22383

22223

3 Hours / 70 Marks Seat No.
 \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

1. Attempt any FIVE of the following: $\mathbf{1 0}$
a) Define a Robot.
b) Compare Kinematic model and Dynamic model (two points each)
c) What do you mean by the Jacobian matrix?
d) Define path and trajectory of a robot.
e) List out any four robot programming languages.
f) Define centripetal and tangential acceleration
g) Draw the symbol for
i) Revolute Joint
ii) Twisting Joint
2. Attempt any THREE of the following:
a) Explain Hydraulic Actuator with a diagram.
b) Explain any four switches of teach pendant.
c) Differentiate Joint space trajectory and Cartesian trajectory planning. (any four points)
d) Explain the various capabilities and limitations of the robot languages. (two points each)
3. Attempt any THREE of the following:
a) Derive the inverse kinematics matrix equation of a $2 R$ planer robot.
b) Draw the diagram for Magnetic Gripper and Vacuum Gripper.
c) Define work envelope? Draw work envelope for Cartesian coordinates.
d) Derive the manipulated Jacobian matrix (J) for cylindrical robot.
4. Attempt any THREE of the following:
a) Compare Pneumatic and Electric Actuators. (any four points)
b) Find out the $\mathrm{T}[$ composite] matrix for the cylindrical coordinate system.
c) State the relationship between linear velocity and angular velocity.
d) Explain Walk-through programming method.
e) Derive the manipulated Jacobian matrix (J) of 3P robot.
5. Attempt any TWO of the following: 12
a) What are the safety measures taken w.r.t. Robots.
b) Explain various capabilities and limitations of lead through programming methods.
c) For a single slider crank mechanism, state the formula to calculate by analytical method.
i) Velocity of slider
ii) Acceleration of slider
iii) Angular velocity of connecting rod
iv) Angular acceleration of connecting rod.

Also state the meaning of each term.
6. Attempt any TWO of the following: 12
a) Derive the rotational operator matrix for $\operatorname{ROT}(Z, \theta)$.
b) Derive the homogeneous transformation matrix for SCARA robot.
c) A frame $\{B\}$ is rotated about $\boldsymbol{X} \boldsymbol{U}$ axis of the universal coordinate system by 45 degrees and translated along $\boldsymbol{X} \boldsymbol{U}, \boldsymbol{Y} \boldsymbol{U}, \boldsymbol{Z} \boldsymbol{U}$ by 1,2 and 3 units respectively. Let the position of a point Q in $\{\mathrm{B}\}$ is given by $\left[\begin{array}{lll}3.0 & 2.0 & 1.0\end{array}\right]^{T}$. Determine ${ }^{\mathrm{U}} \overline{\mathrm{Q}}$.

