22392

22232
3 Hours / 70 Marks
Seat No. \square

Instructions : (1) All Questions are compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following :

$5 \times 2=10$
(a) Define half duplex and full duplex communication with example.
(b) List the application for the frequency range 300 kHz to 30 MHz and 30 MHz to 300 MHz of electromagnetic spectrum.
(c) Define : (i) Thermal Noise (ii) SNR.
(d) State the need of modulation.
(e) State Sampling Theorem.
(f) List the types of guided Media used for signal propagation.
(g) Define : (i) Beam width (ii) Bandwidth of an antenna.
2. Attempt any FOUR of the following :
(a) Compare serial and parallel communication. (Any three points)
(b) Draw the neat block diagram of superheterodyne receiver with its waveform at the output of each block.
(c) Write down the (i) Mathematical representation of FM wave (ii) Equation of modulation index of FM signal.
(d) State any two advantages and disadvantages of Adaptive Delta Modulation.
(e) Draw the block diagram of synchronous and asynchronous data transmission.

3. Attempt any FOUR of the following :

(a) Draw and explain the block diagram of electronic communication system.
(b) Compare simple AGC and delayed AGC on the basis of following points :
(i) Definition
(ii) Effect on gain
(iii) Application
(c) A 20 kW carrier wave is amplitude modulated at 80% depth of modulation by a sinusoidal modulating signal. Calculate the Sideband Power and Total Power.
(d) Explain Quantization process with neat waveform.
(e) Draw and explain the block diagram of Differential Pulse Code Modulation (DPCM) transmitter.

4. Attempt any THREE of the following :

(a) An AM transmitter uses a carrier wave of 10 MHz with 10 V amplitude. It is modulated to a depth of 50% with a signal of 5 kHz . Represent the AM signal in time and frequency domain.
(b) Explain the generation of FM using varactor diode.
(c) Compare PCM, DM and ADM on following points :
(i) Number of bits
(ii) Levels and step size
(iii) Transmission Bandwidth
(iv) Minimum Bit rate
(d) Draw and explain, how ratio detector can be used as FM detector.
(e) Explain the construction of
(i) Step Index Optical Fibre
(ii) Graded Index Optical Fibre
5. Attempt any THREE of the following :
(a) Draw and explain the working of diode detector with the help of input and output waveforms.
(b) The equation of FM wave is given by $20 \sin \left(8 \times 10^{8} t+3 \sin 10^{4} t\right)$. Calculate :
(i) Carrier Frequency
(ii) Modulation frequency
(iii) Modulation index
(iv) Power dissipated in 10Ω resistor.
(c) List the types of pulse modulation and draw the block diagram of PPM.
(d) State aliasing effect. Draw neat diagram showing aliasing effect and explain how it can be overcome.
(e) Write one application of each one of the following :
(i) Reflector Antenna
(ii) Micro strip Antenna
(iii) Array Antenna
(iv) Wire Antenna
6. Attempt any TWO of the following :
(a) A modulating signal $10 \sin \left(2 \pi \times 10^{3} \mathrm{t}\right)$ is used to modulate a carrier signal $20 \sin \left(2 \pi \times 10^{4} t\right)$. Find :
(i) Modulation Index
(ii) Percentage of modulation
(iii) Frequency of sidebands
(iv) Amplitude of sidebands
(v) Bandwidth of signal
(vi) Draw the frequency spectrum of AM signal
(b) Compare AM and FM on the basis of:
(i) Definition
(ii) Modulation Index
(iii) Bandwidth
(iv) Noise Immunity
(v) No. of sidebands
(vi) Application
(c) (i) Explain the disadvantages of Delta Modulation with waveforms.
(ii) How it can be modified?
(iii) Draw the block diagram of the same.

