22221

11920 3 Hours / 70 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions : (1) All Questions are *compulsory*.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any FIVE of the following :

- (a) State Flaming's left hand rule.
- (b) Define the following terms related to sinusoidal AC waveform :
 - (i) Instantaneous value
 - (ii) Cycle
- (c) Define :
 - (i) RMS value
 - (ii) Average value w.r.t. sinusoidal AC waveform.
- (d) Define :
 - (i) Balanced system
 - (ii) Balanced Load w.r.t. 3 phase system

[1 of 4]

P.T.O.

Marks

 $5 \times 2 = 10$

[2 of 4]

- (e) Differentiate squirrel cage and slip ring IM on any two parameters.
- (f) Give any two applications of universal motor.
- (g) State the operation of Rewireable Fuse.

2. Attempt any THREE of the following :

- (a) Write any two similarity and any two dissimilarity between magnetic and electric circuit.
- (b) Draw the power triangle and define active, reactive and apparent power.
- (c) State the working principle of transformer. Also write the expression for
 - (i) Emf equation
 - (ii) Transformation ratio.
- (d) List the different starters used for 3 phase IM and draw a neat sketch for any one of them.

3. Attempt any THREE of the following :

- (a) Define :
 - (i) Magnetic flux
 - (ii) Magnetic flux density
 - (iii) m.m.f.
 - (iv) Permeability
- (b) A balanced 3 phase delta connected load consists of three resistances each of 4 ohms connected to a 400 V, 3 phase, 50 Hz supply.

Find :

- (i) Phase current
- (ii) Line current

22221

and

 $3 \times 4 = 12$

 $3 \times 4 = 12$

- (c) Draw the schematic diagram of
 - (i) DC shunt motor
 - (ii) DC series motor
- (d) Explain the operation of MCB against overload and short circuit.

4. Attempt any THREE of the following :

- (a) Explain the concept of Dynamically and statically induced emf.
- (b) Justify the reason why 3 phase Induction motor can never run on synchronous speed.
- (c) State the material used and function of the following parts of DC Motor :
 - (i) Yoke
 - (ii) Field winding
- (d) Draw the schematic diagram of shaded pole motor and state its principle of operation.
- (e) Draw a neat labelled sketch of pipe earthing.

5. Attempt any TWO of the following :

(a) Define :

(c)

- (i) Phase angle
- Phase difference and explain the concept of lagging and leading w.r.t. sinusoidal AC quantity.
- (b) Three equal impedances are star connected to a 3 phase, 400 V, 50 Hz supply If the inductive reactance and resistance of each branch are 8 Ω and 6 Ω , Calculate :

(i)	Phase current	2
(ii)	Line current	1
(iii)	Power factor	1
(iv)	Total power consumed	2
Expl	ain the basic principle of operation of Brushless DC motor and given any	

2 applications of the same.

 $3 \times 4 = 12$

 $2 \times 6 = 12$

6.	Attempt any TWO of the following :					
	(a)	A co acros	ected			
		Calc	Calculate :			
		(i)	Reactance of the coil	1		
		(ii)	Impedance of the coil	1		
		(iii)	Current taken	1		
		(iv)	Power factor	1		
		(v)	Total Power Consumed	2		
	(b)	For a	a capacitor start, Induction run single phase IM :			
		(i)	Show the schematic representation.	3		
		(ii)	Explain its principle of working.	2		
		(iii)	Any two applications.	1		
	(c)	(i)	State the purpose of earthing.	2		
		(ii)	Also explain any two methods of reducing earth resistance.	4		

22221

$2 \times 6 = 12$