 Molecules of molecular wight each = 6,000						
		13 Molecules of molecular wight each = 5,500						
		20 Molecules of molecular wight each = 5,000						
		Calculate its member average molecular weight.						