22484

22232 3 Hours / 70 Marks

Seat No.

Instructions : (1) All Questions are *compulsory*.

- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

			Marks
1.	Attempt any FIVE of the following :		
	(a)	Enlist inversions of double slider crank chain.	
	(b)	State the types of followers on the basis of their shape.	
	(c)	Define angle of lap.	
	(d)	Draw stress-strain diagram for ductile material and label it.	
	(e)	Enlist four types of loads acting on machine element.	
	(f)	Give any four applications of cotter joint.	
	(g)	Define :	
		(i) Spring stiffness	
	675	(ii) Free length	
	X	[1 of 4]	P.T.O.

2. Attempt any THREE of the following :

- (a) Explain construction of crank and slotted quick return mechanism with neat sketch.
- (b) Differentiate between machine and mechanism.
- (c) Explain method of drawing displacement diagram for uniform velocity of follower during it's application.
- (d) A pulley is driven by flat belt running at a speed of 600 m/min and transmits
 4 kW. The co-efficient of friction between belt and pulley is 0.3 and angle of lap is 160°. Find maximum tension in belt.

3. Attempt any THREE of the following :

- (a) For a flat belt, prove that $\frac{T_1}{T_2} = e^{\mu\theta}$.
- (b) Explain epicyclic gear train with neat sketch.
- (c) State the following material specifications :
 - (i) 45 Cr 20Si2
 - (ii) Fe F230
 - (iii) 35C8
 - (iv) 10 C 8510
- (d) Explain steps involved in general design procedure.

4. Attempt any THREE of the following :

- (a) State the effect of slip on velocity ratio of belt. Also state the expressions for them.
- (b) Suggest suitable material for the following machine parts :
 - (i) Helical spring
 - (ii) Turbine blade
 - (iii) Lathe bed
 - (iv) Bushes for Knuckle joint

12

[**3** of **4**]

- (c) Prove that, for a square key, crushing stress is twice of shearing stress.
- (d) Define the following terms with respect to spring :
 - (i) Spring index
 - (ii) Spring rate
 - (iii) Free length
 - (iv) Solid height
- (e) Write the procedure for selection of bearing from manufacture's catalogue.

5. Attempt any TWO of the following :

- (a) Explain construction and working of elliptical trammel with neat sketch.
- (b) Draw the profile of cam operating a knife edge follower having a lift of 30 mm. The cam raises the follower with SHM for 150° of its rotation followed by a period of dwell for 60°. The follower descends for the next 100° rotation of one cam with uniform velocity again followed by a dwell period.

The cam rotates at an uniform velocity of 120 rpm and has a least radius of 20 mm.

(c) Sketch protective type flange coupling and explain it's design procedure.

6. Attempt any TWO of the following :

- (a) A shaft is required to transmit 1 MW power at 240 rpm. The shaft must not twist more than 1° on a length of one metre. If the modulus of rigidity for the material of the shaft is 80 kN/mm², find diameter of shaft and shear stress induced in it.
- (b) Write down design procedure of knuckle joint with neat sketch.
- (c) Enlist the types of theories of elastic failure. State the necessity of theories of failure. Explain maximum principle stress theory.

22484

12

12

22484