## 17104

## 15116

3 Hours / 100 Marks
Seat No.

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Instructions : (1) All Questions are compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-Programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

## Marks

## 1. Attempt any TEN of the following :

(a) Find missing term, if $\left|\begin{array}{ccc}4 & 3 & 9 \\ 3 & -2 & 7 \\ 11 & 4 & --\end{array}\right|=0$
(b) If $\left[\begin{array}{rr}3 & -6 \\ 4 & 2\end{array}\right]+\left[\begin{array}{rr}2 & 3 \\ -2 & 1\end{array}\right]=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$, find $a, b, c, d$
(c) If $A=\left[\begin{array}{rr}3 & -1 \\ 2 & 4\end{array}\right], B=\left[\begin{array}{rr}1 & 2 \\ -3 & 0\end{array}\right]$, find $X$ such that $2 X+3 A-4 B=I$.
(d) If $A=\left[\begin{array}{rr}2 & -1 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{rr}1 & 0 \\ 3 & -1\end{array}\right]$, find $A^{T}+B^{T}$ and $A^{T}-B^{T}$.
(e) Resolve into the partial fraction $\frac{1}{x^{3}+3 x^{2}+2 x}$
(f) Prove that $\cos \mathrm{A}=\cos ^{2}(\mathrm{~A} / 2)-\sin ^{2}(\mathrm{~A} / 2)$
(g) Without using calculator find the value of $\sin 75^{\circ}$.
(h) Without using calculator find the value of $\cos (3660)$.
(i) Prove that $\sin (\mathrm{A}+\pi / 6)-\sin (\mathrm{A}-\pi / 6)=\cos \mathrm{A}$
(j) Prove that $\cos \left[\sin ^{-1}(3 / 5)\right]=\frac{4}{5}$
(k) State the condition of two lines are parallel and perpendicular to each other.
(l) Calculate the range from the following data :

Weight in kg : 70, 75, 69, 80, 85, 83, 65, 89, 73, 84, 90
2. Attempt any FOUR of the following :
(a) Solve the following equations by using Cramer's Rule :

$$
\begin{aligned}
& \frac{5}{x+2}+\frac{3}{y+1}=2 \\
& \frac{10}{x+2}-\frac{3}{y+1}=1
\end{aligned}
$$

(b) Find $x, y, z$ if $\left[\begin{array}{ccc}2+x & -1 & 3 \\ 0 & \mathrm{y} & \mathrm{z} \\ 4 & 1 & 3\end{array}\right]+\left[\begin{array}{ccc}1+x & 2 & 3 \\ 0 & 1+\mathrm{y} & 4 \\ 2 & 3 & 5\end{array}\right]=\left[\begin{array}{ccc}6 & 1 & 6 \\ 0 & -1 & 6 \\ 6 & 4 & 8\end{array}\right]$
(c) If $A=\left[\begin{array}{ccc}2 & 1 & 0 \\ -1 & 3 & 2\end{array}\right], B=\left[\begin{array}{ll}1 & 3 \\ 3 & 0 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right]$, find $(A B) \cdot C$.
(d) Find Inverse of Matrix, $\left[\begin{array}{ccc}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$
(e) Resolve into partial fractions, $\frac{x^{3}+1}{x^{2}+2 x}$.
(f) Resolve into partial fractions, $\frac{2 x+3}{x^{2}(x-1)}$

## 3. Attempt any FOUR of the following :

(a) Solve the following equations, by using matrix intersection method :

$$
x+3 y+2 z=6,3 x-2 y+5 z=5,2 x-3 y+6 z=7
$$

(b) Resolve into partial fractions $\frac{x}{x^{3}+1}$.
(c) Resolve into partial fractions, $\frac{\mathrm{e}^{x}+1}{\left(\mathrm{e}^{x}+2\right)\left(\mathrm{e}^{x}+3\right)}$
(d) Prove that $\sin (\pi+\theta)=-\sin \theta$
(e) Find value of $\frac{\sec ^{2} 135^{\circ}}{\cos \left(-240^{\circ}\right)-2 \sin \left(930^{\circ}\right)}$
(f) Prove that $\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{3}{5}\right)=\tan ^{-1}\left(\frac{27}{11}\right)$

## 4. Attempt any FOUR of the following :

(a) Prove that, $\cos (A+B)=\cos A \cos B-\sin A \sin B$.
(b) Prove that $\tan \mathrm{A} \cdot \tan \left(60^{\circ}-\mathrm{A}\right) \cdot \tan \left(60^{\circ}+\mathrm{A}\right)=\tan 3 \mathrm{~A}$.
(c) By using principal value, prove that

$$
\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)+2 \cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)+3 \sin ^{-1}(-1)=-\frac{\pi}{4} .
$$

(d) Prove that, (without using calculator) $\sin 20^{\circ} \cdot \sin 40^{\circ} \cdot \sin 60^{\circ} \cdot \sin 80^{\circ}=3 / 16$
(e) Prove that, $\cos \mathrm{C}-\cos \mathrm{D}=-2 \sin \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \sin \left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)$
(f) Prove that, $\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$

## 5. Attempt any FOUR of the following :

(a) Prove that, $\frac{\sec 4 \theta-1}{\sec 2 \theta-1}=\frac{\tan 4 \theta}{\tan \theta}$
(b) Prove that, $\frac{\sin \theta-\sin 5 \theta+\sin 9 \theta-\sin 3 \theta}{\cos \theta-\cos 5 \theta-\cos 9 \theta+\cos 13 \theta}=\cot 4 \theta$.
(c) Prove that, $\sin ^{-1} x=\cot ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)$.
(d) Prove that distance between two parallel lines $a x+b y+c_{1}=0$ and

$$
\mathrm{a} x+\mathrm{by}+\mathrm{c}_{2}=0 \text { is }\left|\frac{\mathrm{c}_{1}-\mathrm{c}_{2}}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}}}\right|
$$

(e) Find equation of lines passing through (12, -4) and whose sum of the intercepts is equal to 10 .
(f) If $\mathrm{m}_{1}$ and $\mathrm{m}_{2}$ are the slopes of the lines, then prove that the angle between the two lines is $\theta=\tan ^{-1}\left|\frac{\mathrm{~m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$.

## 6. Attempt any FOUR of the following :

(a) Prove that the length of perpendicular from the point $\mathrm{p}\left(x_{1}, \mathrm{y}_{1}\right)$ to the line

$$
\mathrm{A} x+\mathrm{By}+\mathrm{C}=0 \text { is }\left|\frac{\mathrm{A} x_{1}+\mathrm{By}_{1}+\mathrm{C}}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}}}\right|
$$

(b) Find the length of the perpendicular from the point $(2,3)$ on the line $4 x-6 y-3=0$.
(c) Calculate the mean deviation from mean for the following data :

| Marks : | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of student : | 1 | 3 | 7 | 5 | 2 | 2 |

(d) Find the standard deviation of the following :

| Class : | $0-20$ | $20-40$ | $40-60$ | $60-80$ | $80-100$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency : | 20 | 130 | 220 | 70 | 60 |

(e) Find variance from the following series :

| Age under : | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of person : | 15 | 30 | 53 | 75 | 100 | 110 | 115 | 125 |

(f) The mean and variance of 5 items are 64 and 68 respectively. If two more items of values 62 and 66 are added to the data, find the new variance of 7 items.

