22383

22 3	2223 Ho	3 ours	/	70	Marks	Seat	No.					
	Instru	ctions	r —	(1)	All Questions	are Comp	ulsory	2				
				(2)	Answer each	next main	Quest	tion c	on a i	new	page.	
				(3)	Illustrate your necessary.	answers v	with n	eat sl	cetche	es wł	nereve	er
				(4)	Figures to the	right indi	cate f	ùll m	arks.			
				(5)	Assume suitab	ole data, if	neces	ssary.				
				(6)	Use of Non-p Calculator is p	rogrammab permissible	ole Ele	ectron	ic Pc	ocket		
				(7)	Mobile Phone Communicatio	, Pager an n devices	d any are no	othe ot per	r Eleo missi	ctroni ble i	ic n	
						1411.					Μ	arks
1.		Atte	mpt	any	<u>FIVE</u> of the	following:						10
	a)	Defin	ne a	ı Rot	oot.							
	b)	Com	pare	e Kin	ematic model a	and Dynan	nic m	odel (two	point	s eac	h)
	c)	What	t do	you	mean by the	Jacobian r	natrix	?				
	d)	Defin	ne p	oath a	and trajectory of	of a robot.						
	e)	List	out	any	four robot prog	gramming	langua	ages.				
	f)	Defin	ne c	entrij	petal and tange	ential accel	eration	1				
	g)	Draw	th	e syr	nbol for							
		i)	Re	volute	e Joint							
		ii)	Tw	isting	g Joint							

			irks
2.		Attempt any THREE of the following:	12
	a)	Explain Hydraulic Actuator with a diagram.	
	b)	Explain any four switches of teach pendant.	
	c)	Differentiate Joint space trajectory and Cartesian trajectory planning. (any four points)	
	d)	Explain the various capabilities and limitations of the robot languages. (two points each)	
3.		Attempt any THREE of the following:	12
	a)	Derive the inverse kinematics matrix equation of a 2R planer robot.	
	b)	Draw the diagram for Magnetic Gripper and Vacuum Gripper.	
	c)	Define work envelope? Draw work envelope for Cartesian coordinates.	
	d)	Derive the manipulated Jacobian matrix (J) for cylindrical robot.	
4.		Attempt any THREE of the following:	12
	a)	Compare Pneumatic and Electric Actuators. (any four points)	
	b)	Find out the T[composite] matrix for the cylindrical coordinate system.	
	c)	State the relationship between linear velocity and angular velocity.	
	d)	Explain Walk-through programming method.	

e) Derive the manipulated Jacobian matrix (J) of 3P robot.

5. Attempt any <u>TWO</u> of the following:

- a) What are the safety measures taken w.r.t. Robots.
- b) Explain various capabilities and limitations of lead through programming methods.
- c) For a single slider crank mechanism, state the formula to calculate by analytical method.
 - i) Velocity of slider
 - ii) Acceleration of slider
 - iii) Angular velocity of connecting rod
 - iv) Angular acceleration of connecting rod.

Also state the meaning of each term.

6. Attempt any TWO of the following:

- a) Derive the rotational operator matrix for ROT (Z, θ).
- b) Derive the homogeneous transformation matrix for SCARA robot.
- c) A frame {B} is rotated about XU axis of the universal coordinate system by 45 degrees and translated along XU, YU, ZU by 1, 2 and 3 units respectively. Let the position of a point Q in {B} is given by $[3.0 \ 2.0 \ 1.0]^T$. Determine $U \overline{Q}$.

12

12