22480
22232
3 Hours / 70 Marks
Seat No. \square

Instructions: (1) All Questions are compulsory.
(2) Illustrate your answers with neat sketches wherever necessary.
(3) Figures to the right indicate full marks.
(4) Assume suitable data, if necessary.
(5) Use of Non-programmable Electronic Pocket Calculator is permissible.

1. Attempt any FIVE of the following :
(a) If $\mathrm{f}(x, y)=x \sin y+y \sin x+x y$, find $\frac{\partial \mathrm{f}}{\partial x}$.
(b) If $\mathrm{f}(x, y)=x^{4} \sin y+y^{4} \cos x+x^{3}$

$$
\text { Find } \frac{\partial^{2} f}{\partial x \partial y}
$$

(c) Find rank of matrix, $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$.
(d) Find the eigen values of the matrix

$$
\mathrm{A}=\left[\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right]
$$

(e) Find the value of p, if the vectors $\bar{a}=p \bar{i}+5 \bar{j}+\bar{k} \& \bar{b}=2 \bar{i}-\bar{j}-5 \bar{k}$ are perpendicular to each other.
(f) Find the projection of $\overline{\mathrm{a}}=2 \overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}$ on $\overline{\mathrm{b}}=\overline{\mathrm{i}}+3 \overline{\mathrm{j}}+\overline{\mathrm{k}}$.
(g) Construct forward difference table for the following data :

x	0	1	2	3	4	5	6
$\mathrm{f}(x)$	1	3	11	31	69	131	223

2. Attempt any THREE of the following :
(a) Examine $\mathrm{f}(x, y)=x^{3}-y^{2}-3 x$ for maximum and minimum values.
(b) Examine the following linear system of equation for consistency and solve it if consistent.

$$
\begin{array}{r}
4 x-2 y+6 z=8 \\
x+y-3 z=-1 \\
15 x-3 y+9 z=21
\end{array}
$$

(c) Reduce the following matrix to Normal form and hence find its rank.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right]
$$

(d) Find the angle between the vectors

$$
\overline{\mathrm{a}}=2 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}+\overline{\mathrm{k}} \text { and } \overline{\mathrm{b}}=3 \overline{\mathrm{i}}+6 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}
$$

3. Attempt any THREE of the following :
(a) If $\mathrm{f}(x, \mathrm{y})=x^{3}+y^{3}-3 a x y$ then

$$
\text { show that } \frac{\partial^{2} \mathrm{f}}{\partial x \partial \mathrm{y}}=\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y} \partial x} .
$$

(b) Find inverse of following matrix by elementary transformation

$$
A=\left[\begin{array}{ccc}
1 & 2 & -2 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right]
$$

(c) Determine the value of λ for which the system of linear equation

$$
3 x+2 y+4 z=3, x+y+z=\lambda \text { and } 5 x+4 y+6 z=15 \text { are consistent; }
$$

also find corresponding solution.
(d) Find extreme value of $\mathrm{f}(x, \mathrm{y})=x \mathrm{y}$ subject to condition $\mathrm{x}+\mathrm{y}=10$, using Lagrange method of undetermined multipliers.
4. Attempt any THREE of the following :
(a) For which values of k the system of equation

$$
\begin{array}{r}
x+2 y-z=0 \\
3 x+(k+7) y-3 z=0 \\
2 x+4 y+(k-3) z=0
\end{array}
$$

will possess non-trivial solution.
(b) Find a vector of magnitude $\sqrt{3}$ units and perpendicular to the vectors

$$
\overline{\mathrm{a}}=2 \overline{\mathrm{i}}+\overline{\mathrm{j}}-3 \overline{\mathrm{k}} \text { and } \overline{\mathrm{b}}=\overline{\mathrm{i}}-2 \overline{\mathrm{j}}+\overline{\mathrm{k}}
$$

(c) The scalar product of the vector

$$
\begin{aligned}
& \overline{\mathrm{a}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}} \text { with a unit vector along the sum of vectors } \\
& \overline{\mathrm{b}}=2 \overline{\mathrm{i}}+4 \overline{\mathrm{j}}-5 \overline{\mathrm{k}} \text { and } \overline{\mathrm{c}}=\lambda \overline{\mathrm{i}}+2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}} \text { is equal to one. Find value of } \lambda
\end{aligned}
$$ and hence find the unit vector along $\overline{\mathrm{b}}+\overline{\mathrm{c}}$.

(d) Find the Eigen values and Eigen vectors of a matrix

$$
A=\left[\begin{array}{cc}
14 & -10 \\
5 & -1
\end{array}\right]
$$

(e) If $\overline{\mathrm{a}}=\overline{\mathrm{i}}-2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}, \overline{\mathrm{b}}=2 \overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}}$ and $\overline{\mathrm{c}}=\overline{\mathrm{j}}+\overline{\mathrm{k}}$

Find vector $\bar{a} \times(\bar{b} \times \bar{c})$
5. Attempt any TWO of the following :
(a) Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ and $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}}$ at $x=0$ using suitable interpolation for the following data :

\boldsymbol{x}	0	1	2	3	4	5
\mathbf{y}	4	8	15	7	6	2

(b) (i) Given

\boldsymbol{x}	10	15	20
$\mathbf{f}(\boldsymbol{x})$	14	18	28

Estimate $f(12)$ using Newton's Forward difference interpolation formula.
(ii) Prove that
$\Delta \log \mathrm{f}(x)=\log \left[1+\frac{\Delta \mathrm{f}(x)}{\mathrm{f}(x)}\right]$.
(c) Solve the following linear programming problem graphically to find optimal solution

$$
\begin{array}{ll}
\text { Maximize } & Z=2 x+5 y \\
\text { Subject to } & x+2 y \leq 16 \\
& 5 x+3 y \leq 45 \\
& x, y \geq 0 .
\end{array}
$$

6. Attempt any TWO of the following :

(a) Given the square of integers in the following data. Find the value of $(13)^{2}$, using extrapolation.

x	3	5	7	9
y	9	25	49	81

(b) (i) Evaluate $\int_{2} \frac{1}{x} \mathrm{~d} x$ by using trapezoidal rule and by dividing the interval $[2,7]$ in to five equal sub-intervals.
(ii) Evaluate $\int_{0}^{2} \mathrm{e}^{-x} \mathrm{~d} x$ by using Simpson's one-third rule, by dividing the interval $(0,2)$ into four equal sub-intervals.
(c) Solve the following linear programming problem using simplex method to find optimal solution :

$$
\begin{array}{lr}
\text { Maximize } & \mathrm{Z}=12 x_{1}+16 x_{2} \\
\text { Subject to } & 10 x_{1}+20 x_{2} \leq 120 \\
8 x_{1}+8 x_{2} \leq 80 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

