22480

22232 3 Hours / 70 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions : (1) All Questions are *compulsory*.

- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data, if necessary.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.

Marks

10

1. Attempt any FIVE of the following :

(a) If
$$f(x, y) = x \sin y + y \sin x + xy$$
, find $\frac{\partial f}{\partial x}$.

(b) If
$$f(x, y) = x^4 \sin y + y^4 \cos x + x^3$$

Find
$$\frac{\partial^2 f}{\partial x \partial y}$$

(c) Find rank of matrix,
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
.

(d) Find the eigen values of the matrix

$$\mathbf{A} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}.$$

- (e) Find the value of p, if the vectors $\overline{a} = p\overline{i} + 5\overline{j} + \overline{k} \& \overline{b} = 2\overline{i} \overline{j} 5\overline{k}$ are perpendicular to each other.
- (f) Find the projection of $\overline{a} = 2\overline{i} + \overline{j} + \overline{k}$ on $\overline{b} = \overline{i} + 3\overline{j} + \overline{k}$.
- (g) Construct forward difference table for the following data :

x	0	1	2	3	4	5	6
f(x)	1	3	11	31	69	131	223

2. Attempt any THREE of the following :

- (a) Examine $f(x, y) = x^3 y^2 3x$ for maximum and minimum values.
- (b) Examine the following linear system of equation for consistency and solve it if consistent.

$$4x - 2y + 6z = 8$$
$$x + y - 3z = -1$$
$$15x - 3y + 9z = 21$$

(c) Reduce the following matrix to Normal form and hence find its rank.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

(d) Find the angle between the vectors

$$\overline{a} = 2\overline{i} + 2\overline{j} + \overline{k}$$
 and $\overline{b} = 3\overline{i} + 6\overline{j} + 2\overline{k}$

3. Attempt any THREE of the following :

(a) If $f(x, y) = x^3 + y^3 - 3axy$ then show that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

(b) Find inverse of following matrix by elementary transformation

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

(c) Determine the value of λ for which the system of linear equation

3x + 2y + 4z = 3, $x + y + z = \lambda$ and 5x + 4y + 6z = 15 are consistent; also find corresponding solution.

(d) Find extreme value of f(x, y) = xy subject to condition x + y = 10, using Lagrange method of undetermined multipliers.

4. Attempt any THREE of the following :

(a) For which values of k the system of equation

$$x + 2y - z = 0$$

3x + (k + 7) y - 3z = 0
2x + 4y + (k - 3) z = 0

will possess non-trivial solution.

22480

12

12

[3 of 4]

(b) Find a vector of magnitude $\sqrt{3}$ units and perpendicular to the vectors

 $\overline{a} = 2\overline{i} + \overline{j} - 3\overline{k}$ and $\overline{b} = \overline{i} - 2\overline{j} + \overline{k}$

(c) The scalar product of the vector

 $\overline{a} = \overline{i} + \overline{j} + \overline{k}$ with a unit vector along the sum of vectors

$$\overline{b} = 2\overline{i} + 4\overline{j} - 5\overline{k}$$
 and $\overline{c} = \lambda\overline{i} + 2\overline{j} + 3\overline{k}$ is equal to one. Find value of λ

and hence find the unit vector along $\overline{b} + \overline{c}$.

(d) Find the Eigen values and Eigen vectors of a matrix

$$\mathbf{A} = \begin{bmatrix} 14 & -10 \\ 5 & -1 \end{bmatrix}$$

(e) If
$$\overline{a} = \overline{i} - 2\overline{j} + 3\overline{k}$$
, $\overline{b} = 2\overline{i} + \overline{j} - \overline{k}$ and $\overline{c} = \overline{j} + \overline{k}$

Find vector $\overline{a} \times (\overline{b} \times \overline{c})$

5. Attempt any TWO of the following :

(a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 0 using suitable interpolation for the following data :

x	0	1	2	3	4	5
У	4	8	15	7	6	2

(b) (i) Given

x	10	15	20
f (<i>x</i>)	14	18	28

Estimate f(12) using Newton's Forward difference interpolation formula.

(ii) Prove that

$$\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)}\right].$$

12

(c) Solve the following linear programming problem graphically to find optimal solution

Maximize Z = 2x + 5ySubject to $x + 2y \le 16$ $5x + 3y \le 45$ $x, y \ge 0.$

6. Attempt any TWO of the following :

(a) Given the square of integers in the following data. Find the value of (13)², using extrapolation.

x	3	5	7	9
У	9	25	49	81
	7			

(b) (i) Evaluate $\int_{2} \frac{1}{x} dx$ by using trapezoidal rule and by dividing the interval

[2, 7] in to five equal sub-intervals.

(ii) Evaluate
$$\int_{0}^{2} e^{-x} dx$$
 by using Simpson's one-third rule, by dividing the

interval (0, 2) into four equal sub-intervals.

(c) Solve the following linear programming problem using simplex method to find optimal solution :

Maximize
$$Z = 12x_1 + 16x_2$$

Subject to
$$10x_1 + 20x_2 \le 120$$
$$8x_1 + 8x_2 \le 80$$
$$x_1, x_2 \ge 0$$

22480

12